Search This Blog

Thursday, May 18, 2023

Lawrence Berkeley National Laboratory

Lawrence Berkeley National Laboratory
Lawrence Berkeley National Laboratory logo.svg
The lab's Molecular Foundry and surrounding buildings
The lab's Molecular Foundry and surrounding buildings

MottoBringing science solutions to the world
EstablishedAugust 26, 1931; 91 years ago
Research typeScientific research and energy technologies
BudgetUS$1.17 billion (2022)
DirectorMichael Witherell
Staff3,663
Students800
Address1 Cyclotron Road
LocationBerkeley, California, United States
37.876°N 122.247°WCoordinates: 37.876°N 122.247°W
Campus200 acres (81 ha)
Operating agency
University of California
16
Websitelbl.gov

Lawrence Berkeley National Laboratory (LBNL) is a federally funded research and development center in the hills of Berkeley, California, United States. Originally established in 1931 by the University of California (UC), the laboratory is now sponsored by the United States Department of Energy and administrated by the UC system. Ernest Lawrence, who won the Nobel prize for inventing the cyclotron, founded the Lab and served as its Director until his death in 1958. Located in the hills of Berkeley, California, the lab overlooks the campus of the University of California, Berkeley.

Scientific Research

The mission of Berkeley Lab is to bring science solutions to the world. The research at Berkeley Lab has four main themes: discovery science, clean energy, healthy earth and ecological systems, and the future of science. The Laboratory's 22 scientific divisions are organized within six areas of research: Computing Sciences, Physical Sciences, Earth and Environmental Sciences, Biosciences, Energy Sciences, and Energy Technologies. It was Lawrence's belief that scientific research is best done through teams of individuals with different fields of expertise, working together, and his Laboratory still considers that a guiding principle today.

Research Impact

Berkeley Lab scientists have won fifteen Nobel prizes in physics and chemistry, and each one has a street named after them on the Lab campus. In addition, twenty-three Berkeley Lab employees were contributors to reports by the United Nations' Intergovernmental Panel on Climate Change, which shared the Nobel Peace Prize. Fifteen Lab scientists have also won the National Medal of Science, and one has won the National Medal of Technology and Innovation.  Eighty-two Berkeley Lab researchers have been elected to membership in the National Academy of Sciences or the National Academy of Engineering

Berkeley Lab has the greatest research publication impact of any single government laboratory in the world in physical sciences and chemistry, as measured by Nature Index. Using the same metric, the Lab is the second-ranking laboratory in the area of earth and environmental sciences.

Scientific user facilities

Much of Berkeley Lab's research impact is built on the capabilities of its unique research facilities.  The laboratory manages five national scientific user facilities, which are part of the network of 28 such facilities operated by the DOE Office of Science. These facilities and the expertise of the scientists and engineers who operate them are made available to 14,000 researchers from universities, industry, and government laboratories. 

Berkeley Lab operates five major National User Facilities for the DOE Office of Science:

  1. The Advanced Light Source (ALS) is a synchrotron light source with 41 beamlines providing ultraviolet, soft x-ray, and hard x-ray light to scientific experiments in a wide variety of fields, including materials science, biology, chemistry, physics, and the environmental sciences.
  • The Advanced Light Source and surrounding buildings
    The ALS is supported by the DOE Office of Basic Energy Sciences.
  • The Joint Genome Institute (JGI) is a scientific user facility for integrative genomic science, with particular emphasis on the DOE missions of energy and the environment. The JGI provides over 2,000 scientific users with access to the latest generation of genome sequencing and analysis capabilities.  
  • The Integrative Genomics Building, home to the Joint Genome Institute
  • The Molecular Foundry is a multidisciplinary nanoscience research facility. Its seven research facilities focus on Imaging and Manipulation of Nanostructures, Nanofabrication, Theory of Nanostructured Materials, Inorganic Nanostructures, Biological Nanostructures, Organic and Macromolecular Synthesis, and Electron Microscopy.
    1. The National Energy Research Scientific Computing Center (NERSC) is the scientific computing facility that provides high performance computing for over 9,000 scientists working on the basic and applied research programs supported by the DOE. The Perlmutter system at NERSC is the 8th-ranked supercomputer system in the Top500 rankings from November 2022. 
    2. The Energy Sciences Network (ESnet) is a high-speed research network serving DOE scientists with their experimental facilities and collaborators worldwide. The upgraded network infrastructure launched in 2022 is optimized for very large scientific data flows, and the network transports roughly 35 petabytes of traffic each month. 

    Team science

    Much of the research at Berkeley Lab is done by researchers from several disciplines and multiple institutions working together as a large team focused on shared scientific goals. Berkeley is either the lead partner or one of the leads in several research institutes and hubs, including the following:

    1. The Joint BioEnergy Institute (JBEI). JBEI's mission is to establish the scientific knowledge and new technologies needed to transform the maximum amount of carbon available in bioenergy crops into biofuels and bioproducts.  JBEI is one of four U.S. Department of Energy (DOE) Bioenergy Research Centers (BRCs).  In 2023, the DOE announced the commitment of $590M to support the BRCs for the next five years.
    2. The National Alliance for Water Innovation (NAWI). NAWI aims to secure an affordable, energy-efficient, and resilient water supply for the US economy through decentralized, fit-for-purpose processing. NAWI is supported primarily by the DOE Office of Energy Efficiency and Renewable Energy, partnering with the California Department of Water Resources, the California State Water Resources Control Board. Berkeley Lab is the lead partner, with founding partners Oak Ridge National Laboratory (ORNL) and the National Renewable Energy Laboratory (NREL).
    3. The Liquid Sunlight Alliance (LiSA). LiSA's Mission is to establish the science principles by which durable coupled microenvironments can be co-designed to efficiently and selectively generate liquid fuels from sunlight, water, carbon dioxide, and nitrogen. The lead institution for LiSA is the California Institute of Technology and Berkeley Lab is a major partner.
    4. The Joint Center for Energy Storage Research (JCESR). JCESR's mission is to deliver transformational new concepts and materials for electrodes, electrolytes and interfaces that will enable a diversity of high performance next-generation batteries for transportation and the grid. Argonne National Laboratory leads JCESR and Berkeley Lab is a major partner.

