Search This Blog

Saturday, January 4, 2020

Root-finding algorithm

From Wikipedia, the free encyclopedia
https://en.wikipedia.org/wiki/Root-finding_algorithm

In mathematics and computing, a root-finding algorithm is an algorithm for finding zeroes, also called "roots", of continuous functions. A zero of a function f, from the real numbers to real numbers or from the complex numbers to the complex numbers, is a number x such that f(x) = 0. As, generally, the zeroes of a function cannot be computed exactly nor expressed in closed form, root-finding algorithms provide approximations to zeroes, expressed either as floating point numbers or as small isolating intervals, or disks for complex roots (an interval or disk output being equivalent to an approximate output together with an error bound).

Solving an equation f(x) = g(x) is the same as finding the roots of the function h(x) = f(x) – g(x). Thus root-finding algorithms allow solving any equation defined by continuous functions. However, most root-finding algorithms do not guarantee that they will find all the roots; in particular, if such an algorithm does not find any root, that does not mean that no root exists.

Most numerical root-finding methods use iteration, producing a sequence of numbers that hopefully converge towards the root as a limit. They require one or more initial guesses of the root as starting values, then each iteration of the algorithm produces a successively more accurate approximation to the root. Since the iteration must be stopped at some point these methods produce an approximation to the root, not an exact solution. Many methods compute subsequent values by evaluating an auxiliary function on the preceding values. The limit is thus a fixed point of the auxiliary function, which is chosen for having the roots of the original equation as fixed points, and for converging rapidly to these fixed points.

The behaviour of general root-finding algorithms is studied in numerical analysis. However, for polynomials, root-finding study belongs generally to computer algebra, since algebraic properties of polynomials are fundamental for the most efficient algorithms. The efficiency of an algorithm may depend dramatically on the characteristics of the given functions. For example, many algorithms use the derivative of the input function, while others work on every continuous function. In general, numerical algorithms are not guaranteed to find all the roots of a function, so failing to find a root does not prove that there is no root. However, for polynomials, there are specific algorithms that use algebraic properties for certifying that no root is missed, and locating the roots in separate intervals (or disks for complex roots) that are small enough to ensure the convergence of numerical methods (typically Newton's method) to the unique root so located.

Bracketing methods

Bracketing methods determine successively smaller intervals (brackets) that contain a root. When the interval is small enough, then a root has been found. They generally use the intermediate value theorem, which asserts that if a continuous function has values of opposite signs at the end points of an interval, then the function has at least one root in the interval. Therefore, they require to start with an interval such that the function takes opposite signs at the end points of the interval. However, in the case of polynomials there are other methods (Descartes' rule of signs, Budan's theorem and Sturm's theorem) for getting information on the number of roots in an interval. They lead to efficient algorithms for real-root isolation of polynomials, which ensure finding all real roots with a guaranteed accuracy. 

Bisection method

The simplest root-finding algorithm is the bisection method. Let f be a continuous function, for which one knows an interval [a, b] such that f(a) and f(b) have opposite signs (a bracket). Let c = (a +b)/2 be the middle of the interval (the midpoint or the point that bisects the interval). Then either f(a) and f(c), or f(c) and f(b) have opposite signs, and one has divided by two the size of the interval. Although the bisection method is robust, it gains one and only one bit of accuracy with each iteration. Other methods, under appropriate conditions, can gain accuracy faster. 

False position (regula falsi)

The false position method, also called the regula falsi method, is similar to the bisection method, but instead of using bisection search's middle of the interval it uses the x-intercept of the line that connects the plotted function values at the endpoints of the interval, that is
False position is similar to the secant method, except that, instead of retaining the last two points, it makes sure to keep one point on either side of the root. The false position method can be faster than the bisection method and will never diverge like the secant method; however, it may fail to converge in some naive implementations due to roundoff errors that may lead to a wrong sign for f(c); typically, this may occur if the rate of variation of f is large in the neighborhood of the root. 

Ridders' method is a variant of the false position method that uses the value of function at the midpoint of the interval, for getting a function with the same root, to which the false position method is applied. This gives a faster convergence with a similar robustness. 

Interpolation

Many root-finding processes work by interpolation. This consists in using the last computed approximate values of the root for approximating the function by a polynomial of low degree, which takes the same values at these approximate roots. Then the root of the polynomial is computed and used as a new approximate value of the root of the function, and the process is iterated.

