Search This Blog

Monday, February 16, 2015

Nanomedicine



From Wikipedia, the free encyclopedia

Nanomedicine is the medical application of nanotechnology.[1] Nanomedicine ranges from the medical applications of nanomaterials, to nanoelectronic biosensors, and even possible future applications of molecular nanotechnology. Current problems for nanomedicine involve understanding the issues related to toxicity and environmental impact of nanoscale materials (materials whose structure is on the scale of nanometers, i.e. billionths of a meter).

Functionalities can be added to nanomaterials by interfacing them with biological molecules or structures. The size of nanomaterials is similar to that of most biological molecules and structures; therefore, nanomaterials can be useful for both in vivo and in vitro biomedical research and applications. Thus far, the integration of nanomaterials with biology has led to the development of diagnostic devices, contrast agents, analytical tools, physical therapy applications, and drug delivery vehicles.

Nanomedicine seeks to deliver a valuable set of research tools and clinically useful devices in the near future.[2][3] The National Nanotechnology Initiative expects new commercial applications in the pharmaceutical industry that may include advanced drug delivery systems, new therapies, and in vivo imaging.[4] Nanomedicine research is receiving funding from the US National Institutes of Health, including the funding in 2005 of a five-year plan to set up four nanomedicine centers.

Nanomedicine is a large industry, with nanomedicine sales reaching $6.8 billion in 2004, and with over 200 companies and 38 products worldwide, a minimum of $3.8 billion in nanotechnology R&D is being invested every year.[5] In April 2006, the journal Nature Materials estimated that 130 nanotech-based drugs and delivery systems were being developed worldwide.[6] As the nanomedicine industry continues to grow, it is expected to have a significant impact on the economy.

Drug delivery

Nanoparticles (top), liposomes (middle), and dendrimers (bottom) are some nanomaterials being investigated for use in nanomedicine.

Nanotechnology has provided the possibility of delivering drugs to specific cells using nanoparticles.
The overall drug consumption and side-effects may be lowered significantly by depositing the active agent in the morbid region only and in no higher dose than needed. Targeted drug delivery is intended to reduce the side effects of drugs with concomitant decreases in consumption and treatment expenses. Drug delivery focuses on maximizing bioavailability both at specific places in the body and over a period of time. This can potentially be achieved by molecular targeting by nanoengineered devices.[7][8] More than $65 billion are wasted each year due to poor bioavailability.[citation needed] A benefit of using nanoscale for medical technologies is that smaller devices are less invasive and can possibly be implanted inside the body, plus biochemical reaction times are much shorter. These devices are faster and more sensitive than typical drug delivery.[9] The efficacy of drug delivery through nanomedicine is largely based upon: a) efficient encapsulation of the drugs, b) successful delivery of drug to the targeted region of the body, and c) successful release of the drug.[citation needed]

Drug delivery systems, lipid- [10] or polymer-based nanoparticles,[11] can be designed to improve the pharmacokinetics and biodistribution of the drug.[12][13][14] However, the pharmacokinetics and pharmacodynamics of nanomedicine is highly variable among different patients.[15] When designed to avoid the body's defence mechanisms,[16] nanoparticles have beneficial properties that can be used to improve drug delivery. Complex drug delivery mechanisms are being developed, including the ability to get drugs through cell membranes and into cell cytoplasm. Triggered response is one way for drug molecules to be used more efficiently. Drugs are placed in the body and only activate on encountering a particular signal. For example, a drug with poor solubility will be replaced by a drug delivery system where both hydrophilic and hydrophobic environments exist, improving the solubility.[17] Drug delivery systems may also be able to prevent tissue damage through regulated drug release; reduce drug clearance rates; or lower the volume of distribution and reduce the effect on non-target tissue. However, the biodistribution of these nanoparticles is still imperfect due to the complex host's reactions to nano- and microsized materials[16] and the difficulty in targeting specific organs in the body. Nevertheless, a lot of work is still ongoing to optimize and better understand the potential and limitations of nanoparticulate systems. While advancement of research proves that targeting and distribution can be augmented by nanoparticles, the dangers of nanotoxicity become an important next step in further understanding of their medical uses.[18]

Nanoparticles can be used in combination therapy for decreasing antibiotic resistance or for their antimicrobial properties.[19][20][21] Nanoparticles might also used to circumvent multidrug resistance (MDR) mechanisms.[22]

Types of systems used

Two forms of nanomedicine that have already been tested in mice and are awaiting human trials that will be using gold nanoshells to help diagnose and treat cancer,[23] and using liposomes as vaccine adjuvants and as vehicles for drug transport.[24][25] Similarly, drug detoxification is also another application for nanomedicine which has shown promising results in rats.[26] Advances in Lipid nanotechnology was also instrumental in engineering medical nanodevices and novel drug delivery systems as well as in developing sensing applications.[27] Another example can be found in dendrimers and nanoporous materials. Another example is to use block co-polymers, which form micelles for drug encapsulation.[11]

Polymeric nano-particles are a competing technology to lipidic (based mainly on Phospholipids) nano-particles. There is an additional risk of toxicity associated with polymers not widely studied or understood. The major advantages of polymers is stability, lower cost and predictable characterisation. However, in the patient's body this very stability (slow degradation) is a negative factor. Phospholipids on the other hand are membrane lipids (already present in the body and surrounding each cell), have a GRAS (Generally Recognised As Safe) status from FDA and are derived from natural sources without any complex chemistry involved. They are not metabolised but rather absorbed by the body and the degradation products are themselves nutrients (fats or micronutrients).

Protein and peptides exert multiple biological actions in the human body and they have been identified as showing great promise for treatment of various diseases and disorders. These macromolecules are called biopharmaceuticals. Targeted and/or controlled delivery of these biopharmaceuticals using nanomaterials like nanoparticles and Dendrimers is an emerging field called nanobiopharmaceutics, and these products are called nanobiopharmaceuticals.