    Cyclotron Road

    Cyclotron Road is a fellowship program for technology innovators, supporting entrepreneurial scientists as they advance their own technology projects. The core support for the program comes from the Department of Energy's Office of Energy Efficiency and Renewable Energy, through the Lab-Embedded Entrepreneurship Program. Berkeley Lab manages the program in close partnership with Activate, a nonprofit organization established to scale the Cyclotron Road fellowship model to a greater number of innovators around the U.S. and the world. Cyclotron Road fellows receive two years of stipend, $100,000 of research support, intensive mentorship and a startup curriculum, and access to the expertise and facilities of Berkeley Lab. Since members of the first cohort completed their fellowships in 2017, companies founded by Cyclotron Road Fellows have founded companies that have raised about $1 billion in follow-on funding.

    Notable Scientists

    Nobel laureates

    Fifteen Berkeley Lab scientists have been chosen to receive the Nobel Prize in physics or chemistry.

    Nobel Laureates
    Physics Chemistry
    John Clauser (2022) Carolyn Bertozzi (2022)
    Saul Perlmutter (2008) Jennifer Doudna (2020)
    George Smoot (2006) Yuan T. Lee (1986)
    Steven Chu (1970) Melvin Calvin (1961)
    Luis Alvarez (1968) Edwin McMillan (1951)
    Donald Glaser (1960) Glenn Seaborg (1951)
    Owen Chamberlain (1959)
    Emilio Segrè (1959)
    Ernest Lawrence (1939)

    National Medals

    Fifteen Berkeley Lab scientists received the National Medal of Science.

    National Medal of Science awardees
    Paul Alivisatos (Chemistry, 2014) Alexandre Chorin (Mathematics, 2012) John Prausnitz (Engineering, 2003)
    Gabor Somorjai (Chemistry, 2008) Marvin Cohen (Physical Sciences, 2001) Bruce Ames (Biological Sciences, 1998)
    Harold Johnston (Chemistry, 1997) Darleane Hoffman (Chemistry, 1997) Glenn Seaborg (Chemistry, 1991)
    Edwin McMillan (Physical Sciences, 1990) Melvin Calvin (Chemistry, 1989) Yuan T. Lee (Chemistry, 1986)
    George Pimentel (Chemistry, 1983) Kenneth Pitzer (Physical Sciences, 1974) Luis Alvarez (Physical Sciences, 1963)

    Arthur Rosenfeld received the National Medal of Technology and Innovation in 2011.

    History

    University of California Radiation Laboratory staff on the magnet yoke for the 60-inch cyclotron, 1938; Nobel prizewinners Ernest Lawrence, Edwin McMillan, and Luis Alvarez are shown, in addition to J. Robert Oppenheimer and Robert R. Wilson.

    From 1931 to 1945: cyclotrons and team science.

    The laboratory was founded on August 26, 1931, by Ernest Lawrence, as the Radiation Laboratory of the University of California, Berkeley, associated with the Physics Department. It centered physics research around his new instrument, the cyclotron, a type of particle accelerator for which he was awarded the Nobel Prize in Physics in 1939. Throughout the 1930s, Lawrence pushed to create larger and larger machines for physics research, courting private philanthropists for funding. He was the first to develop a large team to build big projects to make discoveries in basic research. Eventually these machines grew too large to be held on the university grounds, and in 1940 the lab moved to its current site atop the hill above campus.  Part of the team put together during this period includes two other young scientists who went on to direct large laboratories: J. Robert Oppenheimer, who directed Los Alamos Laboratory, and Robert Wilson, who directed Fermilab.

    Leslie Groves visited Lawrence's Radiation Laboratory in late 1942 as he was organizing the Manhattan Project, meeting J. Robert Oppenheimer for the first time. Oppenheimer was tasked with organizing the nuclear bomb development effort and founded today's Los Alamos National Laboratory to help keep the work secret. At the RadLab, Lawrence and his colleagues developed the technique of electromagnetic enrichment of uranium using their experience with cyclotrons. The calutrons (named after the University) became the basic unit of the massive Y-12 facility in Oak Ridge, Tennessee. Lawrence's lab helped contribute to what have been judged to be the three most valuable technology developments of the war (the atomic bomb, proximity fuze, and radar). The cyclotron, whose construction was stalled during the war, was finished in November 1946. The Manhattan Project shut down two months later.

    From 1946 to 1972: discovering the antiproton and new elements

    After the war, the Radiation Laboratory became one of the first laboratories to be incorporated into the Atomic Energy Commission (AEC) (now Department of Energy, DOE). In 1952, the Laboratory established a branch in Livermore focused on nuclear security work, which developed into Lawrence Livermore National Laboratory. Some classified research continued at Berkeley Lab until the 1970s, when it became a laboratory dedicated only to unclassified scientific research. Much of the Laboratory's scientific leadership during this period were also faculty members in the Physics and Chemistry Departments at the University of California, Berkeley.

    The scientists and engineers at Berkeley Lab continued to build ambitious large projects to accelerate the advance of science. Lawrence's original cyclotron design did not work for particles near the speed of light, so a new approach was needed. Edwin McMillan co-invented the synchrotron with Vladimir Veksler to address the problem. McMillan built an electron synchrotron capable of accelerating electrons to 300 million electron volts (300 MeV), which was operated from 1948 to 1960.

    The Berkeley accelerator team built the Bevatron, a proton synchrotron capable of accelerating protons to an energy of 6.5 gigaelectronvolts (GeV), an energy chosen to be just above the threshold for producing antiprotons. In 1955, during the Bevatron's first full year of operation, Physicists Emilio Segrè and Owen Chamberlain won the competition to observe the antiprotons for the first time. They won the Nobel Prize for Physics in 1959 for this discovery. The Bevatron remained the highest energy accelerator until the CERN Proton Synchrotron started accelerating protons to 25 GeV in 1959.