Two values allow interpolating a function by a polynomial of degree one (that is approximating the graph of the function by a line). This is the basis of the secant method. Three values define a quadratic function, which approximates the graph of the function by a parabola. This is Muller's method

Regula falsi is also an interpolation method, which differs secant method by using, for interpolating by a line, two points that are not necessarily the last two computed points.

Iterative methods

Although all root-finding algorithms proceed by iteration, an iterative root-finding method generally use a specific type of iteration, consisting of defining an auxiliary function, which is applied to the last computed approximations of a root for getting a new approximation. The iteration stops when a fixed point (up to the desired precision) of the auxiliary function is reached, that is when the new computed value is sufficiently close to the preceding ones. 

Newton's method (and similar derivative-based methods)

Newton's method assumes the function f to have a continuous derivative. Newton's method may not converge if started too far away from a root. However, when it does converge, it is faster than the bisection method, and is usually quadratic. Newton's method is also important because it readily generalizes to higher-dimensional problems. Newton-like methods with higher orders of convergence are the Householder's methods. The first one after Newton's method is Halley's method with cubic order of convergence. 

Secant method

Replacing the derivative in Newton's method with a finite difference, we get the secant method. This method does not require the computation (nor the existence) of a derivative, but the price is slower convergence (the order is approximately 1.6 (golden ratio)). A generalization of the secant method in higher dimensions is Broyden's method

Steffensen's method

If we use a polynomial fit to remove the quadratic part of the finite difference used in the Secant method, so that it better approximates the derivative, we obtain Steffensen's method, which has quadratic convergence, and whose behavior (both good and bad) is essentially the same Newton's method, but does not require a derivative. 

Inverse interpolation

The appearance of complex values in interpolation methods can be avoided by interpolating the inverse of f, resulting in the inverse quadratic interpolation method. Again, convergence is asymptotically faster than the secant method, but inverse quadratic interpolation often behaves poorly when the iterates are not close to the root. 

Combinations of methods


Brent's method

Brent's method is a combination of the bisection method, the secant method and inverse quadratic interpolation. At every iteration, Brent's method decides which method out of these three is likely to do best, and proceeds by doing a step according to that method. This gives a robust and fast method, which therefore enjoys considerable popularity. 

Roots of polynomials

Finding roots of polynomial is a long-standing problem that has been the object of much research throughout history. A testament to this is that up until the 19th century algebra meant essentially theory of polynomial equations

Finding the root of a linear polynomial (degree one) is easy and needs only one division. For quadratic polynomials (degree two), the quadratic formula produces a solution, but its numerical evaluation may require some care for ensuring numerical stability. For degrees three and four, there are closed-form solutions in terms of radicals, which are generally not convenient for numerical evaluation, as being too complicated and involving the computation of several nth roots whose computation is not easier than the direct computation of the roots of the polynomial (for example the expression of the real roots of a cubic polynomial may involve non-real cube roots). For polynomials of degree five or higher Abel–Ruffini theorem asserts that there is, in general, no radical expression of the roots. 

So, except for very low degrees, root finding of polynomials consists of finding approximations of the roots. By the fundamental theorem of algebra, one knows that a polynomial of degree n has at most n real or complex roots, and this number is reached for almost all polynomials. 

It follows that the problem of root finding for polynomials may be split in three different subproblems;
  • Finding one root
  • Finding all roots
  • Finding roots in a specific region of the complex plane, typically the real roots or the real roots in a given interval (for example, when roots represents a physical quantity, only the real positive ones are interesting).
For finding one root, Newton's method and other general iterative methods work generally well. 

For finding all the roots, the oldest method is, when a root r has been found, to divide the polynomial by xr, and restart iteratively the search of a root of the quotient polynomial. However, except for low degrees, this does not work well because of the numerical instability: Wilkinson's polynomial shows that a very small modification of one coefficient may change dramatically not only the value of the roots, but also their nature (real or complex). Also, even with a good approximation, when one evaluates a polynomial at an approximate root, one may get a result that is far to be close to zero. For example, if a polynomial of degree 20 (the degree of Wilkinson's polynomial) has a root close to 10, the derivative of the polynomial at the root may be of the order of this implies that an error of on the value of the root may produce a value of the polynomial at the approximate root that is of the order of

For avoiding these problems, methods have been elaborated, which compute all roots simultaneously, to any desired accuracy. Presently the most efficient method is Aberth method. A free implementation is available under the name of MPSolve. This is a reference implementation, which can find routinely the roots of polynomials of degree larger than 1,000, with more than 1,000 significant decimal digits.
The methods for computing all roots may be used for computing real roots. However, it may be difficult to decide whether a root with a small imaginary part is real or not. Moreover, as the number of the real roots is, on the average, the logarithm of the degree, it is a waste of computer resources to compute the non-real roots when one is interested in real roots.