Another vision is based on small electromechanical systems; nanoelectromechanical systems are being investigated for the active release of drugs. Some potentially important applications include cancer treatment with iron nanoparticles or gold shells.Nanotechnology is also opening up new opportunities in implantable delivery systems, which are often preferable to the use of injectable drugs, because the latter frequently display first-order kinetics (the blood concentration goes up rapidly, but drops exponentially over time). This rapid rise may cause difficulties with toxicity, and drug efficacy can diminish as the drug concentration falls below the targeted range.[citation needed]

Applications

Some nanotechnology-based drugs that are commercially available or in human clinical trials include:
  • Abraxane, approved by the U.S. Food and Drug Administration (FDA) to treat breast cancer,[28] non-small- cell lung cancer (NSCLC)[29] and pancreatic cancer,[30] is the nanoparticle albumin bound paclitaxel.
  • Doxil was originally approved by the FDA for the use on HIV-related Kaposi's sarcoma. It is now being used to also treat ovarian cancer and multiple myeloma. The drug is encased in liposomes, which helps to extend the life of the drug that is being distributed. Liposomes are self-assembling, spherical, closed colloidal structures that are composed of lipid bilayers that surround an aqueous space. The liposomes also help to increase the functionality and it helps to decrease the damage that the drug does to the heart muscles specifically.[31]
  • C-dots (Cornell dots) are the smallest silica-based nanoparticles with the size <10 nm. The particles are infused with organic dye which will light up with fluorescence. Clinical trial is underway since 2011 to use the C-dots as diagnostic tool to assist surgeons to identify the location of tumor cells.[32]
  • An early phase clinical trial using the platform of ‘Minicell’ nanoparticle for drug delivery have been tested on patients with advanced and untreatable cancer. Built from the membranes of mutant bacteria, the minicells were loaded with paclitaxel and coated with cetuximab, antibodies that bind the epidermal growth factor receptor (EGFR) which is often overexpressed in a number of cancers, as a 'homing' device to the tumor cells. The tumor cells recognize the bacteria from which the minicells have been derived, regard it as invading microorganism and engulf it. Once inside, the payload of anti-cancer drug kills the tumor cells. Measured at 400 nanometers, the minicell is bigger than synthetic particles developed for drug delivery. The researchers indicated that this larger size gives the minicells a better profile in side-effects because the minicells will preferentially leak out of the porous blood vessels around the tumor cells and do not reach the liver, digestive system and skin. This Phase 1 clinical trial demonstrated that this treatment is well tolerated by the patients. As a platform technology, the minicell drug delivery system can be used to treat a number of different cancers with different anti-cancer drugs with the benefit of lower dose and less side-effects.[33][34]

Cancer


A schematic illustration showing how nanoparticles or other cancer drugs might be used to treat cancer.

Another nanoproperty, high surface area to volume ratio, allows many functional groups to be attached to a nanoparticle, which can seek out and bind to certain tumor cells. Additionally, the small size of nanoparticles (10 to 100 nanometers), allows them to preferentially accumulate at tumor sites (because tumors lack an effective lymphatic drainage system).[35] Limitations to conventional cancer chemotherapy include drug resistance, lack of selectivity, and lack of solubility. Nanoparticles have the potential to overcome these problems.[36]

In photodynamic therapy, a particle is placed within the body and is illuminated with light from the outside. The light gets absorbed by the particle and if the particle is metal, energy from the light will heat the particle and surrounding tissue. Light may also be used to produce high energy oxygen molecules which will chemically react with and destroy most organic molecules that are next to them (like tumors). This therapy is appealing for many reasons. It does not leave a "toxic trail" of reactive molecules throughout the body (chemotherapy) because it is directed where only the light is shined and the particles exist. Photodynamic therapy has potential for a noninvasive procedure for dealing with diseases, growth and tumors. Kanzius RF therapy is one example of such therapy.[citation needed] Also, gold nanoparticles have the potential to join numerous therapeutic functions into a single platform, by targeting specific tumor cells, tissues and organs.[37][38]

Visualization

In vivo imaging is another area where tools and devices are being developed. Using nanoparticle contrast agents, images such as ultrasound and MRI have a favorable distribution and improved contrast. This might be accomplished by self assembled biocompatible nanodevices that will detect, evaluate, treat and report to the clinical doctor automatically.

The small size of nanoparticles endows them with properties that can be very useful in oncology, particularly in imaging. Quantum dots (nanoparticles with quantum confinement properties, such as size-tunable light emission), when used in conjunction with MRI (magnetic resonance imaging), can produce exceptional images of tumor sites. Nanoparticles of cadmium selenide (quantum dots) glow when exposed to ultraviolet light. When injected, they seep into cancer tumors. The surgeon can see the glowing tumor, and use it as a guide for more accurate tumor removal.These nanoparticles are much brighter than organic dyes and only need one light source for excitation. This means that the use of fluorescent quantum dots could produce a higher contrast image and at a lower cost than today's organic dyes used as contrast media. The downside, however, is that quantum dots are usually made of quite toxic elements.[citation needed]

Tracking movement can help determine how well drugs are being distributed or how substances are metabolized. It is difficult to track a small group of cells throughout the body, so scientists used to dye the cells. These dyes needed to be excited by light of a certain wavelength in order for them to light up. While different color dyes absorb different frequencies of light, there was a need for as many light sources as cells. A way around this problem is with luminescent tags. These tags are quantum dots attached to proteins that penetrate cell membranes. The dots can be random in size, can be made of bio-inert material, and they demonstrate the nanoscale property that color is size-dependent. As a result, sizes are selected so that the frequency of light used to make a group of quantum dots fluoresce is an even multiple of the frequency required to make another group incandesce. Then both groups can be lit with a single light source. They have also found a way to insert nanoparticles[39] into the affected parts of the body so that those parts of the body will glow showing the tumor growth or shrinkage or also organ trouble.[40]