    Luis Alvarez led the design and construction of several liquid hydrogen bubble chambers, which were used to discover a large number of new elementary particles using Bevatron beams. His group also developed measuring systems to record the millions of photographs of particle tracks in the bubble chamber and computer systems to analyze the data. Alvarez won the Nobel Prize for Physics in 1968 for the discovery of many elementary particles using this technique.

    The Alvarez Physics Memos are a set of informal working papers of the large group of physicists, engineers, computer programmers, and technicians led by Luis W. Alvarez from the early 1950s until his death in 1988. Over 1700 memos are available on-line, hosted by the Laboratory.

    Berkeley Lab is credited with the discovery of 16 elements on the periodic table, more than any other institution, over the period 1940 to 1974. The American Chemical Society has established a National Historical Chemical Landmark at the Lab to memorialize this accomplishment.  Glenn Seaborg was personally involved in discovering nine of these new elements, and he won the Nobel Prize for Chemistry in 1951 with McMillan. 

    Founding Laboratory Director Lawrence died in 1958 at the age of 57. McMillan became the second Director, serving in that role until 1972.

    From 1973 to 1989: new capabilities in energy and environmental research

    The University of California appointed Andrew Sessler as the Laboratory Director in 1973, during the 1973 oil crisis. He established the Energy and Environment Division at the Lab, expanding for the first time into applied research that addressed the energy and evironmental challenges the country faced.  Sessler also joined with other Berkeley physicists to form an organization called Scientists for Sakharov, Orlov, Sharansky (SOS), which led an international protest movement calling attention to the plight of three Soviet scientists who were being persecuted by the U.S.S.R. government. 

    Arthur Rosenfeld led the campaign to build up applied energy research at Berkeley Lab. He became widely known as the father of energy efficiency and the person who convinced the nation to adopt energy standards for appliances and buildings.  Inspired by the 1973 oil crisis, he started up large team efforts that developed several technologies that radically improved energy efficiency. These included compact fluorescent lamps, low-energy refrigerators, and windows that trap heat. He developed the first energy-efficiency standards for buildings and appliances in California, which helped the state to sustain constant electricity use per capita from 1973 to 2006, while it rose by 50% in the rest of the country. This phenomenon is called the Rosenfeld Effect

    By 1980, George Smoot had built up a strong experimental group in Berkeley, building instruments to measure the cosmic microwave background (CMB) in order to study the early universe. He became the principal investigator for the Differential Microwave Radiometer (DMR) instrument that was launched in 1989 as part of the Cosmic Background Explorer (COBE) mission. The full sky maps taken by the DMR made it possible for COBE scientists to discover the anisotropy of the CMB, and Smoot shared the Nobel Prize for Physics in 2006 with John Mather. 

    From 1990 to 2004: new facilities for chemistry and materials, nanotechnology, scientific computing, and genomics

    Charles V. Shank left Bell Labs to become Director of Berkeley Lab in 1989, a position he held for 15 years. During his tenure, four of the five national scientific user facilities started operations at Berkeley, and the fifth started construction. 

    On 5 October 1993, the new Advanced Light Source produced its first beams of x-ray light.  David Shirley had proposed in the early 1990s building this new synchrotron source specializing in imaging materials using extreme ultraviolet to soft x-rays. In fall 2001, a major upgrade added "superbends" to produce harder x-rays for beamlines devoted to protein crystallography.

    In 1996, both the National Energy Research Scientific Computing Center (NERSC) and the Energy Sciences Network (ESnet) were moved from Lawrence Livermore National Laboratory to their new home at Berkeley Lab.  To reestablish NERSC at Berkeley required moving a Cray C90, a first-generation vector processor supercomputer of 1991 vintage, and installing a newly Cray T3E, the second-generation (1995) model. The NERSC computing capacity was 350 GFlop/s, representing 1/200,000 of the Perlmutter's speed in 2022. Horst Simon was brought to Berkeley as the first Director of NERSC, and he soon became one of the co-editors who managed the Top500 list of supercomputers, a position he has held ever since. 

    The Joint Genome Institute (JGI) was created in 1997 to unite the expertise and resources in genome mapping, DNA sequencing, technology development, and information sciences that had developed at the DOE genome centers at Berkeley Lab, Lawrence Livermore National Laboratory (LLNL) and Los Alamos National Laboratory (LANL). The JGI was originally established to work on the Human Genome Project (HGP), and generated the complete sequences of Chromosomes 5, 16 and 19. In 2004, the JGI established itself as a national user facility managed by Berkeley Lab, focusing on the broad genomic needs of biology and biotechnology, especially those related to the environment and carbon management.

    Laboratory Director Shank brought Daniel Chemla from Bell Labs to Berkeley Lab in 1991 to lead the newly formed Division of Materials Science and Engineering. In 1998 Chemla was appointed Director of the Advanced Light Source to build it into a world-class scientific user facility.  In 2001, Chemla proposed the establishment of the Molecular Foundry, to make cutting-edge instruments and expertise for nanotechnology accessible to a broad research community. Paul Alivisatos as Founding Director, and the founding directors of the facilities were Carolyn Bertozzi, Jean Frechet, Steven Gwon Sheng Louie, Jeffrey Bokor, and Miquel Salmeron. The Molecular Foundry building was dedicated in 2006, with Bertozzi as Foundry Director and Steven Chu as Laboratory Director.

    In the 1990s, Saul Perlmutter led the Supernova Cosmology Project (SCP), which used a certain type of supernovas as standard candles to study the expansion of the universe.  The SCP team co-discovered the accelerating expansion of the universe, leading to the concept of dark energy, an unknown form of energy that drives this acceleration. Perlmutter shared the Nobel Prize in Physics in 2011 for this discovery. 