The oldest method for computing the number of real roots, and the number of roots in an interval results from Sturm's theorem, but the methods based on Descartes' rule of signs and its extensions—Budan's and Vincent's theorems—are generally more efficient. For root finding, all proceed by reducing the size of the intervals in which roots are searched until getting intervals containing zero or one root. Then the intervals containing one root may be further reduced for getting a quadratic convergence of Newton's method to the isolated roots. The main computer algebra systems (Maple, Mathematica, SageMath) have each a variant of this method as the default algorithm for the real roots of a polynomial. 

Finding one root

The most widely used method for computing a root is Newton's method, which consists of the iterations of the computation of
by starting from a well-chosen value If f is a polynomial, the computation is faster when using Horner rule for computing the polynomial and its derivative. 

The convergence is generally quadratic, it may converge much slowly or even not converge at all. In particular, if the polynomial has no real root, and is real, then Newton's method cannot converge. However, if the polynomial has a real root, which is larger than the larger real root of its derivative, then Newton's method converges quadratically to this largest root if is larger that this larger root. This is the starting point of Horner method for computing the roots. 

When one root r has been found, one may use Euclidean division for removing the factor xr from the polynomial. Computing a root of the resulting quotient, and repeating the process provides, in principle, a way for computing all roots. However, this iterative scheme is numerically unstable; the approximation errors accumulate during the successive factorizations, so that the last roots are determined with a polynomial that deviates widely from a factor of the original polynomial. To reduce this error, one may, for each root that is found, restart Newton's method with the original polynomial, and this approximate root as starting value. 

However, there is no warranty that this will allow finding all roots. In fact, the problem of finding the roots of a polynomial from its coefficients is in general highly ill-conditioned. This is illustrated by Wilkinson's polynomial: the roots of this polynomial of degree 20 are the 20 first positive integers; changing the last bit of the 32-bit representation of one of its coefficient (equal to –210) produces a polynomial with only 10 real roots and 10 complex roots with imaginary parts larger than 0.6. 

Closely related to Newton's method are Halley's method and Laguerre's method. Both use the polynomial and its two first derivations for an iterative process that has a cubic convergence. Combining two consecutive steps of these methods into a single test, one gets a rate of convergence of 9, at the cost of 6 polynomial evaluations (with Horner rule). On the other hand, combining three steps of Newtons method gives a rate of convergence of 8 at the cost of the same number of polynomial evaluation. This gives a slight advantage to these methods (less clear for Laguerre's method, as a square root has to be computed at each step). 

When applying these methods to polynomials with real coefficients and real starting points, Newton's and Halley's method stay inside the real number line. One has to choose complex starting points to find complex roots. In contrast, the Laguerre method with a square root in its evaluation will leave the real axis of its own accord. 

Another class of methods is based on converting the problem of finding polynomial roots to the problem of finding eigenvalues of the companion matrix of the polynomial. In principle, one can use any eigenvalue algorithm to find the roots of the polynomial. However, for efficiency reasons one prefers methods that employ the structure of the matrix, that is, can be implemented in matrix-free form. Among these methods are the power method, whose application to the transpose of the companion matrix is the classical Bernoulli's method to find the root of greatest modulus. The inverse power method with shifts, which finds some smallest root first, is what drives the complex (cpoly) variant of the Jenkins–Traub algorithm and gives it its numerical stability. Additionally, it is insensitive to multiple roots and has fast convergence with order (where is the golden ratio) even in the presence of clustered roots. This fast convergence comes with a cost of three polynomial evaluations per step, resulting in a residual of O(|f(x)|2+3φ), that is a slower convergence than with three steps of Newton's method. 

Finding roots in pairs

If the given polynomial only has real coefficients, one may wish to avoid computations with complex numbers. To that effect, one has to find quadratic factors for pairs of conjugate complex roots. The application of the multidimensional Newton's method to this task results in Bairstow's method.

The real variant of Jenkins–Traub algorithm is an improvement of this method. 

Finding all roots at once

The simple Durand–Kerner and the slightly more complicated Aberth method simultaneously find all of the roots using only simple complex number arithmetic. Accelerated algorithms for multi-point evaluation and interpolation similar to the fast Fourier transform can help speed them up for large degrees of the polynomial. It is advisable to choose an asymmetric, but evenly distributed set of initial points. The implementation of this method in the free software MPSolve is a reference for its efficiency and its accuracy. 

