Search This Blog

Tuesday, October 6, 2020

Time in physics

From Wikipedia, the free encyclopedia
 
Foucault's pendulum in the Panthéon of Paris can measure time as well as demonstrate the rotation of Earth.

Time in physics is defined by its measurement: time is what a clock reads. In classical, non-relativistic physics, it is a scalar quantity (often denoted by the symbol ) and, like length, mass, and charge, is usually described as a fundamental quantity. Time can be combined mathematically with other physical quantities to derive other concepts such as motion, kinetic energy and time-dependent fields. Timekeeping is a complex of technological and scientific issues, and part of the foundation of recordkeeping.

Markers of time

Before there were clocks, time was measured by those physical processes which were understandable to each epoch of civilization:

  • the first appearance (see: heliacal rising) of Sirius to mark the flooding of the Nile each year
  • the periodic succession of night and day, seemingly eternally
  • the position on the horizon of the first appearance of the sun at dawn
  • the position of the sun in the sky
  • the marking of the moment of noontime during the day
  • the length of the shadow cast by a gnomon

Eventually, it became possible to characterize the passage of time with instrumentation, using operational definitions. Simultaneously, our conception of time has evolved, as shown below.

The unit of measurement of time: the second

In the International System of Units (SI), the unit of time is the second (symbol: ). It is a SI base unit, and has been defined since 1967 as "the duration of 9,192,631,770 [cycles] of the radiation corresponding to the transition between the two hyperfine levels of the ground state of the caesium 133 atom". This definition is based on the operation of a caesium atomic clock.These clocks became practical for use as primary reference standards after about 1955, and have been in use ever since.

The state of the art in timekeeping

Prerequisites

The UTC timestamp in use worldwide is an atomic time standard. The relative accuracy of such a time standard is currently on the order of 10−15 (corresponding to 1 second in approximately 30 million years). The smallest time step considered theoretically observable is called the Planck time, which is approximately 5.391×10−44 seconds - many orders of magnitude below the resolution of current time standards.

The caesium atomic clock became practical after 1950, when advances in electronics enabled reliable measurement of the microwave frequencies it generates. As further advances occurred, atomic clock research has progressed to ever-higher frequencies, which can provide higher accuracy and higher precision. Clocks based on these techniques have been developed, but are not yet in use as primary reference standards.

Conceptions of time

Andromeda galaxy (M31) is two million light-years away. Thus we are viewing M31's light from two million years ago, a time before humans existed on Earth.

Galileo, Newton, and most people up until the 20th century thought that time was the same for everyone everywhere. This is the basis for timelines, where time is a parameter. The modern understanding of time is based on Einstein's theory of relativity, in which rates of time run differently depending on relative motion, and space and time are merged into spacetime, where we live on a world line rather than a timeline. In this view time is a coordinate. According to the prevailing cosmological model of the Big Bang theory, time itself began as part of the entire Universe about 13.8 billion years ago.

Regularities in nature

In order to measure time, one can record the number of occurrences (events) of some periodic phenomenon. The regular recurrences of the seasons, the motions of the sun, moon and stars were noted and tabulated for millennia, before the laws of physics were formulated. The sun was the arbiter of the flow of time, but time was known only to the hour for millennia, hence, the use of the gnomon was known across most of the world, especially Eurasia, and at least as far southward as the jungles of Southeast Asia.

In particular, the astronomical observatories maintained for religious purposes became accurate enough to ascertain the regular motions of the stars, and even some of the planets.

At first, timekeeping was done by hand by priests, and then for commerce, with watchmen to note time as part of their duties. The tabulation of the equinoxes, the sandglass, and the water clock became more and more accurate, and finally reliable. For ships at sea, boys were used to turn the sandglasses and to call the hours.

Mechanical clocks

Richard of Wallingford (1292–1336), abbot of St. Alban's abbey, famously built a mechanical clock as an astronomical orrery about 1330.

By the time of Richard of Wallingford, the use of ratchets and gears allowed the towns of Europe to create mechanisms to display the time on their respective town clocks; by the time of the scientific revolution, the clocks became miniaturized enough for families to share a personal clock, or perhaps a pocket watch. At first, only kings could afford them. Pendulum clocks were widely used in the 18th and 19th century. They have largely been replaced in general use by quartz and digital clocks. Atomic clocks can theoretically keep accurate time for millions of years. They are appropriate for standards and scientific use.