    From 2005 to 2015: Addressing climate change and the future of energy

    On August 1, 2004, Nobel-winning physicist Steven Chu was named the sixth Director of Berkeley Lab. The DOE was preparing to compete the management and operations (M&O) contract for Berkeley Lab for the first time, and Chu's first task was to lead the University of California's team that successfully bid for that contract. The initial term of the contract was from June 1, 2005 to May 31, 2010, with possible phased extensions for superior management performance up to a total contract term of 20 years. 

    In 2007, Berkeley Lab launched the Joint BioEnergy Institute, one of three Bioenergy Research Centers to receive funding from the Genomic Science Program of DOE's Office for Biological and Environmental Research (BER).  JBEI's Chief Executive Officer is Jay Keasling, who was elected a member of the National Academy of Engineering for developing synthetic biology tools needed to engineer the antimalarial drug artemisinin. The DOE Office of Science named Keasling a Distinguished Scientist Fellow in 2021 for advancing the DOE's strategy in renewable energy.

    On December 15, 2008, newly elected President Barack Obama nominated Steven Chu to be the Secretary of Energy. The University of California chose the Lab's Deputy Director, Paul Alivisatos, as the new Director.  Alivisatos is a materials chemist who won the National Medal of Science for his pioneering work in developing nanomaterials. He continued the Lab's focus on renewable energy and climate change. 

    The DOE established the Joint Center for Artificial Photosynthesis (JCAP) as an Energy Innovation Hub in 2010, with California Institute of Technology as the lead institution and Berkeley Lab as the lead partner. The Lab built a new facility to house the JCAP laboratories and collaborative research space, and it was dedicated as Chu Hall in 2015. After JCAP operated for ten years, in 2020 the Berkeley team became a major partner in a new Energy Innovation Hub, the Liquid Sunlight Alliance (LiSA), with the vision of establishing the science needed to generate liquid fuels economically from sunlight, water, carbon dioxide and nitrogen. 

    The Lab also is a major partner on a second Energy Innovation Hub, the Joint Center for Energy Storage Research (JCESR) which was started in 2013, with Argonne National Laboratory as the lead institution.  The Lab built a new facility, the General Purpose Laboratory, to house energy storage laboratories and associated research space, which Secretary of Energy Ernest Moniz inaugurated in 2014. The mission of JCESR is to deliver transformational new concepts and materials that will enable a diversity of high performance next-generation batteries for transportation and the grid.

    On November 12, 2015, Laboratory Director Paul Alivisatos and Deputy Director Horst Simon were joined by University of California President Janet Napolitano, UC Berkeley Chancellor Nicholas Dirks, and the head of DOE's ASCR program Barb Helland to dedicate a Shyh Wang Hall, a facility designed to host the NERSC supercomputers and staff, the ESnet staff, and the research divisions in the Computing Sciences area.  The building was designed with a novel seismic floor for the 20,000 square foot machine room in addition to features that take advantage of the coastal climate to provide energy-efficient air conditioning for the computing systems. 

    From 2016 to the present: building new facilities and accelerating decarbonization

    In 2015 Paul Alivisatos announced that he was stepping down from his role as Laboratory Director. He took two leadership positions at the University of California, Berkeley, before becoming President of the University of Chicago in 2021. The University of California selected Michael Witherell, formerly the Director of Fermilab and Vice Chancellor for Research at the University of California, Santa Barbara as the eighth director of Berkeley Lab starting on March 1, 2016.  In 2016, the Laboratory entered a period of intensive modernization: an unprecedented number of major projects to upgrade existing scientific facilities and to build new ones.

    Berkeley Lab physicists led the construction of the Dark Energy Spectroscopic Instrument, which is designed to create three-dimensional maps of the distribution of matter covering an unprecedented volume of the universe with unparalleled detail.  The new instrument was installed on the retrofitted Nicholas U. Mayall 4-meter Telescope at Kitt Peak National Observatory in 2019. The five-year mission started in 2021, and the map assembled with data taken in the first seven months already included more galaxies than any previous survey. 

    On September 27, 2016, The DOE gave approval of the mission need for ALS-U, a major project to upgrade the Advanced Light Source that includes constructing a new storage ring and an accumulator ring.  The horizontal size of the electron beam in ALS will shrink from 100 micrometers to a few micrometers, which will improve the ability to image novel materials needed for next-generation batteries and electronics. With a total project cost of $590 million, this is the largest construction project at the Lab since the ALS was built in 1993. 

    How the Lab's name evolved

    Shortly after the death of Lawrence in August 1958, the UC Radiation Laboratory, including both the Berkeley and Livermore sites, was renamed Lawrence Radiation Laboratory. The Berkeley location became Lawrence Berkeley Laboratory in 1971, although many continued to call it the RadLab. Gradually, another shortened form came into common usage, LBL. Its formal name was amended to Ernest Orlando Lawrence Berkeley National Laboratory in 1995, when "National" was added to the names of all DOE labs. "Ernest Orlando" was later dropped to shorten the name. Today, the lab is commonly referred to as Berkeley Lab.

    Laboratory directors

    Operations and governance

    The University of California operates Lawrence Berkeley National Laboratory under a contract with the Department of Energy. The site consists of 76 buildings (owned by the U.S. Department of Energy) located on 200 acres (0.81 km2) owned by the university in the Berkeley Hills. Altogether, the Lab has 3,663 UC employees, of whom about 800 are students or postdocs, and each year it hosts more than 3,000 participating guest scientists. There are approximately two dozen DOE employees stationed at the laboratory to provide federal oversight of Berkeley Lab's work for the DOE. The laboratory director, Michael Witherell, is appointed by the university regents and reports to the university president. Although Berkeley Lab is governed by UC independently of the Berkeley campus, the two entities are closely interconnected: more than 200 Berkeley Lab researchers hold joint appointments as UC Berkeley faculty.

    The laboratory budget was $1.17 billion dollars in fiscal year 2022, while the total obligations were $1.45 billion.