Sensing

Nanotechnology-on-a-chip is one more dimension of lab-on-a-chip technology. Magnetic nanoparticles, bound to a suitable antibody, are used to label specific molecules, structures or microorganisms. Gold nanoparticles tagged with short segments of DNA can be used for detection of genetic sequence in a sample. Multicolor optical coding for biological assays has been achieved by embedding different-sized quantum dots into polymeric microbeads. Nanopore technology for analysis of nucleic acids converts strings of nucleotides directly into electronic signatures.[citation needed]
Sensor test chips containing thousands of nanowires, able to detect proteins and other biomarkers left behind by cancer cells, could enable the detection and diagnosis of cancer in the early stages from a few drops of a patient's blood.[41]Nanotechnology is helping to advance the use of arthroscopes, which are pencil-sized devices that are used in surgeries with lights and cameras so surgeons can do the surgeries with smaller incisions. The smaller the incisions the faster the healing time which is better for the patients. It is also helping to find a way to make an arthroscope smaller than a strand of hair.[42]

Tissue engineering

Nanotechnology may be used as part of tissue engineering to help reproduce or repair damaged tissue using suitable nanomaterial-based scaffolds and growth factors. Tissue engineering if successful may replace conventional treatments like organ transplants or artificial implants. Nanoparticles such as graphene, carbon nanotubes, molybdenum disulfide and tungsten disulfide are being used as reinforcing agents to fabricate mechanically strong biodegradable polymeric nanocomposites for bone tissue engineering applications. The addition of these nanoparticles in the polymer matrix at low concentrations (~0.2 weight %) leads to significant improvements in the compressive and flexural mechanical properties of polymeric nanocomposites.[43][44] Potentially, these nanocomposites may be used as a novel, mechanically strong, light weight composite as bone implants.

For example, a flesh welder was demonstrated to fuse two pieces of chicken meat into a single piece using a suspension of gold-coated nanoshells activated by an infrared laser. This could be used to weld arteries during surgery.[45] Another example is nanonephrology, the use of nanomedicine on the kidney.

Medical devices

Neuro-electronic interfacing is a visionary goal dealing with the construction of nanodevices that will permit computers to be joined and linked to the nervous system. This idea requires the building of a molecular structure that will permit control and detection of nerve impulses by an external computer.
A refuelable strategy implies energy is refilled continuously or periodically with external sonic, chemical, tethered, magnetic, or biological electrical sources, while a nonrefuelable strategy implies that all power is drawn from internal energy storage which would stop when all energy is drained. A nanoscale enzymatic biofuel cell for self-powered nanodevices have been developed that uses glucose from biofluids including human blood and watermelons.[46] One limitation to this innovation is the fact that electrical interference or leakage or overheating from power consumption is possible. The wiring of the structure is extremely difficult because they must be positioned precisely in the nervous system. The structures that will provide the interface must also be compatible with the body's immune system.[47]

Molecular nanotechnology is a speculative subfield of nanotechnology regarding the possibility of engineering molecular assemblers, machines which could re-order matter at a molecular or atomic scale. Nanomedicine would make use of these nanorobots, introduced into the body, to repair or detect damages and infections. Molecular nanotechnology is highly theoretical, seeking to anticipate what inventions nanotechnology might yield and to propose an agenda for future inquiry. The proposed elements of molecular nanotechnology, such as molecular assemblers and nanorobots are far beyond current capabilities.[1][47][48][49]

Cryonics



From Wikipedia, the free encyclopedia


Technicians prepare a legally dead patient for cryonic hibernation

Cryonics (from Greek κρύος 'kryos-' meaning 'icy cold') is the low-temperature preservation of animals (including humans) who cannot be sustained by contemporary medicine, with the hope that healing and resuscitation may be possible in the future.[1][2]

Cryopreservation of people or large animals is not reversible with current technology. The stated rationale for cryonics is that people who are considered dead by current legal or medical definitions may not necessarily be dead according to the more stringent information-theoretic definition of death.[3] It is proposed that cryopreserved people might someday be recovered by using highly advanced technology.[4]

Some scientific literature supports the feasibility of cryonics.[4][5] An open letter supporting the idea of cryonics has been signed by 63 scientists, including Aubrey de Grey and Marvin Minsky.[6]
However, many other scientists regard cryonics with skepticism.[7] As of 2013, approximately 270 people have undergone cryopreservation procedures since cryonics was first proposed in 1962.[8][9] In the United States, cryonics can only be legally performed on humans after they have been pronounced legally dead, as otherwise it would be considered murder or assisted suicide.[10]

Cryonics procedures ideally begin within minutes of cardiac arrest, and use cryoprotectants to prevent ice formation during cryopreservation.[11] However, the idea of cryonics also includes preservation of people long after legal death because of the possibility that brain structures that encode memory and personality may still persist and be inferable in the future. Whether sufficient brain information still exists for cryonics to successfully preserve may be intrinsically unprovable by present knowledge.[12] Therefore, most proponents of cryonics see it as an intervention with prospects for success that vary widely depending on circumstances.

Premises

A central premise of cryonics is that long-term memory, personality, and identity are stored in durable cell structures and patterns within the brain that do not require continuous brain activity to survive.[13] This premise is generally accepted in medicine; it is known that under certain conditions the brain can stop functioning and still later recover with retention of long-term memory.[14][15]

Additional scientific premises of cryonics[16] are that (1) brain structures encoding personality and long-term memory persist for some time after legal death, (2) these structures are preserved by cryopreservation, and (3) future technologies that could restore encoded memories to functional expression in a healed person are theoretically possible. At present only cells, tissues, and some small organs can be reversibly cryopreserved.[17][18]

Cryonics advocates say it is possible to preserve the fine cell structures of the brain in which memory and identity reside with present technology.[19] They say that demonstrably reversible cryopreservation is not necessary to achieve the present-day goal of cryonics, which is preservation of brain information that encodes memory and personal identity. They say current cryonics procedures can preserve the anatomical basis of mind,[11] and that this should be sufficient to prevent information-theoretic death until future repairs might be possible.