Galileo: the flow of time

In 1583, Galileo Galilei (1564–1642) discovered that a pendulum's harmonic motion has a constant period, which he learned by timing the motion of a swaying lamp in harmonic motion at mass at the cathedral of Pisa, with his pulse.

In his Two New Sciences (1638), Galileo used a water clock to measure the time taken for a bronze ball to roll a known distance down an inclined plane; this clock was

"a large vessel of water placed in an elevated position; to the bottom of this vessel was soldered a pipe of small diameter giving a thin jet of water, which we collected in a small glass during the time of each descent, whether for the whole length of the channel or for a part of its length; the water thus collected was weighed, after each descent, on a very accurate balance; the differences and ratios of these weights gave us the differences and ratios of the times, and this with such accuracy that although the operation was repeated many, many times, there was no appreciable discrepancy in the results."

Galileo's experimental setup to measure the literal flow of time, in order to describe the motion of a ball, preceded Isaac Newton's statement in his Principia:

I do not define time, space, place and motion, as being well known to all.

The Galilean transformations assume that time is the same for all reference frames.

Newton's physics: linear time

In or around 1665, when Isaac Newton (1643–1727) derived the motion of objects falling under gravity, the first clear formulation for mathematical physics of a treatment of time began: linear time, conceived as a universal clock.

Absolute, true, and mathematical time, of itself, and from its own nature flows equably without regard to anything external, and by another name is called duration: relative, apparent, and common time, is some sensible and external (whether accurate or unequable) measure of duration by the means of motion, which is commonly used instead of true time; such as an hour, a day, a month, a year.

The water clock mechanism described by Galileo was engineered to provide laminar flow of the water during the experiments, thus providing a constant flow of water for the durations of the experiments, and embodying what Newton called duration.

In this section, the relationships listed below treat time as a parameter which serves as an index to the behavior of the physical system under consideration. Because Newton's fluents treat a linear flow of time (what he called mathematical time), time could be considered to be a linearly varying parameter, an abstraction of the march of the hours on the face of a clock. Calendars and ship's logs could then be mapped to the march of the hours, days, months, years and centuries.

Prerequisites

Thermodynamics and the paradox of irreversibility

By 1798, Benjamin Thompson (1753–1814) had discovered that work could be transformed to heat without limit - a precursor of the conservation of energy or

In 1824 Sadi Carnot (1796–1832) scientifically analyzed the steam engine with his Carnot cycle, an abstract engine. Rudolf Clausius (1822–1888) noted a measure of disorder, or entropy, which affects the continually decreasing amount of free energy which is available to a Carnot engine in the:

Thus the continual march of a thermodynamic system, from lesser to greater entropy, at any given temperature, defines an arrow of time. In particular, Stephen Hawking identifies three arrows of time:

  • Psychological arrow of time - our perception of an inexorable flow.
  • Thermodynamic arrow of time - distinguished by the growth of entropy.
  • Cosmological arrow of time - distinguished by the expansion of the universe.

Entropy is maximum in an isolated thermodynamic system, and increases. In contrast, Erwin Schrödinger (1887–1961) pointed out that life depends on a "negative entropy flow". Ilya Prigogine (1917–2003) stated that other thermodynamic systems which, like life, are also far from equilibrium, can also exhibit stable spatio-temporal structures. Soon afterward, the Belousov–Zhabotinsky reactions were reported, which demonstrate oscillating colors in a chemical solution. These nonequilibrium thermodynamic branches reach a bifurcation point, which is unstable, and another thermodynamic branch becomes stable in its stead.

Electromagnetism and the speed of light

In 1864, James Clerk Maxwell (1831–1879) presented a combined theory of electricity and magnetism. He combined all the laws then known relating to those two phenomenon into four equations. These vector calculus equations which use the del operator () are known as Maxwell's equations for electromagnetism.

In free space (that is, space not containing electric charges), the equations take the form (using SI units):

Prerequisites

where

ε0 and μ0 are the electric permittivity and the magnetic permeability of free space;
c = is the speed of light in free space, 299 792 458 m/s;
E is the electric field;
B is the magnetic field.