    Electronic warfare

    From Wikipedia, the free encyclopedia

    Electronic warfare (EW) is any action involving the use of the electromagnetic spectrum (EM spectrum) or directed energy to control the spectrum, attack an enemy, or impede enemy assaults. The purpose of electronic warfare is to deny the opponent the advantage of—and ensure friendly unimpeded access to—the EM spectrum. EW can be applied from air, sea, land, and/or space by crewed and uncrewed systems and can target communication, radar, or other military and civilian assets.

    The electromagnetic environment

    Military operations are executed in an information environment increasingly complicated by the electromagnetic spectrum. The electromagnetic spectrum portion of the information environment is referred to as the electromagnetic environment (EME). The recognized need for military forces to have unimpeded access to and use of the electromagnetic environment creates vulnerabilities and opportunities for electronic warfare in support of military operations.

    Within the information operations construct, EW is an element of information warfare; more specifically, it is an element of offensive and defensive counterinformation.

    NATO has a different and arguably more encompassing and comprehensive approach to EW. A military committee conceptual document from 2007 (MCM_0142 Nov 2007 Military Committee Transformation Concept for Future NATO Electronic Warfare) recognised the EME as an operational maneuver space and warfighting environment/domain. In NATO, EW is considered to be warfare in the EME. NATO has adopted simplified language which parallels those used in other warfighting environments like maritime, land, and air/space. For example, an electronic attack (EA) is offensive use of EM energy, electronic defense (ED), and electronic surveillance (ES). The use of the traditional NATO EW terms, electronic countermeasures (ECM), electronic protective measures (EPM), and electronic support measures (ESM) has been retained as they contribute to and support electronic attack (EA), electronic defense (ED) and electronic surveillance (ES). Besides EW, other EM operations include intelligence, surveillance, target acquisition and reconnaissance (ISTAR), and signals intelligence (SIGINT). Subsequently, NATO has issued EW policy and doctrine and is addressing the other NATO defense lines of development.

    Primary EW activities have been developed over time to exploit the opportunities and vulnerabilities that are inherent in the physics of EM energy. Activities used in EW include electro-optical, infrared and radio frequency countermeasures; EM compatibility and deception; radio jamming, radar jamming and deception and electronic counter-countermeasures (or anti-jamming); electronic masking, probing, reconnaissance, and intelligence; electronic security; EW reprogramming; emission control; spectrum management; and wartime reserve modes.

    Subdivisions

    Electronic warfare consists of three major subdivisions: electronic attack (EA), electronic protection (EP), and electronic warfare support (ES).

    Electronic attack

    Krasukha, a Russian mobile, ground-based, electronic warfare (EW) system used to jam AWACS and airborne radars on radar-guided missiles.
     

    Electronic attack (EA), also known as electronic countermeasures (ECM), involves the offensive use of electromagnetic energy weapons, directed energy weapons, or anti-radiation weapons to attack personnel, facilities, or equipment with the intent of degrading, neutralizing, or destroying enemy combat capability including human life. In the case of electromagnetic energy, this action is most commonly referred to as "jamming" and can be performed on communications systems or radar systems. In the case of anti-radiation weapons, this often includes missiles or bombs that can home in on a specific signal (radio or radar) and follow that path directly to impact, thus destroying the system broadcasting.

    Electronic protection

    A right front view of a USAF Boeing E-4 advanced airborne command post (AABNCP) on the electromagnetic pulse (EMP) simulator (HAGII-C) for testing.
     

    Electronic protection (EP), also known as an electronic protective measure (EPM) or electronic counter-countermeasure (ECCM) are a measure used to protect against an electronic enemy attack (EA) or to protect against friendly forces who unintentionally deploy the equivalent of an electronic attack on friendly forces. (sometimes called EW fratricide). The effectiveness of electronic protection (EP) level is the ability to counter an electronic attack (EA).

    Flares are often used to distract infrared homing missiles from missing their target. The use of flare rejection logic in the guidance (seeker head) of an infrared homing missile to counter an adversary's use of flares is an example of EP. While defensive EA actions (jamming) and EP (defeating jamming) both protect personnel, facilities, capabilities, and equipment, EP protects from the effects of EA (friendly and/or adversary). Other examples of EP include spread spectrum technologies, the use of restricted frequency lists, emissions control (EMCON), and low observability (stealth) technology.

    Electronic warfare self-protection (EWSP) is a suite of countermeasure systems fitted primarily to aircraft for the purpose of protecting the host from weapons fire and can include, among others: directional infrared countermeasures (DIRCM, flare systems and other forms of infrared countermeasures for protection against infrared missiles; chaff (protection against radar-guided missiles); and DRFM decoy systems (protection against radar-targeted anti-aircraft weapons).

    An electronic warfare tactics range (EWTR) is a practice range that provides training for personnel operating in electronic warfare. There are two examples of such ranges in Europe: one at RAF Spadeadam in the northwest county of Cumbria, England, and the Multinational Aircrew Electronic Warfare Tactics Facility Polygone range on the border between Germany and France. EWTRs are equipped with ground-based equipment to simulate electronic warfare threats that aircrew might encounter on missions. Other EW training and tactics ranges are available for ground and naval forces as well.

    Antifragile EW is a step beyond standard EP, occurring when a communications link being jammed actually increases in capability as a result of a jamming attack, although this is only possible under certain circumstances such as reactive forms of jamming.

    In November 2021, Israel Aerospace Industries announced a new electronic warfare system named Scorpius that can disrupt radar and communications from ships, UAVs, and missiles simultaneously and at varying distances.

    Electronic warfare support

    RAF Menwith Hill, a large ECHELON site in the United Kingdom, and part of the UK-USA Security Agreement

    Electronic warfare support (ES) is a subdivision of EW involving actions taken by an operational commander or operator to detect, intercept, identify, locate, and/or localize sources of intended and unintended radiated electromagnetic (EM) energy. These Electronic Support Measures (ESM) aim to enable immediate threat recognition focuses on serving military service needs even in the most tactical, rugged, and extreme environments. This is often referred to as simply reconnaissance, although today, more common terms are intelligence, surveillance and reconnaissance (ISR) or intelligence, surveillance, target acquisition, and reconnaissance (ISTAR). The purpose is to provide immediate recognition, prioritization, and targeting of threats to battlefield commanders.