A moral premise of cryonics is that all terminally ill patients should have the right, if they so choose, to be cryopreserved.[20] Some cryonicists believe as a matter of principle that anyone who would ordinarily be regarded as dead should instead be made a "permanent patient" subject to whatever future advances might bring.[21]

Obstacles to success

Preservation injury

Long-term cryopreservation can be achieved by cooling to near 77.15 Kelvin (approximately -196.01°C), the boiling point of liquid nitrogen. It is a common mistaken belief that cells will lyse (burst) due to the formation of ice crystals within the cell, since this only occurs if the freezing rate exceeds the osmotic loss of water to the extracellular space.[22] However, damage from freezing can still be serious; ice may still form between cells, causing mechanical and chemical damage. Cryonics organizations use cryoprotectants to reduce this damage. Cryoprotectant solutions are circulated through blood vessels to remove and replace water inside cells with chemicals that prevent freezing.
This can reduce damage greatly,[23] but freezing of the entire body still causes injuries that are not reversible with present technology. The difficulties of recovering complex organisms from a frozen state have been long known. Attempts to recover large frozen mammals by simply rewarming were abandoned by 1957.[24]

When used at high concentrations, cryoprotectants stop ice formation completely. Cooling and solidification without crystal formation is called vitrification.[25] The first cryoprotectant solutions able to vitrify at very slow cooling rates while still being compatible with tissue survival were developed in the late 1990s by cryobiologists Gregory Fahy and Brian Wowk for the purpose of banking transplantable organs.[26][27] These solutions were adopted for use in cryonics by the Alcor Life Extension Foundation, for which they are believed to permit vitrification of some parts of the human body, especially the brain.[28] This has allowed animal brains to be vitrified, warmed back up, and examined for ice damage using light and electron microscopy. No ice crystal damage was found.[29][30] The Cryonics Institute also uses a vitrification solution developed by their staff cryobiologist, Yuri Pichugin, applying it principally to the brain.[31]

Vitrification in cryonics is different from vitrification in mainstream cryobiology because vitrification in cryonics is not reversible with current technology. It is only structural vitrification. When successful, it can prevent freezing injury in some body parts, but at the price of toxicity caused by cryoprotectant chemicals. The nature of this toxicity is still poorly understood. Cryonicists assume that toxicity is more subtle and repairable than obvious structural damage that would otherwise be caused by freezing. If, for example, toxicity is due to denatured proteins, those proteins could be repaired or replaced.

Ischemic injury

Ischemia means inadequate or absent blood circulation that deprives tissue of oxygen and nutrients. At least several minutes of ischemia is a typical part of cryonics because of the common legal requirement that cryonics procedures do not begin until after blood circulation stops. The heart must stop beating so that legal death can be declared. When there is advance notice of impending legal death, it is sometimes possible to deploy a team of technicians to perform a “standby procedure”. The team artificially restores blood circulation and breathing using techniques similar to cardiopulmonary resuscitation as soon as possible after the heart stops.[32] The aim is to keep tissues alive after legal death by analogy to conventional medical procedures in which viable organs and tissues are obtained for transplant from legally deceased donors. Legal death does not mean that all the cells of the body have died.[33]

Often in cryonics the brain is without oxygen for many minutes at warm temperatures, or even hours if the heart stops unexpectedly. This causes ischemic injury to the brain and other tissues that makes resuscitation impossible by present medical technology. Cryonicists justify preservation under such conditions by noting recent advances that allow brain resuscitation after longer periods of ischemia than the traditional 4-to-6-minute limit, and persistence of brain structure and even some brain cell function after long periods of clinical death.[34][35] They argue that definitions of death change as technology advances, and the early stages of what is called “death” today is actually a form of ischemic injury that will be reversible in the future.[36] They claim that personal survival during long periods of clinical death is determined by information-theoretic criteria.[3][4][37]

Revival

Those who believe that revival may someday be possible generally look toward advanced bioengineering, molecular nanotechnology,[38] nanomedicine,[39] or mind uploading as key technologies. Revival requires repairing damage from lack of oxygen, cryoprotectant toxicity, thermal stress (fracturing), freezing in tissues that do not successfully vitrify, and reversing the effects that caused the patient's death. In many cases extensive tissue regeneration will be necessary.
Hypothetical revival scenarios generally envision repairs being performed by vast numbers of microscopic organisms or devices.[40][41][42][43][44] These devices would restore healthy cell structure and chemistry at the molecular level, ideally before warming. More radically, mind transfer has also been suggested as a possible revival approach if and when technology is ever developed to scan the memory contents of a preserved brain.

It has sometimes been written that cryonics revival will be a last in, first out process. People cryopreserved in the future, with better technology, may require less advanced technology to be revived because they will have been cryopreserved with better technology that caused less damage to tissue. In this view, preservation methods will get progressively better until eventually they are demonstrably reversible, after which medicine will begin to reach back and revive people cryopreserved by more primitive methods. Revival of people cryopreserved by early cryonics technology may require centuries, if it is possible at all.[34] The "last in, first out" view of cryonics has been criticized because the quality of cryopreservation depends on many factors other than the era in which cryopreservation takes place.[45]

It has been claimed that if technologies for general molecular analysis and repair are ever developed, then theoretically any damaged body could be “revived”.[46] Survival would then depend on whether preserved brain information was sufficient to permit restoration of all or part of the personal identity of the original person, with amnesia being the final dividing line between success and failure.

Neuropreservation

Neuropreservation is cryopreservation of the brain, often within the head, with surgical removal and disposal (usually cremation) of the rest of the body. Neuropreservation, sometimes called “neuro,” is one of two distinct preservation options in cryonics, the other being "whole body" preservation.