These equations allow for solutions in the form of electromagnetic waves. The wave is formed by an electric field and a magnetic field oscillating together, perpendicular to each other and to the direction of propagation. These waves always propagate at the speed of light c, regardless of the velocity of the electric charge that generated them.

The fact that light is predicted to always travel at speed c would be incompatible with Galilean relativity if Maxwell's equations were assumed to hold in any inertial frame (reference frame with constant velocity), because the Galilean transformations predict the speed to decrease (or increase) in the reference frame of an observer traveling parallel (or antiparallel) to the light.

It was expected that there was one absolute reference frame, that of the luminiferous aether, in which Maxwell's equations held unmodified in the known form.

The Michelson–Morley experiment failed to detect any difference in the relative speed of light due to the motion of the Earth relative to the luminiferous aether, suggesting that Maxwell's equations did, in fact, hold in all frames. In 1875, Hendrik Lorentz (1853–1928) discovered Lorentz transformations, which left Maxwell's equations unchanged, allowing Michelson and Morley's negative result to be explained. Henri Poincaré (1854–1912) noted the importance of Lorentz's transformation and popularized it. In particular, the railroad car description can be found in Science and Hypothesis, which was published before Einstein's articles of 1905.

The Lorentz transformation predicted space contraction and time dilation; until 1905, the former was interpreted as a physical contraction of objects moving with respect to the aether, due to the modification of the intermolecular forces (of electric nature), while the latter was thought to be just a mathematical stipulation.

Einstein's physics: spacetime

Albert Einstein's 1905 special relativity challenged the notion of absolute time, and could only formulate a definition of synchronization for clocks that mark a linear flow of time:

If at the point A of space there is a clock, an observer at A can determine the time values of events in the immediate proximity of A by finding the positions of the hands which are simultaneous with these events. If there is at the point B of space another clock in all respects resembling the one at A, it is possible for an observer at B to determine the time values of events in the immediate neighbourhood of B.

But it is not possible without further assumption to compare, in respect of time, an event at A with an event at B. We have so far defined only an "A time" and a "B time."

We have not defined a common "time" for A and B, for the latter cannot be defined at all unless we establish by definition that the "time" required by light to travel from A to B equals the "time" it requires to travel from B to A. Let a ray of light start at the "A time" tA from A towards B, let it at the "B time" tB be reflected at B in the direction of A, and arrive again at A at the “A time” tA.

In accordance with definition the two clocks synchronize if

We assume that this definition of synchronism is free from contradictions, and possible for any number of points; and that the following relations are universally valid:—

  1. If the clock at B synchronizes with the clock at A, the clock at A synchronizes with the clock at B.
  2. If the clock at A synchronizes with the clock at B and also with the clock at C, the clocks at B and C also synchronize with each other.
— Albert Einstein, "On the Electrodynamics of Moving Bodies" 

Einstein showed that if the speed of light is not changing between reference frames, space and time must be so that the moving observer will measure the same speed of light as the stationary one because velocity is defined by space and time:

where r is position and t is time.

Indeed, the Lorentz transformation (for two reference frames in relative motion, whose x axis is directed in the direction of the relative velocity)

Prerequisites

can be said to "mix" space and time in a way similar to the way a Euclidean rotation around the z axis mixes x and y coordinates. Consequences of this include relativity of simultaneity.

Event B is simultaneous with A in the green reference frame, but it occurred before in the blue frame, and will occur later in the red frame.

More specifically, the Lorentz transformation is a hyperbolic rotation which is a change of coordinates in the four-dimensional Minkowski space, a dimension of which is ct. (In Euclidean space an ordinary rotation is the corresponding change of coordinates.) The speed of light c can be seen as just a conversion factor needed because we measure the dimensions of spacetime in different units; since the metre is currently defined in terms of the second, it has the exact value of 299 792 458 m/s. We would need a similar factor in Euclidean space if, for example, we measured width in nautical miles and depth in feet. In physics, sometimes units of measurement in which c = 1 are used to simplify equations.