Another method with this style is the Dandelin–Gräffe method (sometimes also ascribed to Lobachevsky), which uses polynomial transformations to repeatedly and implicitly square the roots. This greatly magnifies variances in the roots. Applying Viète's formulas, one obtains easy approximations for the modulus of the roots, and with some more effort, for the roots themselves. 

Exclusion and enclosure methods

Several fast tests exist that tell if a segment of the real line or a region of the complex plane contains no roots. By bounding the modulus of the roots and recursively subdividing the initial region indicated by these bounds, one can isolate small regions that may contain roots and then apply other methods to locate them exactly. 

All these methods involve finding the coefficients of shifted and scaled versions of the polynomial. For large degrees, FFT-based accelerated methods become viable. 

The Lehmer–Schur algorithm uses the Schur–Cohn test for circles; a variant, Wilf's global bisection algorithm uses a winding number computation for rectangular regions in the complex plane. 

The splitting circle method uses FFT-based polynomial transformations to find large-degree factors corresponding to clusters of roots. The precision of the factorization is maximized using a Newton-type iteration. This method is useful for finding the roots of polynomials of high degree to arbitrary precision; it has almost optimal complexity in this setting.

Real-root isolation

Finding the real roots of a polynomial with real coefficients is a problem that has received much attention since the beginning of 19th century, and is still an active domain of research. Most root-finding algorithms can find some real roots, but cannot certify having found all the roots. Methods for finding all complex roots, such as Aberth method can provide the real roots. However, because of the numerical instability of polynomials, they may need arbitrary-precision arithmetic for deciding which roots are real. Moreover, they compute all complex roots when only few are real. 

It follows that the standard way of computing real roots is to compute first disjoint intervals, called isolating intervals, such that each one contains exactly one real root, and together they contain all the roots. This computation is called real-root isolation. Having isolating interval, one may use fast numerical methods, such as Newton's method for improving the precision of the result.

The oldest complete algorithm for real-root isolation results from Sturm's theorem. However, it appears to be much less efficient than the methods based on Descartes' rule of signs and Vincent's theorem. These methods divide into two main classes, one using continued fractions and the other using bisection. Both method have been dramatically improved since the beginning of 21st century. With these improvements they reach a computational complexity that is similar to that of the best algorithms for computing all the roots (even when all roots are real).

These algorithms have been implemented and are available in Mathematica (continued fraction method) and Maple (bisection method). Both implementations can routinely find the real roots of polynomials of degree higher than 1,000.

Finding multiple roots of polynomials

Most root-finding algorithms behave badly when there are multiple roots or very close roots. However, for polynomials whose coefficients are exactly given as integers or rational numbers, there is an efficient method to factorize them into factors that have only simple roots and whose coefficients are also exactly given. This method, called square-free factorization, is based on the multiple roots of a polynomial being the roots of the greatest common divisor of the polynomial and its derivative.

The square-free factorization of a polynomial p is a factorization where each is either 1 or a polynomial without multiple roots, and two different do not have any common root.
An efficient method to compute this factorization is Yun's algorithm.

Polynomial

From Wikipedia, the free encyclopedia
https://en.wikipedia.org/wiki/Polynomial
 
The graph of a polynomial function of degree 3
 
In mathematics, a polynomial is an expression consisting of variables (also called indeterminates) and coefficients, that involves only the operations of addition, subtraction, multiplication, and non-negative integer exponents of variables. An example of a polynomial of a single indeterminate, x, is x2 − 4x + 7. An example in three variables is x3 + 2xyz2yz + 1

Polynomials appear in many areas of mathematics and science. For example, they are used to form polynomial equations, which encode a wide range of problems, from elementary word problems to complicated scientific problems; they are used to define polynomial functions, which appear in settings ranging from basic chemistry and physics to economics and social science; they are used in calculus and numerical analysis to approximate other functions. In advanced mathematics, polynomials are used to construct polynomial rings and algebraic varieties, central concepts in algebra and algebraic geometry.

Etymology

The word polynomial joins two diverse roots: the Greek poly, meaning "many," and the Latin nomen, or name. It was derived from the term binomial by replacing the Latin root bi- with the Greek poly-. The word polynomial was first used in the 17th century.
 

Notation and terminology

The x occurring in a polynomial is commonly called either a variable or an indeterminate. When the polynomial is considered as an expression, x is a fixed symbol which does not have any value (its value is "indeterminate"). However, when one considers the function defined by the polynomial, then x represents the argument of the function, and is therefore called a "variable". Many authors use these two words interchangeably. 

