Search This Blog

Monday, April 21, 2025

Introduction to genetics

From Wikipedia, the free encyclopedia

Genetics is the study of genes and tries to explain what they are and how they work. Genes are how living organisms inherit features or traits from their ancestors; for example, children usually look like their parents because they have inherited their parents' genes. Genetics tries to identify which traits are inherited and to explain how these traits are passed from generation to generation.

Some traits are part of an organism's physical appearance, such as eye color or height. Other sorts of traits are not easily seen and include blood types or resistance to diseases. Some traits are inherited through genes, which is the reason why tall and thin people tend to have tall and thin children. Other traits come from interactions between genes and the environment, so a child who inherited the tendency of being tall will still be short if poorly nourished. The way our genes and environment interact to produce a trait can be complicated. For example, the chances of somebody dying of cancer or heart disease seems to depend on both their genes and their lifestyle.

Genes are made from a long molecule called DNA, which is copied and inherited across generations. DNA is made of simple units that line up in a particular order within it, carrying genetic information. The language used by DNA is called genetic code, which lets organisms read the information in the genes. This information is the instructions for the construction and operation of a living organism.

The information within a particular gene is not always exactly the same between one organism and another, so different copies of a gene do not always give exactly the same instructions. Each unique form of a single gene is called an allele. As an example, one allele for the gene for hair color could instruct the body to produce much pigment, producing black hair, while a different allele of the same gene might give garbled instructions that fail to produce any pigment, giving white hair. Mutations are random changes in genes and can create new alleles. Mutations can also produce new traits, such as when mutations to an allele for black hair produce a new allele for white hair. This appearance of new traits is important in evolution.

Genes and inheritance

A section of DNA; the sequence of the plate-like units (nucleotides) in the center carries information.

Genes are pieces of DNA that contain information for the synthesis of ribonucleic acids (RNAs) or polypeptides. Genes are inherited as units, with two parents dividing out copies of their genes to their offspring. Humans have two copies of each of their genes, but each egg or sperm cell only gets one of those copies for each gene. An egg and sperm join to form a zygote with a complete set of genes. The resulting offspring has the same number of genes as their parents, but for any gene, one of their two copies comes from their father and one from their mother.

Example of mixing

The effects of mixing depend on the types (the alleles) of the gene. If the father has two copies of an allele for red hair, and the mother has two copies for brown hair, all their children get the two alleles that give different instructions, one for red hair and one for brown. The hair color of these children depends on how these alleles work together. If one allele dominates the instructions from another, it is called the dominant allele, and the allele that is overridden is called the recessive allele. In the case of a daughter with alleles for both red and brown hair, brown is dominant and she ends up with brown hair.

A Punnett square showing how two brown haired parents can have red or brown haired children. 'B' is for brown and 'b' is for red.
Red hair is a recessive trait.

Although the red color allele is still there in this brown-haired girl, it doesn't show. This is a difference between what is seen on the surface (the traits of an organism, called its phenotype) and the genes within the organism (its genotype). In this example, the allele for brown can be called "B" and the allele for red "b". (It is normal to write dominant alleles with capital letters and recessive ones with lower-case letters.) The brown hair daughter has the "brown hair phenotype" but her genotype is Bb, with one copy of the B allele, and one of the b allele.

Now imagine that this woman grows up and has children with a brown-haired man who also has a Bb genotype. Her eggs will be a mixture of two types, one sort containing the B allele, and one sort the b allele. Similarly, her partner will produce a mix of two types of sperm containing one or the other of these two alleles. When the transmitted genes are joined up in their offspring, these children have a chance of getting either brown or red hair, since they could get a genotype of BB = brown hair, Bb = brown hair or bb = red hair. In this generation, there is, therefore, a chance of the recessive allele showing itself in the phenotype of the children—some of them may have red hair like their grandfather.