Time in a "moving" reference frame is shown to run more slowly than in a "stationary" one by the following relation (which can be derived by the Lorentz transformation by putting ∆x′ = 0, ∆τ = ∆t′):

where:

  • τ is the time between two events as measured in the moving reference frame in which they occur at the same place (e.g. two ticks on a moving clock); it is called the proper time between the two events;
  • t is the time between these same two events, but as measured in the stationary reference frame;
  • v is the speed of the moving reference frame relative to the stationary one;
  • c is the speed of light.

Moving objects therefore are said to show a slower passage of time. This is known as time dilation.

These transformations are only valid for two frames at constant relative velocity. Naively applying them to other situations gives rise to such paradoxes as the twin paradox.

That paradox can be resolved using for instance Einstein's General theory of relativity, which uses Riemannian geometry, geometry in accelerated, noninertial reference frames. Employing the metric tensor which describes Minkowski space:

Einstein developed a geometric solution to Lorentz's transformation that preserves Maxwell's equations. His field equations give an exact relationship between the measurements of space and time in a given region of spacetime and the energy density of that region.

Einstein's equations predict that time should be altered by the presence of gravitational fields (see the Schwarzschild metric):

Where:

is the gravitational time dilation of an object at a distance of .
is the change in coordinate time, or the interval of coordinate time.
is the gravitational constant
is the mass generating the field
 
is the change in proper time , or the interval of proper time.

Or one could use the following simpler approximation:

That is, the stronger the gravitational field (and, thus, the larger the acceleration), the more slowly time runs. The predictions of time dilation are confirmed by particle acceleration experiments and cosmic ray evidence, where moving particles decay more slowly than their less energetic counterparts.

 Gravitational time dilation gives rise to the phenomenon of gravitational redshift and Shapiro signal travel time delays near massive objects such as the sun. The Global Positioning System must also adjust signals to account for this effect.

According to Einstein's general theory of relativity, a freely moving particle traces a history in spacetime that maximises its proper time. This phenomenon is also referred to as the principle of maximal aging, and was described by Taylor and Wheeler as:

"Principle of Extremal Aging: The path a free object takes between two events in spacetime is the path for which the time lapse between these events, recorded on the object's wristwatch, is an extremum."

Einstein's theory was motivated by the assumption that every point in the universe can be treated as a 'center', and that correspondingly, physics must act the same in all reference frames. His simple and elegant theory shows that time is relative to an inertial frame. In an inertial frame, Newton's first law holds; it has its own local geometry, and therefore its own measurements of space and time; there is no 'universal clock'. An act of synchronization must be performed between two systems, at the least.

Time in quantum mechanics

There is a time parameter in the equations of quantum mechanics. The Schrödinger equation is

Prerequisites

One solution can be

.

where is called the time evolution operator, and H is the Hamiltonian.

But the Schrödinger picture shown above is equivalent to the Heisenberg picture, which enjoys a similarity to the Poisson brackets of classical mechanics. The Poisson brackets are superseded by a nonzero commutator, say [H,A] for observable A, and Hamiltonian H:

This equation denotes an uncertainty relation in quantum physics. For example, with time (the observable A), the energy E (from the Hamiltonian H) gives:

where
is the uncertainty in energy
is the uncertainty in time
is Planck's constant

The more precisely one measures the duration of a sequence of events, the less precisely one can measure the energy associated with that sequence, and vice versa. This equation is different from the standard uncertainty principle, because time is not an operator in quantum mechanics.

Corresponding commutator relations also hold for momentum p and position q, which are conjugate variables of each other, along with a corresponding uncertainty principle in momentum and position, similar to the energy and time relation above.

Quantum mechanics explains the properties of the periodic table of the elements. Starting with Otto Stern's and Walter Gerlach's experiment with molecular beams in a magnetic field, Isidor Rabi (1898–1988), was able to modulate the magnetic resonance of the beam. In 1945 Rabi then suggested that this technique be the basis of a clock using the resonant frequency of an atomic beam.

Dynamical systems

One could say that time is a parameterization of a dynamical system that allows the geometry of the system to be manifested and operated on. It has been asserted that time is an implicit consequence of chaos (i.e. nonlinearity/irreversibility): the characteristic time, or rate of information entropy production, of a system. Mandelbrot introduces intrinsic time in his book Multifractals and 1/f noise.