    Signals intelligence (SIGINT), a discipline overlapping with ES, is the related process of analyzing and identifying intercepted transmissions from sources such as radio communication, mobile phones, radar, or microwave communication. SIGINT is broken into two categories: electronic intelligence (ELINT) and communications intelligence (COMINT). Analysis parameters measured in signals of these categories can include frequency, bandwidth, modulation, and polarization.

    The distinction between SIGINT and ES is determined by the controller of the collection assets, the information provided, and the intended purpose of the information. Electronic warfare support is conducted by assets under the operational control of a commander to provide tactical information, specifically threat prioritization, recognition, location, targeting, and avoidance. However, the same assets and resources that are tasked with ES can simultaneously collect information that meets the collection requirements for more strategic intelligence.

    History

    The history of electronic warfare goes back to at least the beginning of the 20th century. The earliest documented consideration of EW was during the Russo-Japanese War of 1904–1905. The Japanese auxiliary cruiser Shinano Maru had located the Russian Baltic Fleet in Tsushima Strait, and was communicating the fleet's location by "wireless" to the Imperial Japanese Fleet HQ. The captain of the Russian warship Ural requested permission to disrupt the Japanese communications link by attempting to transmit a stronger radio signal over the Shinano Maru's signal, hoping to distort the Japanese signal at the receiving end. Russian Admiral Zinovy Rozhestvensky refused the advice and denied the Ural permission to electronically jam the enemy, which in those circumstances might have proved invaluable. The intelligence the Japanese gained ultimately led to the decisive Battle of Tsushima. The battle was humiliating for Russia. The Russian navy lost all its battleships and most of its cruisers and destroyers. These staggering losses effectively ended the Russo-Japanese War in Japan's favor. 4,380 Russians were killed and 5,917 were captured, including two admirals, with a further 1,862 interned.

    During World War II, the Allies and Axis Powers both extensively used EW, or what Winston Churchill referred to as the "Battle of the Beams". Navigational radars had gained in use to vector bombers to their targets and back to their home base. The first application of EW in WWII was to defeat those navigational radars. Chaff was also introduced during WWII to confuse and defeat tracking radar systems.

    As time progressed and battlefield communication and radar technology improved, so did electronic warfare. Electronic warfare played a major role in many military operations during the Vietnam War. Aircraft on bombing runs and air-to-air missions often relied on EW to survive the battle, although many were defeated by Vietnamese ECCM.

    As another example, in 2007, an Israeli attack on a suspected Syrian nuclear site during Operation Outside the Box (or Operation Orchard) used electronic warfare systems to disrupt Syrian air defenses while Israeli jets crossed much of Syria, bombed their targets, and returned to Israel undeterred. The target of the flight of 10 F-15 aircraft was a suspected nuclear reactor under construction near the Euphrates River modeled after a North Korean reactor and supposedly financed with Iranian assistance. Some reports say Israeli EW systems deactivated all of Syria's air defense systems for the entire period of the raid, infiltrating the country, bombing their target and escaping.

    In December 2010, the Russian army received their first land-based Army operated multifunctional electronic warfare system known as Borisoglebsk 2 developed by Sozvezdie. Development of the system started in 2004 and evaluation testing successfully completed in December 2010. The Borisoglebsk-2 brings four different types of jamming stations into a single system with a single control console, helping the operator make battlefield decisions within seconds. The Borisoglebsk-2 system is mounted on nine MT-LB armored vehicles and is intended to suppress mobile satellite communications and satellite-based navigation signals. This EW system is developed to conduct electronic reconnaissance and suppression of radio-frequency sources. Newspaper, Svenska Dagbladet, said its initial usage caused concern within NATO. A Russian blog described Borisoglebsk-2 thus:

    The 'Borisoglebsk-2', when compared to its predecessors, has better technical characteristics: wider frequency bandwidth for conducting radar collection and jamming, faster scanning times of the frequency spectrum, and higher precision when identifying the location and source of radar emissions, and increased capacity for suppression.

    During the first two days of the 2022 Russian invasion of Ukraine, Russian EW disrupted Ukraine's air defense radars and communications, severely disrupting Ukrainian ground-based air defense systems. Russian jamming was so effective in fact that it interfered with their own communications, so efforts were scaled back. This led to Ukrainian SAMs regaining much of their effectiveness, and they began inflicting significant losses on Russian aircraft by the start of March. Rapid Russian advances at the start of the war prevented EW troops from properly supporting them, but they had deployed extensive jamming infrastructure by late March and April. EW complexes were set up in the Donbas in concentrations of up to 10 complexes per 13 mi (21 km) of frontage. Electronic suppression of GPS and radio signals caused heavy losses of Ukrainian UAVs, depriving them of intelligence and precise artillery fire spotting. Small quadcopters had an average life expectancy of around three flights, and larger fixed-wing UAVs like the Bayraktar TB2 had a life expectancy of about six flights. By summer 2022, only some one-third of Ukrainian UAV missions could be said to have been successful, and EW had contributed to Ukraine losing 90% of the thousands of drones it had at the beginning of the invasion.

    Russian EW capacity to disrupt GPS signals is credited with the reduction in the success of Ukrainian usage of HIMARS and JDAM bombs. The failure of GPS guidance forces these weapons, in particular JDAMS, to use inertial navigation system which reduces accuracy from around 15 feet down to around 90 feet.

    In popular culture

    In the movie Spaceballs, an electronic attack "jams" a weapons system with a literal jar of jam. In both Top Gun: Maverick and Behind Enemy Lines, characters utilize chaff and flares from their F-18s to confuse/deflect guided missiles.