Neuropreservation is motivated by the brain's role as the primary repository of memory and personal identity. (For instance, spinal cord injury victims, organ transplant patients, and amputees retain their personal identity.) It is also motivated by the belief that reversing any type of cryonic preservation is so difficult and complex that any future technology capable of it must by its nature be capable of generalized tissue regeneration, including growth of a new body around a repaired brain. Some suggested revival scenarios for whole body patients even involve discarding the original body and regenerating a new body because tissues are so badly damaged by the preservation process. These considerations, along with lower costs, easier transportation in emergencies, and the specific focus on brain preservation quality, have motivated many cryonicists to choose neuropreservation.

The advantages and disadvantages of neuropreservation are often debated among cryonics advocates. Critics of neuropreservation note that the body is a record of much life experience. While few cryonicists doubt that a revived neuro patient would be the same person, there are wider questions about how a regenerated body might feel different from the original.[47] Partly for these reasons (as well as for better public relations), the Cryonics Institute preserves only whole bodies. Some proponents of neuropreservation agree with these concerns, but still feel that lower costs and better brain preservation justify concentrating preservation efforts on the brain. About two-thirds of the patients stored at Alcor are neuropreservation patients. Although the American Cryonics Society no longer offers the neuropreservation option, about half of their patients are "neuros".

Financial difficulties

Financing storage of a cryonics patient at a cryonics organization by an on-going payment system was done in the early days of cryonics, but this system proved to be unworkable. Cryonics patients are to be stored for many decades, if not a century or two or longer, and a reliable source of outside funding is highly unlikely. Pay-as-you go funding was part of the reason for the CSC Chatsworth financial failure described in the history section. All modern cryonics organizations require full payment for all future costs associated with storage "in perpetuity" before patient cryostorage will be accepted.

Costs of cryonics vary greatly, ranging from the basic fee of $14,000 for brain-only at Oregon Cryonics and $12,000 for neuro (head or brain only) cryopreservation at the European cryonics company KrioRus, to more than $250,000 for whole body cryopreservation by Alcor with overseas and last-minute fees.[9] Alcor's neuropreservation is priced at $80,000 while a full body preservation is priced at $200,000. There is an extra $500 annual membership fee during life by Alcor.[48][49] After payment of an initiation fee, ACS full members pay an annual fee of $300 currently.[50] To some extent these cost differences reflect differences in how fees are quoted. The Cryonics Institute fee of $28,000 or $35,000 does not include transportation costs (around $4000 by plane in North America), or funeral director expenses outside of Michigan, which must be purchased as extras.[9] CI Members wanting Standby and Transport can use local paramedics, private bedside service, volunteers team or can contract for additional payment to the Florida-based company Suspended Animation, Inc.[9]

While cryonics is sometimes suspected of being greatly profitable, the high expenses of doing cryonics are well documented.[51] The expenses are comparable to major transplant surgeries. The two most expensive things are standby expenses (a team of 5+ people needs to be hired for up to several weeks) and the money that must be set aside to generate interest to pay for storage of the patient in liquid nitrogen in perpetuity (especially for whole body patients).

The most common method of paying for cryonics is life insurance, which spreads the cost over many years. Cryonics advocates are quick to point out that such insurance is especially affordable for young people. Cryonics providers claim that even the most expensive cryonics plans are “affordable for the vast majority” of people in the industrialized world who really want it and plan for it in advance. With the advent of low-cost cryonics provided by companies such as KrioRus (so far in Europe only) cryonics becomes feasible even for last-minute cases. The Cryonics Institute accepts pre-payments.

Legal issues

Legally, cryonics patients are treated as deceased persons.[52][53][54][55][56] A long established legal tradition, the concept of "lost persons," permits a person who has been declared legally dead to later be declared legally alive. Cryonics providers tend to be treated as medical research institutes. In France, cryonics is not considered a legal mode of body disposal;[57] only burial, cremation, and formal donation to science are allowed. However, bodies may legally be shipped to other, less restrictive countries for cryonic freezing.[58]

Standby services and transportation

Standby and transportation is a critical phase in a cryopreservation process. Cryonics patients need a professional response team to stand ready for suspended animation, when the patients are legally declared as dead. Standby services include stabilization, cooling, and other procedure to ensure that the damage to the patient during transportation are minimal. Some cryonics services provider may provide standby as well as transportation services to their client.[59][60]

Philosophical and ethical considerations

Cryonics is based on a view of dying as a process that can be stopped in the minutes, and perhaps hours, following legal death. If death is not an event that happens suddenly when the heart stops (and "legal death" is often pronounced) this raises philosophical questions about what exactly death is. In 2005 an ethics debate in the medical journal, Critical Care, noted “…few if any patients pronounced dead by today’s physicians are in fact truly dead by any scientifically rigorous criteria.”[61] Cryonics proponent Thomas Donaldson has argued that “death” based on cardiac arrest or resuscitation failure is a purely social construction used to justify terminating care of dying patients.[62] In this view, legal death and its aftermath are a form of euthanasia in which sick people are abandoned. Philosopher Max More suggested a distinction between death associated with circumstances and intention versus death that is absolutely irreversible.[63] Absolutely irreversible death has also been called information-theoretic death, which implies destruction of the brain to such an extent that the original information content can no longer be recovered. Bioethicist James Hughes has written that increasing rights will accrue to cryonics patients as prospects for revival become clearer, noting that recovery of legally dead persons has precedent in the discovery of missing persons.[64]

Ethical and theological opinions of cryonics tend to pivot on the issue of whether cryonics is regarded as interment or medicine. If cryonics is interment, then religious beliefs about death and afterlife may come into consideration. Resuscitation may be deemed impossible by those with religious beliefs because the soul is gone, and according to most religions only a deity can resurrect the dead. Cryonics advocates say theological dismissal of cryonics because it is interment is a circular argument because calling cryonics "interment" presumes a priori that cryonics cannot work.[65] They believe future technical advances will validate their view that cryonics patients are recoverable, and therefore never really dead.[66] If cryonics is regarded as medicine, with legal death as a mere enabling mechanism, then cryonics is a long-term coma with uncertain prognosis.