Signalling

Prerequisites

Signalling is one application of the electromagnetic waves described above. In general, a signal is part of communication between parties and places. One example might be a yellow ribbon tied to a tree, or the ringing of a church bell. A signal can be part of a conversation, which involves a protocol. Another signal might be the position of the hour hand on a town clock or a railway station. An interested party might wish to view that clock, to learn the time. See: Time ball, an early form of Time signal.

 

Evolution of a world line of an accelerated massive particle. This world line is restricted to the timelike top and bottom sections of this spacetime figure; this world line cannot cross the top (future) or the bottom (past) light cone. The left and right sections (which are outside the light cones) are spacelike.

We as observers can still signal different parties and places as long as we live within their past light cone. But we cannot receive signals from those parties and places outside our past light cone.

Along with the formulation of the equations for the electromagnetic wave, the field of telecommunication could be founded. In 19th century telegraphy, electrical circuits, some spanning continents and oceans, could transmit codes - simple dots, dashes and spaces. From this, a series of technical issues have emerged; see Category:Synchronization. But it is safe to say that our signalling systems can be only approximately synchronized, a plesiochronous condition, from which jitter need be eliminated.

That said, systems can be synchronized (at an engineering approximation), using technologies like GPS. The GPS satellites must account for the effects of gravitation and other relativistic factors in their circuitry. See: Self-clocking signal.

Technology for timekeeping standards

The primary time standard in the U.S. is currently NIST-F1, a laser-cooled Cs fountain, the latest in a series of time and frequency standards, from the ammonia-based atomic clock (1949) to the caesium-based NBS-1 (1952) to NIST-7 (1993). The respective clock uncertainty declined from 10,000 nanoseconds per day to 0.5 nanoseconds per day in 5 decades. In 2001 the clock uncertainty for NIST-F1 was 0.1 nanoseconds/day. Development of increasingly accurate frequency standards is underway.

In this time and frequency standard, a population of caesium atoms is laser-cooled to temperatures of one microkelvin. The atoms collect in a ball shaped by six lasers, two for each spatial dimension, vertical (up/down), horizontal (left/right), and back/forth. The vertical lasers push the caesium ball through a microwave cavity. As the ball is cooled, the caesium population cools to its ground state and emits light at its natural frequency, stated in the definition of second above. Eleven physical effects are accounted for in the emissions from the caesium population, which are then controlled for in the NIST-F1 clock. These results are reported to BIPM.

Additionally, a reference hydrogen maser is also reported to BIPM as a frequency standard for TAI (international atomic time).

The measurement of time is overseen by BIPM (Bureau International des Poids et Mesures), located in Sèvres, France, which ensures uniformity of measurements and their traceability to the International System of Units (SI) worldwide. BIPM operates under authority of the Metre Convention, a diplomatic treaty between fifty-one nations, the Member States of the Convention, through a series of Consultative Committees, whose members are the respective national metrology laboratories.

Time in cosmology

The equations of general relativity predict a non-static universe. However, Einstein accepted only a static universe, and modified the Einstein field equation to reflect this by adding the cosmological constant, which he later described as the biggest mistake of his life. But in 1927, Georges Lemaître (1894–1966) argued, on the basis of general relativity, that the universe originated in a primordial explosion. At the fifth Solvay conference, that year, Einstein brushed him off with "Vos calculs sont corrects, mais votre physique est abominable." (“Your math is correct, but your physics is abominable”). In 1929, Edwin Hubble (1889–1953) announced his discovery of the expanding universe. The current generally accepted cosmological model, the Lambda-CDM model, has a positive cosmological constant and thus not only an expanding universe but an accelerating expanding universe.

If the universe were expanding, then it must have been much smaller and therefore hotter and denser in the past. George Gamow (1904–1968) hypothesized that the abundance of the elements in the Periodic Table of the Elements, might be accounted for by nuclear reactions in a hot dense universe. He was disputed by Fred Hoyle (1915–2001), who invented the term 'Big Bang' to disparage it. Fermi and others noted that this process would have stopped after only the light elements were created, and thus did not account for the abundance of heavier elements.