It is common to use uppercase letters for indeterminates and corresponding lowercase letters for the variables (or arguments) of the associated function.

A polynomial P in the indeterminate x is commonly denoted either as P or as P(x). Formally, the name of the polynomial is P, not P(x), but the use of the functional notation P(x) date from the time where the distinction between a polynomial and the associated function was unclear. Moreover, the functional notation is often useful for specifying, in a single phrase, a polynomial and its indeterminate. For example, "let P(x) be a polynomial" is a shorthand for "let P be a polynomial in the indeterminate x". On the other hand, when it is not necessary to emphasize the name of the indeterminate, many formulas are much simpler and easier to read if the name(s) of the indeterminate(s) do not appear at each occurrence of the polynomial. 

The ambiguity of having two notations for a single mathematical object may be formally resolved by considering the general meaning of the functional notation for polynomials. If a denotes a number, a variable, another polynomial, or, more generally any expression, then P(a) denotes, by convention, the result of substituting a for x in P. Thus, the polynomial P defines the function
which is the polynomial function associated to P. Frequently, when using this notation, one supposes that a is a number. However one may use it over any domain where addition and multiplication are defined (that is, any ring). In particular, if a is a polynomial then P(a) is also a polynomial.

More specifically, when a is the indeterminate x, then the image of x by this function is the polynomial P itself (substituting x to x does not change anything). In other words,
which justifies formally the existence of two notations for the same polynomial. 

Definition

A polynomial is an expression that can be built from constants and symbols called indeterminates or variables by means of addition, multiplication and exponentiation to a non-negative integer power. Two such expressions that may be transformed, one to the other, by applying the usual properties of commutativity, associativity and distributivity of addition and multiplication are considered as defining the same polynomial.

A polynomial in a single indeterminate x can always be written (or rewritten) in the form
where are constants and is the indeterminate. The word "indeterminate" means that represents no particular value, although any value may be substituted for it. The mapping that associates the result of this substitution to the substituted value is a function, called a polynomial function

This can be expressed more concisely by using summation notation:
That is, a polynomial can either be zero or can be written as the sum of a finite number of non-zero terms. Each term consists of the product of a number – called the coefficient of the term – and a finite number of indeterminates, raised to nonnegative integer powers. 

Classification

The exponent on an indeterminate in a term is called the degree of that indeterminate in that term; the degree of the term is the sum of the degrees of the indeterminates in that term, and the degree of a polynomial is the largest degree of any one term with nonzero coefficient. Because x = x1, the degree of an indeterminate without a written exponent is one.

A term with no indeterminates and a polynomial with no indeterminates are called, respectively, a constant term and a constant polynomial. The degree of a constant term and of a nonzero constant polynomial is 0. The degree of the zero polynomial, 0, (which has no terms at all) is generally treated as not defined (but see below).

For example:
is a term. The coefficient is −5, the indeterminates are x and y, the degree of x is two, while the degree of y is one. The degree of the entire term is the sum of the degrees of each indeterminate in it, so in this example the degree is 2 + 1 = 3.

Forming a sum of several terms produces a polynomial. For example, the following is a polynomial:
It consists of three terms: the first is degree two, the second is degree one, and the third is degree zero. 

Polynomials of small degree have been given specific names. A polynomial of degree zero is a constant polynomial or simply a constant. Polynomials of degree one, two or three are respectively linear polynomials, quadratic polynomials and cubic polynomials. For higher degrees the specific names are not commonly used, although quartic polynomial (for degree four) and quintic polynomial (for degree five) are sometimes used. The names for the degrees may be applied to the polynomial or to its terms. For example, in x2 + 2x + 1 the term 2x is a linear term in a quadratic polynomial.

The polynomial 0, which may be considered to have no terms at all, is called the zero polynomial. Unlike other constant polynomials, its degree is not zero. Rather the degree of the zero polynomial is either left explicitly undefined, or defined as negative (either −1 or −∞). These conventions are useful when defining Euclidean division of polynomials. The zero polynomial is also unique in that it is the only polynomial in one indeterminate having an infinite number of roots. The graph of the zero polynomial, f(x) = 0, is the X-axis.


In the case of polynomials in more than one indeterminate, a polynomial is called homogeneous of degree n if all its non-zero terms have degree n. The zero polynomial is homogeneous, and, as homogeneous polynomial, its degree is undefined. For example, x3y2 + 7x2y3 − 3x5 is homogeneous of degree 5.