Alcor has published a vigorous Christian defense of cryonics,[67] including excerpts of a sermon by Lutheran Reverend Kay Glaesner. Noted Christian commentator John Warwick Montgomery has defended cryonics.[68] In 1969, a Roman Catholic priest consecrated the cryonics capsule of Ann DeBlasio, one of the first cryonics patients.[69] Many followers of Nikolai Fyodorovich Fyodorov see cryonics as an important step in the Common Cause project.[70]

At the request of the American Cryonics Society, in 1995, Philosopher Charles Tandy, Ph.D. [71] authored a paper entitled “Cryonic-Hibernation in Light of the Bioethical Principles of Beauchamp and Childress.” Tandy considered the four bioethical factors or principles articulated by philosophers Beauchamp and Childress as they apply to cryonics. These four principles are 1) respect for autonomy; 2) nonmaleficence; 3) beneficence; and 4) justice. Tandy concluded that in respect to all four principles “biomedical professionals have a strong (not weak) and actual (not prima facie, but binding) obligation to help insure cryonic-hibernation of the cryonics patient.”[72]

History

Early history

Benjamin Franklin, in a 1773 letter,[73] expressed regret that he lived "in a century too little advanced, and too near the infancy of science" that he could not be preserved and revived to fulfil his "very ardent desire to see and observe the state of America a hundred years hence."

20th century

In 1922 Alexander Yaroslavsky, member of Russian immortalists-biocosmists movement, wrote "Anabiosys Poem". However, the modern era of cryonics began in 1962 when Michigan college physics teacher Robert Ettinger proposed in a privately published book, The Prospect of Immortality,[74] that freezing people may be a way to reach future medical technology. (The book was republished in 2005 and remains in print.) Even though freezing a person is apparently fatal, Ettinger argued that what appears to be fatal today may be reversible in the future. He applied the same argument to the process of dying itself, saying that the early stages of clinical death may be reversible in the future. Combining these two ideas, he suggested that freezing recently deceased people may be a way to save lives. In 1955 James Lovelock was able to reanimate rats frozen at 0 Celsius using microwave diathermy.[75]

Slightly before Ettinger’s book was complete, Evan Cooper[76] (writing as Nathan Duhring) privately published a book called Immortality: Physically, Scientifically, Now that independently suggested the same idea. Cooper founded the Life Extension Society (LES) in 1964 to promote freezing people. Ettinger came to be credited as the originator of cryonics, perhaps because his book was republished by Doubleday in 1964 on recommendation of Isaac Asimov and Fred Pohl, and received more publicity. Ettinger also stayed with the movement longer. Nevertheless, Alcor's in-house historian, R. Michael Perry, has written “Evan Cooper deserves the principal credit for forming an organized cryonics movement.”[77][78] The first LES newsletter credits Lawrence Neil Jensen, an art professor at Castleton State College, as "one of the original formulators of the 'freeze and wait' theory." Jensen helped raise awareness of the concept through such means as a letter to President Kennedy, a presentation at Green Mountain College,[78] and an appearance with Ettinger on the Mike Douglas Show in 1965.[79]

Cooper’s Life Extension Society became the seed tree for cryonics societies throughout the United States where local cryonics advocates would get together as a result of contact through the LES mailing list. The actual word “cryonics” was invented by Karl Werner, then a student in the studio of William Katavolos at Pratt Institute in Brooklyn, NY, in 1965 in conjunction with the founding of the Cryonics Society of New York (CSNY)[80] by Curtis Henderson and Saul Kent that same year. This was followed by the founding of the Cryonics Society of Michigan (CSM) and Cryonics Society of California (CSC) in 1966, and Bay Area Cryonics Society (BACS) in 1969 (renamed the American Cryonics Society, or ACS, in 1985). Neither CSNY nor CSC are currently in operation. CSM eventually became the Immortalist Society, a non-profit affiliate of the Cryonics Institute (CI), a cryonics service organization founded by Ettinger in 1976. Alcor now has more current cryonics patients than any other organization, 110 as of December 2011.[81]

Although there was at least one earlier aborted case, it is generally accepted that the first person frozen with intent of future resuscitation was James Bedford, a 73-year-old psychology professor frozen under crude conditions by CSC on January 12, 1967. The case made the cover of a limited print run of Life magazine before the presses were stopped to report the death of three astronauts in the Apollo 1 fire instead. Bedford is still frozen today at Alcor.[80]

Cryonics suffered a major setback in 1979 when it was discovered that nine bodies stored by the head of the CSC, Robert Nelson, in a cemetery in Chatsworth, California, had thawed due to depletion of funds by relatives, after being maintained for a year and a half at the personal expense of Nelson.[80][82] Some of the bodies had apparently thawed years earlier without notification. Nelson was sued, and negative publicity slowed cryonics growth for years afterward. Of 17 documented cryonics cases between 1967 and 1973, only James Bedford remains cryopreserved today. Strict financial controls and requirements adopted in response to the Chatsworth scandal have resulted in the successful maintenance of almost all cryonics cases since that era.

The cryonics organization who was established as a nonprofit organization by Fred and Linda Chamberlain in 1972 as the Alcor Society for Solid State Hypothermia (ALCOR).[83] In 1977, the name was changed to the Alcor Life Extension Foundation. In 1982, the Institute for Advanced Biological Studies (IABS), founded by Mike Darwin and Steve Bridge in Indiana, merged with Alcor. During the 1980s, Darwin worked with UCLA cardiothoracic surgery researcher Jerry Leaf at Alcor to develop a medical model for cryonics procedures. They pioneered the first consistent use of a cryonics procedure now known as a “standby”, in which a team waits to begin life support procedures at the bedside of a cryonics patient as soon as possible after the heart stops.

The oldest incorporated cryonics society still in existence is the American Cryonics Society (ACS). This tax-exempt 501(c)(3) membership organization was incorporated in 1969 as the Bay Area Cryonics Society (BACS) by a group of cryonics advocates that included two prominent Bay Area physicians, M. Coleman Harris and Grace Talbot. The first suspensions under BACS auspices were performed in 1974 by Trans Time, Inc., a for-profit company started by BACS members. BACS researcher Paul Segall, working with Jerry Leaf of CryoVita, developed a medical model to induce hypothermia shortly after pronouncement of death. Segall later went on to pioneer blood substitutes for use in both cryonic suspension and in mainstream medicine.