Many traits are inherited in a more complicated way than the example above. This can happen when there are several genes involved, each contributing a small part to the result. Tall people tend to have tall children because their children get a package of many alleles that each contribute a bit to how much they grow. However, there are not clear groups of "short people" and "tall people", like there are groups of people with brown or red hair. This is because of the large number of genes involved; this makes the trait very variable and people are of many different heights. Despite a common misconception, the green/blue eye traits are also inherited in this complex inheritance model. Inheritance can also be complicated when the trait depends on the interaction between genetics and environment. For example, malnutrition does not change traits like eye color, but can stunt growth.

How genes work

Genes make proteins

The function of genes is to provide the information needed to make molecules called proteins in cells. Cells are the smallest independent parts of organisms: the human body contains about 100 trillion cells, while very small organisms like bacteria are just a single cell. A cell is like a miniature and very complex factory that can make all the parts needed to produce a copy of itself, which happens when cells divide. There is a simple division of labor in cells—genes give instructions and proteins carry out these instructions, tasks like building a new copy of a cell, or repairing the damage. Each type of protein is a specialist that only does one job, so if a cell needs to do something new, it must make a new protein to do this job. Similarly, if a cell needs to do something faster or slower than before, it makes more or less of the protein responsible. Genes tell cells what to do by telling them which proteins to make and in what amounts.

Genes are expressed by being transcribed into RNA, and this RNA then translated into protein.

Proteins are made of a chain of 20 different types of amino acid molecules. This chain folds up into a compact shape, rather like an untidy ball of string. The shape of the protein is determined by the sequence of amino acids along its chain and it is this shape that, in turn, determines what the protein does. For example, some proteins have parts of their surface that perfectly match the shape of another molecule, allowing the protein to bind to this molecule very tightly. Other proteins are enzymes, which are like tiny machines that alter other molecules.

The information in DNA is held in the sequence of the repeating units along the DNA chain. These units are four types of nucleotides (A, T, G and C) and the sequence of nucleotides stores information in an alphabet called the genetic code. When a gene is read by a cell the DNA sequence is copied into a very similar molecule called RNA (this process is called transcription). Transcription is controlled by other DNA sequences (such as promoters), which show a cell where genes are, and control how often they are copied. The RNA copy made from a gene is then fed through a structure called a ribosome, which translates the sequence of nucleotides in the RNA into the correct sequence of amino acids and joins these amino acids together to make a complete protein chain. The new protein then folds up into its active form. The process of moving information from the language of RNA into the language of amino acids is called translation.

DNA replication. DNA is unwound and nucleotides are matched to make two new strands.

If the sequence of the nucleotides in a gene changes, the sequence of the amino acids in the protein it produces may also change—if part of a gene is deleted, the protein produced is shorter and may not work anymore. This is the reason why different alleles of a gene can have different effects on an organism. As an example, hair color depends on how much of a dark substance called melanin is put into the hair as it grows. If a person has a normal set of the genes involved in making melanin, they make all the proteins needed and they grow dark hair. However, if the alleles for a particular protein have different sequences and produce proteins that can't do their jobs, no melanin is produced and the person has white skin and hair (albinism).

Genes are copied

Genes are copied each time a cell divides into two new cells. The process that copies DNA is called DNA replication. It is through a similar process that a child inherits genes from its parents when a copy from the mother is mixed with a copy from the father.

DNA can be copied very easily and accurately because each piece of DNA can direct the assembly of a new copy of its information. This is because DNA is made of two strands that pair together like the two sides of a zipper. The nucleotides are in the center, like the teeth in the zipper, and pair up to hold the two strands together. Importantly, the four different sorts of nucleotides are different shapes, so for the strands to close up properly, an A nucleotide must go opposite a T nucleotide, and a G opposite a C. This exact pairing is called base pairing.

When DNA is copied, the two strands of the old DNA are pulled apart by enzymes; then they pair up with new nucleotides and then close. This produces two new pieces of DNA, each containing one strand from the old DNA and one newly made strand. This process is not predictably perfect as proteins attach to a nucleotide while they are building and cause a change in the sequence of that gene. These changes in the DNA sequence are called mutations. Mutations produce new alleles of genes. Sometimes these changes stop the functioning of that gene or make it serve another advantageous function, such as the melanin genes discussed above. These mutations and their effects on the traits of organisms are one of the causes of evolution.