The commutative law of addition can be used to rearrange terms into any preferred order. In polynomials with one indeterminate, the terms are usually ordered according to degree, either in "descending powers of x", with the term of largest degree first, or in "ascending powers of x". The polynomial in the example above is written in descending powers of x. The first term has coefficient 3, indeterminate x, and exponent 2. In the second term, the coefficient is −5. The third term is a constant. Because the degree of a non-zero polynomial is the largest degree of any one term, this polynomial has degree two.

Two terms with the same indeterminates raised to the same powers are called "similar terms" or "like terms", and they can be combined, using the distributive law, into a single term whose coefficient is the sum of the coefficients of the terms that were combined. It may happen that this makes the coefficient 0. Polynomials can be classified by the number of terms with nonzero coefficients, so that a one-term polynomial is called a monomial, a two-term polynomial is called a binomial, and a three-term polynomial is called a trinomial. The term "quadrinomial" is occasionally used for a four-term polynomial. 

A real polynomial is a polynomial with real coefficients. When it is used to define a function, the domain is not so restricted. However, a real polynomial function is a function from the reals to the reals that is defined by a real polynomial. Similarly, an integer polynomial is a polynomial with integer coefficients, and a complex polynomial is a polynomial with complex coefficients. 

A polynomial in one indeterminate is called a univariate polynomial, a polynomial in more than one indeterminate is called a multivariate polynomial. A polynomial with two indeterminates is called a bivariate polynomial. These notions refer more to the kind of polynomials one is generally working with than to individual polynomials; for instance when working with univariate polynomials one does not exclude constant polynomials (which may result, for instance, from the subtraction of non-constant polynomials), although strictly speaking constant polynomials do not contain any indeterminates at all. It is possible to further classify multivariate polynomials as bivariate, trivariate, and so on, according to the maximum number of indeterminates allowed. Again, so that the set of objects under consideration be closed under subtraction, a study of trivariate polynomials usually allows bivariate polynomials, and so on. It is common, also, to say simply "polynomials in x, y, and z", listing the indeterminates allowed. 

The evaluation of a polynomial consists of substituting a numerical value to each indeterminate and carrying out the indicated multiplications and additions. For polynomials in one indeterminate, the evaluation is usually more efficient (lower number of arithmetic operations to perform) using Horner's method:

Arithmetic

Polynomials can be added using the associative law of addition (grouping all their terms together into a single sum), possibly followed by reordering, and combining of like terms. For example, if
then
which can be simplified to
To work out the product of two polynomials into a sum of terms, the distributive law is repeatedly applied, which results in each term of one polynomial being multiplied by every term of the other. For example, if
then
which can be simplified to
Polynomial evaluation can be used to compute the remainder of polynomial division by a polynomial of degree one, because the remainder of the division of f(x) by (xa) is f(a); see the polynomial remainder theorem. This is more efficient than the usual algorithm of division when the quotient is not needed.
  • A sum of polynomials is a polynomial.
  • A product of polynomials is a polynomial.
  • A composition of two polynomials is a polynomial, which is obtained by substituting a variable of the first polynomial by the second polynomial.
  • The derivative of the polynomial anxn + an−1xn−1 + ... + a2x2 + a1x + a0 is the polynomial nanxn−1 + (n − 1)an−1xn−2 + ... + 2a2x + a1. If the set of the coefficients does not contain the integers (for example if the coefficients are integers modulo some prime number p), then kak should be interpreted as the sum of ak with itself, k times. For example, over the integers modulo p, the derivative of the polynomial xp + 1 is the polynomial 0.
  • A primitive integral or antiderivative of the polynomial anxn + an−1xn−1 + ⋅⋅⋅ + a2x2 + a1x + a0 is the polynomial anxn+1/(n + 1) + an−1xn/n + ⋅⋅⋅ + a2x3/3 + a1x2/2 + a0x + c, where c is an arbitrary constant. For instance, the antiderivatives of x2 + 1 have the form 13x3 + x + c.
As for the integers, two kinds of divisions are considered for the polynomials. The Euclidean division of polynomials that generalizes the Euclidean division of the integers. It results in two polynomials, a quotient and a remainder that are characterized by the following property of the polynomials: given two polynomials a and b such that b ≠ 0, there exists a unique pair of polynomials, q, the quotient, and r, the remainder, such that a = b q + r and degree(r) < degree(b) (here the polynomial zero is supposed to have a negative degree). By hand as well as with a computer, this division can be computed by the polynomial long division algorithm.