Cryonics received new support in the 1980s when MIT engineer Eric Drexler started publishing papers and books foreseeing the new field of molecular nanotechnology. His 1986 book, Engines of Creation, included an entire chapter on cryonics applications.[84] Cryonics advocates saw the nascent field of nanotechnology as vindication of their long held view that molecular repair of injured tissue was theoretically possible.[85] In the late 1980s Alcor member Dick Clair (who was dying of AIDS) sued for, and ultimately won for everyone, the right to be cryonically preserved in the State of California.[86][87][88] Alcor’s membership expanded tenfold within a decade, with a 30% annual growth rate between 1988 and 1992. But since 2013, membership began to fall after growing discontent and economic reality. (According the Cryonics Magazine of Alcor, July 2013)

On July 24, 1988, a Ph.D. in computer science named Kevin Brown started an electronic mailing list called CryoNet[89] that became a powerful tool of communication for the cryonics community. Numerous other mailing lists and web forums for discussing cryonics and the affairs of particular organizations have since appeared, but CryoNet remained a central point of contact for cryonicists until it was shut down on March 17, 2011.[90]

Alcor was disrupted by political turmoil in 1993 when a group of activists left to start the CryoCare Foundation,[91] and associated for-profit companies CryoSpan, Inc. (headed by Paul Wakfer) and BioPreservation, Inc.[92] (headed by Mike Darwin). Darwin and collaborators made many technical advances during this time period, including a landmark study documenting high quality brain preservation by freezing with high concentrations of glycerol.[93] CryoCare ceased operations in 1999 when they were unable to renew their service contract with BioPreservation. CryoCare’s two patients stored at CryoSpan were transferred to Alcor. Several ACS patients stored at CryoSpan were transferred to CI.

There have been numerous, often transient, for-profit companies involved in cryonics. For-profit companies were often paired or affiliated with non-profit groups they served. Some of these companies, with non-profits they served in parentheses, were Cryonic Interment, Inc. (CSC), Cryo-Span Corporation (CSNY), Cryo-Care Equipment Corporation (CSC and CSNY), Manrise Corporation (Alcor), CryoVita, Inc. (Alcor), BioTransport, Inc. (Alcor), Trans Time, Inc.[94] (BACS), Soma, Inc. (IABS), CryoSpan, Inc. (CryoCare and ACS), BioPreservation, Inc. (CryoCare and ACS), Kryos, Inc. (ACS), Suspended Animation, Inc.[95] (CI, ACS, and Alcor). Trans Time and Suspended Animation are the only for-profit cryonics organizations that still exist.

The cryonics field seems to have largely consolidated around three non-profit groups, Alcor Life Extension Foundation, Cryonics Institute (CI), and the American Cryonics Society (ACS), all deriving significant income from bequests and donations. In 2006, a non-profit called the Cryonics Society was formally incorporated but the group is devoted solely to promotion and public education of the cryonics concept.

21st century

As research in the 1990s revealed in greater detail the damaging effects of freezing, there was a trend to use higher concentrations of glycerol cryoprotectant to prevent freezing injury. In 2001 Alcor began using vitrification, a technology borrowed from mainstream organ preservation research, in an attempt to completely prevent ice formation during cooling. Initially the technology could only be applied to the head when separated from the body. In 2005 Alcor began treating the whole body with their vitrification solution in a procedure called "neurovitrification with whole body cryoprotection".[96] In the same year, the Cryonics Institute began treating the head of their whole body patients with their own vitrification solution.[97]

In June 2005 scientists at the University of Pittsburgh's Safar Center for Resuscitation Research announced they had managed to place dogs in suspended animation and bring them back to life, most of them without brain damage, by draining the blood out of the dogs' bodies and injecting a low temperature solution into their circulatory systems, which in turn keeps the bodies alive in stasis. After three hours of being clinically dead, the dogs' blood was returned to their circulatory systems, and the animals were revived by delivering an electric shock to their hearts. The heart started pumping the blood around the frozen body, and the dogs were brought back to life.[98]

On 20 January 2006, doctors from the Massachusetts General Hospital in Boston announced they had placed pigs in suspended animation with a similar technique. The pigs were anaesthetized and major blood loss was induced, along with simulated - via scalpel - severe injuries (e.g. a punctured aorta as might happen in a car accident or shooting). After the pigs lost about half their blood the remaining blood was replaced with a chilled saline solution. As the body temperature reached 10 °C (50 °F) the damaged blood vessel was repaired and the blood was returned. The method was tested 200 times with a 90% success rate.[99]

As of November 2014, the Cryonics Institute has 1301 members. At its Clinton Township, Michigan facility, about a fifth of the cryopreserved humans and a smaller portion of the pets came to the CI facility through contract with the American Cryonics Society (which has no storage facilities of its own).[9] As of May 2014, Alcor maintains 124 cryonics patients and about 45 pets in Scottsdale, Arizona.[9] Cryonics Institute and Alcor have support groups in Canada, Europe and Australia. There is also a smaller cryonics company in Russia called KrioRus, which maintains 20 human patients and 10 pets,[9] and the new not-for-profit company Stasis Systems Australia plans to build the first facility in the southern hemisphere.[100] There are also plans being developed by renowned architect Stephen Valentine for a multi-acre futuristic high security facility called Timeship[101] to be built in an undisclosed location in the United States, as well as for an underground facility in Switzerland.[citation needed] Trans Time, a small company, currently maintains 3 cryonics patients.[9]

DARPA currently funds several research projects aimed on sending the human body into a state of suspended animation, essentially “shutting down” the heart and brain until proper care can be administered that can be regarded as a step to cryopreservation of humans.[102]

In popular culture

A survey in Germany found that about half of the respondents were familiar with cryonics, and about half of those familiar with cryonics had learned of the subject from television or film.[103] Procedures similar to cryonics have been featured in innumerable science fiction stories as a means to transport a character from the past into the future, or sometimes to aid space travel (in particular interstellar travel). Often (especially in the former use case), in addition to accomplishing whatever the character's primary task is in the future, he or she must cope with the strangeness of a new world, which may contain only traces of their previous surroundings. This prospect of alienation is often cited as a major reason for the unpopularity of cryonics.