Genes and evolution

Mice with different coat colors

A population of organisms evolves when an inherited trait becomes more common or less common over time. For instance, all the mice living on an island would be a single population of mice: some with white fur, some gray. If over generations, white mice became more frequent and gray mice less frequent, then the color of the fur in this population of mice would be evolving. In terms of genetics, this is called an increase in allele frequency.

Alleles become more or less common either by chance in a process called genetic drift or by natural selection. In natural selection, if an allele makes it more likely for an organism to survive and reproduce, then over time this allele becomes more common. But if an allele is harmful, natural selection makes it less common. In the above example, if the island were getting colder each year and snow became present for much of the time, then the allele for white fur would favor survival since predators would be less likely to see them against the snow, and more likely to see the gray mice. Over time white mice would become more and more frequent, while gray mice less and less.

Mutations create new alleles. These alleles have new DNA sequences and can produce proteins with new properties. So if an island was populated entirely by black mice, mutations could happen creating alleles for white fur. The combination of mutations creating new alleles at random, and natural selection picking out those that are useful, causes an adaptation. This is when organisms change in ways that help them to survive and reproduce. Many such changes, studied in evolutionary developmental biology, affect the way the embryo develops into an adult body.

Inherited diseases

Some diseases are hereditary and run in families; others, such as infectious diseases, are caused by the environment. Other diseases come from a combination of genes and the environment. Genetic disorders are diseases that are caused by a single allele of a gene and are inherited in families. These include Huntington's disease, cystic fibrosis or Duchenne muscular dystrophy. Cystic fibrosis, for example, is caused by mutations in a single gene called CFTR and is inherited as a recessive trait.

Other diseases are influenced by genetics, but the genes a person gets from their parents only change their risk of getting a disease. Most of these diseases are inherited in a complex way, with either multiple genes involved, or coming from both genes and the environment. As an example, the risk of breast cancer is 50 times higher in the families most at risk, compared to the families least at risk. This variation is probably due to a large number of alleles, each changing the risk a little bit. Several of the genes have been identified, such as BRCA1 and BRCA2, but not all of them. However, although some of the risks are genetic, the risk of this cancer is also increased by being overweight, heavy alcohol consumption and not exercising. A woman's risk of breast cancer, therefore, comes from a large number of alleles interacting with her environment, so it is very hard to predict.

Genetic engineering

Since traits come from the genes in a cell, putting a new piece of DNA into a cell can produce a new trait. This is how genetic engineering works. For example, rice can be given genes from a maize and a soil bacteria so the rice produces beta-carotene, which the body converts to vitamin A. This can help children with Vitamin A deficiency. Another gene being put into some crops comes from the bacterium Bacillus thuringiensis; the gene makes a protein that is an insecticide. The insecticide kills insects that eat the plants but is harmless to people. In these plants, the new genes are put into the plant before it is grown, so the genes are in every part of the plant, including its seeds. The plant's offspring inherit the new genes, which has led to concern about the spread of new traits into wild plants.

The kind of technology used in genetic engineering is also being developed to treat people with genetic disorders in an experimental medical technique called gene therapy. However, here the new, properly working gene is put in targeted cells, not altering the chance of future children inheriting the disease causing alleles.

Transcortical sensory aphasia

Transcortical sensory aphasia (TSA) is a kind of aphasia that involves damage to specific areas of the temporal lobe of the brain, resulting in symptoms such as poor auditory comprehension, relatively intact repetition, and fluent speech with semantic paraphasias present. TSA is a fluent aphasia similar to Wernicke's aphasia (receptive aphasia), with the exception of a strong ability to repeat words and phrases. The person may repeat questions rather than answer them ("echolalia").