    Gender inequality in Bangladesh

    From Wikipedia, the free encyclopedia
     

    Gender inequality has been improving a lot in Bangladesh, inequalities in areas such as education and employment remain ongoing problems so women have little political freedom. In 2015, Bangladesh was ranked 139 out of 187 countries on the Human Development Index and 47 out 144 countries surveyed on the Gender Inequality Index in 2017. Many of the inequalities are result of extreme poverty and traditional gender norms centred on a patrilineal and patriarchal kinship system in rural areas.

    Gender

    Bangladesh is one of those countries of the world where the number of men exceeds the number of women. Ninety- percent of the population adheres to Islam. Veiling remains a domain of contestation in regards to whether it serves as a vehicle of empowerment or discrimination. While seen in Western discourse as restrictive of women's rights, some claim that burkas allow for better freedom of movement in Bangladesh. Despite the changes that have come with the demand for women in the export industry, women are generally unseen outside the domestic sphere. This is especially true in rural Bangladesh. While labour force increase has accounted for higher percentages for females than males, terms of equality are measured in various areas beyond employment. Their status and position is also measured in terms of education, income, assets, health, and the role they play in the family and in society. These characteristics are representative of the amount of political power and social prestige a woman is accorded and thus the extent to which she can influence decision-making within the home and in the community.

    Legal status

    Although the Constitution of Bangladesh states that women have equal footing with men in all spheres of public life, it also recognizes religious personal laws, which are unequal to women. Four significant events in the life of a woman: marriage; divorce; custody of children; and, inheritance rights are governed by personal laws. Personal laws are based on religious and social value systems. Because women are the primary caregivers for children, in cases of divorce, custody is most often awarded to the mother.

    In recent years, several laws have been put in place to reduce the amount of violence against women and girls. Early in 2011, a Division Bench of the High Court Division of the Supreme Court ordered every incident of eve-teasing to be considered sexual harassment. It also ordered an amendment to the Prevention and of Repression on Women and Children Act of 2000 to include the act of stalking in its provisions. Other laws protecting Bangladeshi women include the Acid Crime Control 2002 and the Dowry Prohibition Act 1980. However, weak enforcement of these laws is common due to a weak judiciary, corruption, and societal tolerance.

    The Convention on the Elimination of all forms of Discrimination Against Women (CEDAW)

    In 1979, the United Nations General Assembly adopted CEDAW as an international bill of rights for women. It defines what constitutes discrimination against women and creates an agenda for states to end discrimination worldwide. States that ratify CEDAW are legally bound to put its provisions into practice and are obligated to submit national status reports every 4 years.

    On 6 November 1984, Bangladesh ratified CEDAW with reservations on Articles 2, 13.1[a], 16.1[c], and [f] due to conflicts with Sharia law of Islam. Since ratification, Bangladesh has undergone milestone changes in gender equality. In 2009, a public interest litigation case brought by the Bangladesh National Women's Lawyers Association challenged the High Court to step in and take action as there was no national law against sexual harassment. CEDAW became the centre of the Court's deliberations, and particular interest in CEDAW's Article 11 on equality in employment and the CEDAW Committee's General Recommendation no. 19 on violence against women was given. Based on these principles, the Court issued sexual harassment guidelines for the whole country, which will remain when legislation is passed. Bangladesh has also used CEDAW to help attain gender parity in primary school enrollment and has as a goal for 2015, to eliminate all gender disparities in secondary education.

    Health

    In 2011, 24% of births were attended by a professional health physician. Sex selective health care and infanticide suggest a correlation between the number of females to males in Bangladesh. In Europe where men and women are given similar health care and nutrition, women outnumber men 105:100. In Bangladesh, that ratio is 95:100. In terms of the population, that ratio accounts for approximately 5 million missing women. Economist Amartya Sen argues that this low ratio is primarily due to insufficient health care provided for young girls but nowadays NGOs are encouraging equal health care. He reported that men, followed by boys, is the largest group of people admitted into hospitals. Women family members are less likely to receive modern medical care and are generally recipients of traditional remedies.

    The health situation for urban women is worse than that for rural women, especially those living in slums. The urban population living in the slum areas do not have adequate sanitation, water and health facilities which results in poor health.

    Education

    In 2011, the population with at least a secondary education was 30.8% for women and 39.3% for men. Due to poverty, literacy rates have remained low. In the span of 30 years (1970 to 2000), the female-male literacy ratio has more than doubled, from 0.30 to 0.61. While levels remain low, there is a more rapid increase of educational attainment for women than men. Enrollment of girls are rising in schools and colleges. However, due to financial constraints and the lack of earning opportunities for educated women, the rationale in the Bangladesh family to educate a boy over a girl still persists. Other impediments to educational attainment for women include early marriage, cultural norms, and religious orthodoxy. Participation in technical disciplines (regarded as men's domain) in areas such as engineering and agriculture is unequal as well. As of 1997, the student population at technical universities is only 9% female.

    Employment

    Labor force participation for females has been driven primarily by the growth of approved export industry jobs in textiles and the spread of micro financing operations by NGOs including the Grameen Bank. Women's participation in high skill, managerial, and government executive positions have increased only to a limited extent. Income inequalities between women and men are still existent in Bangladesh. The 2012 Human Development Report shows that in the small business sector, for every dollar earned by a male, women make 12 cents in comparison. Over time, however, gender earning gaps have decreased in favour of women.

    Microcredit

    Since the 1970s, microcredit institutions in Bangladesh have moved to the centre stage of most poverty alleviation schemes. The most notable micro finance institutions in Bangladesh are the Grameen Bank and BRAC. (Bangladesh Rural Advancement Committee) In 2005, these two institutions covered 59% of total microcredit borrowers in Bangladesh. Marketization of the originally intended welfare oriented sector have made micro finance widely popular, accounting for a $2.1 billion industry. These loans require no collateral, making for attractive prospects to poor and/or rural Bangladeshi families who have no collateral to offer.