Gamow's prediction was a 5–10-kelvin black-body radiation temperature for the universe, after it cooled during the expansion. This was corroborated by Penzias and Wilson in 1965. Subsequent experiments arrived at a 2.7 kelvins temperature, corresponding to an age of the universe of 13.8 billion years after the Big Bang.

This dramatic result has raised issues: what happened between the singularity of the Big Bang and the Planck time, which, after all, is the smallest observable time. When might have time separated out from the spacetime foam; there are only hints based on broken symmetries.

General relativity gave us our modern notion of the expanding universe that started in the Big Bang. Using relativity and quantum theory we have been able to roughly reconstruct the history of the universe. In our epoch, during which electromagnetic waves can propagate without being disturbed by conductors or charges, we can see the stars, at great distances from us, in the night sky. (Before this epoch, there was a time, before the universe cooled enough for electrons and nuclei to combine into atoms about 377,000 years after the Big Bang, during which starlight would not have been visible over large distances.)

Reprise

Ilya Prigogine's reprise is "Time precedes existence". In contrast to the views of Newton, of Einstein, and of quantum physics, which offer a symmetric view of time (as discussed above), Prigogine points out that statistical and thermodynamic physics can explain irreversible phenomena, as well as the arrow of time and the Big Bang.

Philosophy of physics

From Wikipedia, the free encyclopedia

In philosophy, philosophy of physics deals with conceptual and interpretational issues in modern physics, many of which overlap with research done by certain kinds of theoretical physicists. Philosophy of physics can be broadly lumped into three areas:

  • interpretations of quantum mechanics: mainly concerning issues with how to formulate an adequate response to the measurement problem and understand what the theory says about reality
  • the nature of space and time: Are space and time substances, or purely relational? Is simultaneity conventional or only relative? Is temporal asymmetry purely reducible to thermodynamic asymmetry?
  • inter-theoretic relations: the relationship between various physical theories, such as thermodynamics and statistical mechanics. This overlaps with the issue of scientific reduction.

Philosophy of space and time

The existence and nature of space and time (or space-time) are central topics in the philosophy of physics.

Time

Time, in many philosophies, is seen as change.

Time is often thought to be a fundamental quantity (that is, a quantity which cannot be defined in terms of other quantities), because time seems like a fundamentally basic concept, such that one cannot define it in terms of anything simpler. However, certain theories such as loop quantum gravity claim that spacetime is emergent. As Carlo Rovelli, one of the founders of loop quantum gravity has said: "No more fields on spacetime: just fields on fields". Time is defined via measurement—by its standard time interval. Currently, the standard time interval (called "conventional second", or simply "second") is defined as 9,192,631,770 oscillations of a hyperfine transition in the 133 caesium atom. (ISO 31-1). What time is and how it works follows from the above definition. Time then can be combined mathematically with the fundamental quantities of space and mass to define concepts such as velocity, momentum, energy, and fields.

Both Newton and Galileo, as well as most people up until the 20th century, thought that time was the same for everyone everywhere. The modern conception of time is based on Einstein's theory of relativity and Minkowski's spacetime, in which rates of time run differently in different inertial frames of reference, and space and time are merged into spacetime. Time may be quantized, with the theoretical smallest time being on the order of the Planck time. Einstein's general relativity as well as the redshift of the light from receding distant galaxies indicate that the entire Universe and possibly space-time itself began about 13.8 billion years ago in the Big Bang. Einstein's theory of special relativity mostly (though not universally) made theories of time where there is something metaphysically special about the present seem much less plausible, as the reference-frame-dependence of time seems to not allow the idea of a privileged present moment.

Time travel

Some theories, most notably special and general relativity, suggest that suitable geometries of spacetime, or certain types of motion in space, may allow time travel into the past and future. Concepts that aid such understanding include the closed timelike curve.

Albert Einstein's special theory of relativity (and, by extension, the general theory) predicts time dilation that could be interpreted as time travel. The theory states that, relative to a stationary observer, time appears to pass more slowly for faster-moving bodies: for example, a moving clock will appear to run slow; as a clock approaches the speed of light its hands will appear to nearly stop moving. The effects of this sort of time dilation are discussed further in the popular "twin paradox". These results are experimentally observable and affect the operation of GPS satellites and other high-tech systems used in daily life.