Literature

Notable early science fiction short stories featuring human cryopreservation, deliberate or accidental, include Lydia Maria Child's short story "Hilda Silfverling, A Fantasy" (1886),[104] Jack London's first published work "A Thousand Deaths" (1899), V. Mayakovsky's "Klop" (1928),[105] H.P. Lovecraft's "Cool Air" (1928), and Edgar Rice Burroughs' "The Resurrection of Jimber-Jaw" (1937). The comic book super-hero Captain America, popular in the 1940s and discontinued in the 1950s, returned to publication in 1964 with the explanation that he had been accidentally frozen in Arctic ice.[106] Many of the subjects in these stories are unwilling ones, although a 1931 short story by Neil R. Jones called "The Jameson Satellite",[107] in which the subject has himself deliberately preserved in space after death, has been credited with giving Robert Ettinger the seed of the idea of cryonics, when he was a teenager. Ettinger would later write a science fiction story called The Penultimate Trump, published in 1948, in which the explicit idea of cryopreservation of legally dead persons for future repair of medical causes of death is promulgated.[108]

Relatively few stories have been published concerning the primary objective and definition of cryonics, which is medical time travel. The most in-depth novel based on contemporary cryonics is national best-seller The First Immortal by James L. Halperin (1998). Giles Milton's 2014 thriller, The Perfect Corpse is set in a fictional cryonics laboratory in Nevada; the narrative revolves around the resurrection of a perfectly frozen body discovered in the Greenland ice sheet.

Fictional application of cryonics as rescue after freezing in space has continued since The Jameson Satellite in 1931. Arthur C. Clarke's 3001: The Final Odyssey reveals that Frank Poole, murdered by HAL 9000 in 2001: A Space Odyssey was cryopreserved by his exposure to space, and found and revived a thousand years later.

Film

Movies featuring cryonics include Forever Young (1992), Demolition Man (1993), Sexmission (1984), and the Woody Allen comedy Sleeper (1973) and Open Your Eyes (Abre los Ojos 1997, remade as Vanilla Sky, 2001). Cryopreservation is used during space travel in the James Cameron films Aliens (1986) and Avatar (2009). Cryosleep was also used in Christopher Nolan's Interstellar (film) 2014. Star Wars Episode V: The Empire Strikes Back (1980) involves the test freezing of Han Solo as proof of concept for suspension, which caused temporary blindness upon his successful revival. Austin Powers (1997) and its sequels (1999, 2002) use cryonics as a plot device to insert a 1960s spy character and arch villain into a world decades later in which their behavior and expectations are often jarringly out of place.

Television

On television, cryonics has appeared occasionally since the 1960s. It was prominently featured in the opening episode of the space adventure series Lost in Space (1965), in which a family of space travelers was placed in suspended animation for a five and a half year interstellar journey to a planet of star Alpha Centauri. In the original series of Star Trek, cryonics was used as a plot device in the episode "Space Seed" (1967), in which 72 humans are found adrift in space in a state of suspended animation. Their leader, Khan Noonien Singh, is played by Ricardo Montalbán who reprised the role in the film Star Trek II: The Wrath of Khan (1982). Many elements of the "Space Seed" plot, including the cryogenic preservation of Kahn and his followers, were used in the updated Star Trek Into Darkness (2013) with Khan played by Benedict Cumberbatch. Producer David E. Kelley wrote well-researched portrayals of cryonics for the TV show L.A. Law (1990).[109] Picket Fences (1994),[110] and Boston Legal (2005);[111] In each case, there is a dying plaintiff petitioning a court for the right to elective cryopreservation. Cryonics also features as a plot element in the Castle episode "Head Case", where the episode's murder victim is recovered by a cryonics company before the team can discover the body, with the subsequent investigation being complicated by the legal battle to claim and analyse the body without jeopardising the client's potential for future reanimation.
In the Star Trek: The Next Generation episode "The Neutral Zone" (1988), the 24th-century protagonists criticize cryonics despite its in-universe success, regarding it as "a fad" of primitive 20th-century people who were "afraid of death". In two separate comedy series, Red Dwarf (1988) and Futurama (1999), accidental long-term cryonic suspension is used as an initial plot device to permanently thrust a hapless contemporary protagonist into the far future. In 2010 a Spanish soap opera titled Aurora premiered in the television network Telemundo. The theme of this soap is cryonics and everything centers around it. It tells the story of Aurora Ponce De Leon a 20 year old who is frozen by her father after her death from a rare and mysterious disease. She comes back to life 20 years later and finds out how everything changed after her death. She has to adjust to life 20 years later; to being chronologically 40 years old but looking like her 20 year old self.

Video games

Cryonics is used as a plot device in numerous video games, including games such as Halo that use cryonics as a means of preventing aging during lengthy interstellar travel.

Famous people

The best known cryopreserved patient is baseball player Ted Williams. The urban legend suggesting Walt Disney was cryopreserved is false; he was cremated and interred at Forest Lawn Memorial Park Cemetery.[112][113] Robert A. Heinlein, who wrote enthusiastically of the concept in The Door into Summer, was cremated and had his ashes distributed over the Pacific Ocean. Timothy Leary was a long-time cryonics advocate, and signed up with a major cryonics provider. He changed his mind, however, shortly before his death, and so was not cryopreserved.

Hal Finney[114] and L. Stephen Coles[115] were cryopreserved in 2014.

Jesus, King of the Jews

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Jesus,_King_of_the_Jews ...