All polynomials with coefficients in a unique factorization domain (for example, the integers or a field) also have a factored form in which the polynomial is written as a product of irreducible polynomials and a constant. This factored form is unique up to the order of the factors and their multiplication by an invertible constant. In the case of the field of complex numbers, the irreducible factors are linear. Over the real numbers, they have the degree either one or two. Over the integers and the rational numbers the irreducible factors may have any degree. For example, the factored form of
is
over the integers and the reals and
over the complex numbers. 

The computation of the factored form, called factorization is, in general, too difficult to be done by hand-written computation. However, efficient polynomial factorization algorithms are available in most computer algebra systems.

A formal quotient of polynomials, that is, an algebraic fraction wherein the numerator and denominator are polynomials, is called a "rational expression" or "rational fraction" and is not, in general, a polynomial. Division of a polynomial by a number, however, yields another polynomial. For example, x3/12 is considered a valid term in a polynomial (and a polynomial by itself) because it is equivalent to (1/12)x3 and 1/12 is just a constant. When this expression is used as a term, its coefficient is therefore 1/12. For similar reasons, if complex coefficients are allowed, one may have a single term like (2 + 3i) x3; even though it looks like it should be expanded to two terms, the complex number 2 + 3i is one complex number, and is the coefficient of that term. The expression 1/(x2 + 1) is not a polynomial because it includes division by a non-constant polynomial. The expression (5 + y)x is not a polynomial, because it contains an indeterminate used as exponent.

Because subtraction can be replaced by addition of the opposite quantity, and because positive integer exponents can be replaced by repeated multiplication, all polynomials can be constructed from constants and indeterminates using only addition and multiplication. 

Polynomial functions

A polynomial function is a function that can be defined by evaluating a polynomial. More precisely, a function f of one argument from a given domain is a polynomial function if there exists a polynomial
that evaluates to for all x in the domain of f (here, n is a non-negative integer and a0, a1, a2, ..., an are constant coefficients). 

Generally, unless otherwise specified, polynomial functions have complex coefficients, arguments, and values. In particular, a polynomial, restricted to have real coefficients, defines a function from the complex numbers to the complex numbers. If the domain of this function is also restricted to the reals, the resulting function maps reals to reals. 

For example, the function f, defined by
is a polynomial function of one variable. Polynomial functions of several variables are similarly defined, using polynomials in more than one indeterminate, as in
According to the definition of polynomial functions, there may be expressions that obviously are not polynomials but nevertheless define polynomial functions. An example is the expression which takes the same values as the polynomial on the interval , and thus both expressions define the same polynomial function on this interval. 

Every polynomial function is continuous, smooth, and entire

Graphs

A polynomial function in one real variable can be represented by a graph.
  • The graph of the zero polynomial
f(x) = 0
is the x-axis.
  • The graph of a degree 0 polynomial
f(x) = a0, where a0 ≠ 0,
is a horizontal line with y-intercept a0
  • The graph of a degree 1 polynomial (or linear function)
f(x) = a0 + a1x , where a1 ≠ 0,
is an oblique line with y-intercept a0 and slope a1.
  • The graph of a degree 2 polynomial
f(x) = a0 + a1x + a2x2, where a2 ≠ 0
is a parabola.
  • The graph of a degree 3 polynomial
f(x) = a0 + a1x + a2x2 + a3x3, where a3 ≠ 0
is a cubic curve.
  • The graph of any polynomial with degree 2 or greater
f(x) = a0 + a1x + a2x2 + ... + anxn , where an ≠ 0 and n ≥ 2
is a continuous non-linear curve.

A non-constant polynomial function tends to infinity when the variable increases indefinitely (in absolute value). If the degree is higher than one, the graph does not have any asymptote. It has two parabolic branches with vertical direction (one branch for positive x and one for negative x).

Polynomial graphs are analyzed in calculus using intercepts, slopes, concavity, and end behavior. 

Equations

A polynomial equation, also called algebraic equation, is an equation of the form
For example,
is a polynomial equation.

When considering equations, the indeterminates (variables) of polynomials are also called unknowns, and the solutions are the possible values of the unknowns for which the equality is true (in general more than one solution may exist). A polynomial equation stands in contrast to a polynomial identity like (x + y)(xy) = x2y2, where both expressions represent the same polynomial in different forms, and as a consequence any evaluation of both members gives a valid equality.