A second, similar type of time travel is permitted by general relativity. In this type a distant observer sees time passing more slowly for a clock at the bottom of a deep gravity well, and a clock lowered into a deep gravity well and pulled back up will indicate that less time has passed compared to a stationary clock that stayed with the distant observer.

Many in the scientific community believe that backward time travel is highly unlikely, because it violates causality i.e. the logic of cause and effect. For example, what happens if you attempt to go back in time and kill yourself at an earlier stage in your life (or your grandfather, which leads to the grandfather paradox)? Stephen Hawking once suggested that the absence of tourists from the future constitutes a strong argument against the existence of time travel— a variant of the Fermi paradox, with time travelers instead of alien visitors.

Space

Space is one of the few fundamental quantities in physics, meaning that it cannot be defined via other quantities because there is nothing more fundamental known at present. Thus, similar to the definition of other fundamental quantities (like time and mass), space is defined via measurement. Currently, the standard space interval, called a standard metre or simply metre, is defined as the distance traveled by light in a vacuum during a time interval of 1/299792458 of a second (exact).

In classical physics, space is a three-dimensional Euclidean space where any position can be described using three coordinates and parameterised by time. Special and general relativity use four-dimensional spacetime rather than three-dimensional space; and currently there are many speculative theories which use more than four spatial dimensions.

Philosophy of quantum mechanics

Quantum mechanics is a large focus of contemporary philosophy of physics, specifically concerning the correct interpretation of quantum mechanics. Very broadly, much of the philosophical work that is done in quantum theory is trying to make sense of superposition states: the property that particles seem to not just be in one determinate position at one time, but are somewhere 'here', and also 'there' at the same time. Such a radical view turns many common sense metaphysical ideas on their head. Much of contemporary philosophy of quantum mechanics aims to make sense of what the very empirically successful formalism of quantum mechanics tells us about the physical world.

The Everett interpretation

The Everett, or many-worlds interpretation of quantum mechanics claims that the wave-function of a quantum system is telling us claims about the reality of that physical system. It denies wavefunction collapse, and claims that superposition states should be interpreted literally as describing the reality of many-worlds where objects are located, and not simply indicating the indeterminacy of those variables. This is sometimes argued as a corollary of scientific realism, which states that scientific theories aim to give us literally true descriptions of the world.

One issue for the Everett interpretation is the role that probability plays on this account. The Everettian account is completely deterministic, whereas probability seems to play an ineliminable role in quantum mechanics. Contemporary Everettians have argued that one can get an account of probability that follows the Born Rule through certain decision-theoretic proofs.

Physicist Roland Omnés noted that it is impossible to experimentally differentiate between Everett's view, which says that as the wave-function decoheres into distinct worlds, each of which exists equally, and the more traditional view that says that a decoherent wave-function leaves only one unique real result. Hence, the dispute between the two views represents a great "chasm." "Every characteristic of reality has reappeared in its reconstruction by our theoretical model; every feature except one: the uniqueness of facts."

Uncertainty principle

The uncertainty principle is a mathematical relation asserting an upper limit to the accuracy of the simultaneous measurement of any pair of conjugate variables, e.g. position and momentum. In the formalism of operator notation, this limit is the evaluation of the commutator of the variables' corresponding operators.

The uncertainty principle arose as an answer to the question: How does one measure the location of an electron around a nucleus if an electron is a wave? When quantum mechanics was developed, it was seen to be a relation between the classical and quantum descriptions of a system using wave mechanics.

In March 1927, working in Niels Bohr's institute, Werner Heisenberg formulated the principle of uncertainty thereby laying the foundation of what became known as the Copenhagen interpretation of quantum mechanics. Heisenberg had been studying the papers of Paul Dirac and Pascual Jordan. He discovered a problem with measurement of basic variables in the equations. His analysis showed that uncertainties, or imprecisions, always turned up if one tried to measure the position and the momentum of a particle at the same time. Heisenberg concluded that these uncertainties or imprecisions in the measurements were not the fault of the experimenter, but fundamental in nature and are inherent mathematical properties of operators in quantum mechanics arising from definitions of these operators.