    Bangladeshi women are primarily who these institutions target. This relies upon observations that patriarchy is deeply embedded in the culture, thus the spotlight is on empowering women who are vulnerable and powerless. Research also suggests that loans given to women tend to more often benefit the whole family than do loans to men.

    Having been adopted in one of the U.N.'s Millennium Development Goals, micro credit initiatives have been seen as beneficial for alleviating poverty. While it has been shown to do this, scholars also indicate that in many cases, micro credit loans can worsen poverty. As observed in the context of India's microcredit crisis of 2010, client poaching occurs where the poorest of individuals are given loans, even if they have little to no prospects of repayment. Quick repayment requirements on loans often don't give women enough time to generate the income quickly enough through their business expenditures. Financial setbacks in the initial stages of business, use of loan money for emergencies and/or day-to-day consumption can result in large indebtedness and conditions of poverty worse than before. Thus, collateral takes the form as scholar Lamia Karim coins, the economy of shame. In Bangladesh, women are the traditional custodians of honour. Deferral on these loans puts the honour of the family and the security of the woman at risk, thus making shame and humiliation collateral for micro credit institutions.

    Another disadvantage to women in micro finance is credit control. While intended for women, husbands in the family often end up being the sole beneficiaries of the capital. The idea that "since my wife belongs to me, than so does the money" is largely the reason for this.

    Garment workers in Bangladesh

    Garment industry

    The garment sector in Bangladesh accounts for 77% of total exports, as well as being the country's largest industry. Low wages and poor commitment to Bangladesh's labour laws have provided the basis for extremely competitive labour costs. Unmarried women from rural areas are the preferred garment factory workers, and correspondingly make up the majority of the labour force. Women are preferred over men primarily because its deemed a) women are more patient and nimble b) women are more controllable than men c) women are less mobile and less likely to join a trade union d) women can do better in sewing because it coincides with domestic jobs.

    Garment workers experience several violations of worker rights which are supposedly protected in Bangladesh's labour codes. Among these violations are long working hours, illegal pay deductions, lack of safe and sanitary working conditions and denial of freedom to associate and bargain collectively. Harassment and abuse against workers is also extremely prevalent in Bangladesh.

    Working conditions are different for women than men because they work different jobs. Generally, women suffer the worst working conditions because they hold low skill jobs where occupational hazards are greater. Health is adversely affected by long working hours and poor ventilation. Garment workers also often suffer from the absence of a lunchroom and clean drinking water. Safety and fire hazards are issues as well; in April 2013, a factory collapse on the outskirts of Dhaka killed 1,021 people.

    Female workers deal with other issues male workers don't need to. Female garment workers can face an uncongenial work environment, unsafe transportation, and housing. These factors generally don't affect male workers. Sexual harassment and violence in the workplace are also common. In 1998, 161 rape cases in and around garment factories were reported by the Department of Metropolitan Police in Dhaka.

    Despite these negative aspects, the garment industry to many Bangladeshi women represents one of few options to work with dignity. The industry allows for women, in many cases, to become the bread winners for their families as well as having elevation in social status. In the International People's Health Assembly held in Bangladesh in 2000, voices of women spoke out against the threat of imposing international labour standards threatening their garment industry jobs.

    Political participation

    Since the 1990s, women have become increasingly influential in the political arena. Despite the barriers that come with patriarchal rules and the purdah, the system of quotas has ensured women's representation in the national parliament and local governments. Since 1991, all the prime minister elections have been won by two female prime ministers, Sheikh Hasina and Khaleda Zia. Elections in December 2008 resulted in the election of Hasina, who is currently serving.

    Despite these successes, there remain several factors that limit women's political participation. The political culture based on vengeance, distrust and corruption has ideological, political, religious and institutional dimensions that are rooted in the whole of society. The result is an institutionalisation of violence as a means of political expression. In 2007, 192 cases of women being attacked with acid were registered. Intimidation by conservative parties and religious and socio-cultural norms are used to cut down and intimidate women, limiting their rights to vote. High rates of illiteracy have also acted as limiting factors.

    Inequality and violence against women

    Cultural and traditional factors heavily influence how women are treated and regarded in Bangladesh. Once married, women, adolescents, and girls become property of the husbands family. This limits opportunities for schooling, thus perpetuating dependence and disempowerment. Domestic violence and discrimination are difficult to measure, acts of violence can be accounted for in court proceedings and police reports. Violence in Bangladesh ranges from acid throwing, physical and psychological torture, sexual harassment, sexual assault, rape, related violence, trafficking, forced prostitution, coerced suicide and murder.

    Rape

    Rape is one of the most brutal forms of violence against women in Bangladesh, and its on the rise. Data from the BNWLA Resource centre shows that rape cases doubled from 564 in 2001 to 1043 in 2004. Gang rape has become increasingly prevalent as well.

    Domestic violence

    Domestic violence incidents in Bangladesh are widespread and fairly common, affecting women across all forms of economic strata. While largely under-reported due to social stigma and fear, data suggests an increase in reported cases of abuse. In 2001, 530 domestic abuse cases were reported in Bangladeshi newspapers. In 2004, the number of cases reported more than doubled that number at 1164 cases. Despite this, domestic violence is not seen as a serious crime. Because it is often regarded as family matters, law enforcement agencies may be reluctant to get involved.

    Acid violence

    Acid violence against women has become popular act of revenge since the 1980s. Bangladesh has the highest worldwide incidents of acid crimes, accounting for 9% of burn injuries in the country. A recent study reveals that land disputes account for 27% of acid attacks, followed by 18% for family disputes, 10% for refusal of sex, 8% for refusal of romantic relationship, 5% for dowry conflicts, 4% for marital disputes, 3% for refusal of marriage proposal, 2% for political enmity, and the remaining 23% for unknown reasons. Despite new harsh laws, acid violence has been increasing over the last few years. Statistics do not fully capture the devastating effects of acid violence. The plight for victims goes beyond physical scarring, daily life is forever marked by stigma, harassment, and destitution.

    Streaming algorithm

    From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Streaming_algorithm ...