In elementary algebra, methods such as the quadratic formula are taught for solving all first degree and second degree polynomial equations in one variable. There are also formulas for the cubic and quartic equations. For higher degrees, the Abel–Ruffini theorem asserts that there can not exist a general formula in radicals. However, root-finding algorithms may be used to find numerical approximations of the roots of a polynomial expression of any degree.

The number of real solutions of a polynomial equation with real coefficients may not exceed the degree, and equals the degree when the complex solutions are counted with their multiplicity. This fact is called the fundamental theorem of algebra

Solving equations

Every polynomial P in x defines a function called the polynomial function associated to P; the equation P(x) = 0 is the polynomial equation associated to P. The solutions of this equation are called the roots of the polynomial, or the zeros of the associated function (they correspond to the points where the graph of the function meets the x-axis). 

A number a is a root of a polynomial P if and only if the linear polynomial xa divides P, that is if there is another polynomial Q such that P = (xa) Q. It may happen that xa divides P more than once: if (xa)2 divides P then a is called a multiple root of P, and otherwise a is called a simple root of P. If P is a nonzero polynomial, there is a highest power m such that (xa)m divides P, which is called the multiplicity of the root a in P. When P is the zero polynomial, the corresponding polynomial equation is trivial, and this case is usually excluded when considering roots, as, with the above definitions, every number is a root of the zero polynomial, with an undefined multiplicity. With this exception made, the number of roots of P, even counted with their respective multiplicities, cannot exceed the degree of P. The relation between the coefficients of a polynomial and its roots is described by Vieta's formulas

Some polynomials, such as x2 + 1, do not have any roots among the real numbers. If, however, the set of accepted solutions is expanded to the complex numbers, every non-constant polynomial has at least one root; this is the fundamental theorem of algebra. By successively dividing out factors xa, one sees that any polynomial with complex coefficients can be written as a constant (its leading coefficient) times a product of such polynomial factors of degree 1; as a consequence, the number of (complex) roots counted with their multiplicities is exactly equal to the degree of the polynomial. 

There may be several meanings of "solving an equation". One may want to express the solutions as explicit numbers; for example, the unique solution of 2x – 1 = 0 is 1/2. Unfortunately, this is, in general, impossible for equations of degree greater than one, and, since the ancient times, mathematicians have searched to express the solutions as algebraic expression; for example the golden ratio is the unique positive solution of In the ancient times, they succeeded only for degrees one and two. For quadratic equations, the quadratic formula provides such expressions of the solutions. Since the 16th century, similar formulas (using cube roots in addition to square roots), but much more complicated are known for equations of degree three and four (see cubic equation and quartic equation). But formulas for degree 5 and higher eluded researchers for several centuries. In 1824, Niels Henrik Abel proved the striking result that there are equations of degree 5 whose solutions cannot be expressed by a (finite) formula, involving only arithmetic operations and radicals (see Abel–Ruffini theorem). In 1830, Évariste Galois proved that most equations of degree higher than four cannot be solved by radicals, and showed that for each equation, one may decide whether it is solvable by radicals, and, if it is, solve it. This result marked the start of Galois theory and group theory, two important branches of modern algebra. Galois himself noted that the computations implied by his method were impracticable. Nevertheless, formulas for solvable equations of degrees 5 and 6 have been published (see quintic function and sextic equation). 

When there is no algebraic expression for the roots, and when such an algebraic expression exists but is too complicated to be useful, the unique way of solving is to compute numerical approximations of the solutions. There are many methods for that; some are restricted to polynomials and others may apply to any continuous function. The most efficient algorithms allow solving easily (on a computer) polynomial equations of degree higher than 1,000.

For polynomials in more than one indeterminate, the combinations of values for the variables for which the polynomial function takes the value zero are generally called zeros instead of "roots". The study of the sets of zeros of polynomials is the object of algebraic geometry. For a set of polynomial equations in several unknowns, there are algorithms to decide whether they have a finite number of complex solutions, and, if this number is finite, for computing the solutions. 

The special case where all the polynomials are of degree one is called a system of linear equations, for which another range of different solution methods exist, including the classical Gaussian elimination.

A polynomial equation for which one is interested only in the solutions which are integers is called a Diophantine equation. Solving Diophantine equations is generally a very hard task. It has been proved that there cannot be any general algorithm for solving them, and even for deciding whether the set of solutions is empty. Some of the most famous problems that have been solved during the fifty last years are related to Diophantine equations, such as Fermat's Last Theorem.

Operator (computer programming)

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Operator_(computer_programmin...