The term Copenhagen interpretation of quantum mechanics was often used interchangeably with and as a synonym for Heisenberg's uncertainty principle by detractors (such as Einstein and the physicist Alfred Landé) who believed in determinism and saw the common features of the Bohr–Heisenberg theories as a threat. Within the Copenhagen interpretation of quantum mechanics the uncertainty principle was taken to mean that on an elementary level, the physical universe does not exist in a deterministic form, but rather as a collection of probabilities, or possible outcomes. For example, the pattern (probability distribution) produced by millions of photons passing through a diffraction slit can be calculated using quantum mechanics, but the exact path of each photon cannot be predicted by any known method. The Copenhagen interpretation holds that it cannot be predicted by any method, not even with theoretically infinitely precise measurements.

History of the philosophy of physics

Aristotelian physics

Aristotelian physics viewed the universe as a sphere with a center. Matter, composed of the classical elements, earth, water, air, and fire, sought to go down towards the center of the universe, the center of the earth, or up, away from it. Things in the aether such as the moon, the sun, planets, or stars circled the center of the universe. Movement is defined as change in place, i.e. space.

Newtonian physics

The implicit axioms of Aristotelian physics with respect to movement of matter in space were superseded in Newtonian physics by Newton's First Law of Motion.

Every body perseveres in its state either of rest or of uniform motion in a straight line, except insofar as it is compelled to change its state by impressed forces.

"Every body" includes the Moon, and an apple; and includes all types of matter, air as well as water, stones, or even a flame. Nothing has a natural or inherent motion. Absolute space being three-dimensional Euclidean space, infinite and without a center. Being "at rest" means being at the same place in absolute space over time. The topology and affine structure of space must permit movement in a straight line at a uniform velocity; thus both space and time must have definite, stable dimensions.

Leibniz

Gottfried Wilhelm Leibniz, 1646 – 1716, was a contemporary of Newton. He contributed a fair amount to the statics and dynamics emerging around him, often disagreeing with Descartes and Newton. He devised a new theory of motion (dynamics) based on kinetic energy and potential energy, which posited space as relative, whereas Newton was thoroughly convinced that space was absolute. An important example of Leibniz's mature physical thinking is his Specimen Dynamicum of 1695.

Until the discovery of subatomic particles and the quantum mechanics governing them, many of Leibniz's speculative ideas about aspects of nature not reducible to statics and dynamics made little sense. For instance, he anticipated Albert Einstein by arguing, against Newton, that space, time and motion are relative, not absolute: "As for my own opinion, I have said more than once, that I hold space to be something merely relative, as time is, that I hold it to be an order of coexistences, as time is an order of successions."

Quotes from Einstein's work on the importance of the philosophy of physics

Einstein was interested in the philosophical implications of his theory.

Albert Einstein was extremely interested in the philosophical conclusions of his work. He writes:

"I fully agree with you about the significance and educational value of methodology as well as history and philosophy of science. So many people today—and even professional scientists—seem to me like somebody who has seen thousands of trees but has never seen a forest. A knowledge of the historic and philosophical background gives that kind of independence from prejudices of his generation from which most scientists are suffering. This independence created by philosophical insight is—in my opinion—the mark of distinction between a mere artisan or specialist and a real seeker after truth." Einstein. letter to Robert A. Thornton, 7 December 1944. EA 61–574.

Elsewhere:

"How does it happen that a properly endowed natural scientist comes to concern himself with epistemology? Is there no more valuable work in his specialty? I hear many of my colleagues saying, and I sense it from many more, that they feel this way. I cannot share this sentiment. ... Concepts that have proven useful in ordering things easily achieve such an authority over us that we forget their earthly origins and accept them as unalterable givens. Thus they come to be stamped as 'necessities of thought,' 'a priori givens,' etc."

"The path of scientific advance is often made impassable for a long time through such errors. For that reason, it is by no means an idle game if we become practiced in analyzing the long-commonplace concepts and exhibiting [revealing, exposing? -Ed.] those circumstances upon which their justification and usefulness depend, how they have grown up, individually, out of the givens of experience. By this means, their all-too-great authority will be broken." Einstein, 1916, "Memorial notice for Ernst Mach," Physikalische Zeitschrift 17: 101–02.

Inequality (mathematics)

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Inequality...