In all of these ways, TSA is very similar to a more commonly known language disorder, receptive aphasia. However, transcortical sensory aphasia differs from receptive aphasia in that patients still have intact repetition and exhibit echolalia, or the compulsive repetition of words. Transcortical sensory aphasia cannot be diagnosed through brain imaging techniques such as functional magnetic resonance imaging (fMRI), as the results are often difficult to interpret. Therefore, clinicians rely on language assessments and observations to determine if a patient presents with the characteristics of TSA. Patients diagnosed with TSA have shown partial recovery of speech and comprehension after beginning speech therapy. Speech therapy methods for patients with any subtype of aphasia are based on the principles of learning and neuroplasticity. Clinical research on TSA is limited because it occurs so infrequently in patients with aphasia that it is very difficult to perform systematic studies.

TSA should not be confused with transcortical motor aphasia (TMA), which is characterized by nonfluent speech output, with good comprehension and repetition. Patients with TMA have impaired writing skills, difficulty speaking and difficulty maintaining a clear thought process. Furthermore, TMA is caused by lesions in cortical motor areas of the brain as well as lesions in the anterior portion of the basal ganglia, and can be seen in patients with expressive aphasia.

Affected brain areas

Damage to the inferior left temporal lobe, which is shown in green, is associated with TSA.

Transcortical sensory aphasia is caused by lesions in the inferior left temporal lobe of the brain located near Wernicke's area, and is usually due to minor hemorrhage or contusion in the temporal lobe, or infarcts of the left posterior cerebral artery (PCA). One function of the arcuate fasciculus is the connection between Wernicke’s and Broca’s area. In TSA Wernicke’s and Broca’s areas are spared, meaning that lesions do not occur in these regions of the brain. However, since the arcuate fasciculus, Wernicke's area, and Broca's area are secluded from the rest of the brain in TSA, patients still have intact repetition (as information from the arcuate fasciculus is relayed to Broca’s area), but cannot attach meaning to words, either spoken or heard.

Characteristics

Transcortical sensory aphasia is characterized as a fluent aphasia. Fluency is determined by direct qualitative observation of the patient’s speech to determine the length of spoken phrases, and is usually characterized by a normal or rapid rate; normal phrase length, rhythm, melody, and articulatory agility; and normal or paragrammatic speech. Transcortical sensory aphasia is a disorder in which there is a discrepancy between phonological processing, which remains intact, and lexical-semantic processing, which is impaired.[6] Therefore, patients can repeat complicated phrases, however they lack comprehension and propositional speech. This disconnect occurs since Wernicke’s area is not damaged in patients with TSA, therefore repetition is spared while comprehension is affected. Patients with intact repetition can repeat both simple and complex phrases spoken by others, e.g. when asked if the patient would like to go for a walk, he or she would respond "go for walk." Although patients can respond appropriately, due to the extent of their TSA, it is most likely that they do not comprehend what others ask them. In addition to problems in comprehension, transcortical sensory aphasia is further characterized based on deficits in naming and paraphasia.

Verbal comprehension

Impaired verbal comprehension can be the result a number of causes such as failure of speech sound discrimination, word recognition, auditory working memory, or syntactic structure building. When clinically examined, patients with TSA will exhibit poor comprehension of verbal commands. Based on the extent of the comprehension deficiency, patients will have difficulty following simple commands, e.g. “close your eyes.” Depending on the extent of affected brain area, patients are able to follow simple commands but may not be able to comprehend more difficult, multistep commands, e.g. “point to the ceiling, then touch your left ear with your right hand." Verbal commands as such, that require the patient to cross over the midline of their body are typically more taxing than commands that involve solely the right or left side. When increasing the complexity of verbal commands comprehension is often tested by varying the grammatical structure of the command to determine whether or not the patient understands different grammatical variations of the same sentence. Commands involving the passive voice or possessive, e.g. "If the snake killed the mouse, which one is still alive," usually result in comprehension problems in those who can understand simple questions.

Naming

Naming involves the ability to recall an object. Patients with TSA, as well as patients with all other aphasia subtypes, exhibit poor naming. Clinical assessment of naming involves the observer first asking the patient to name high frequency objects such as clock, door, and chair. TSA patients who name common objects with ease generally have difficulty naming both uncommon objects and specific parts of objects such as lapel, or the dial on a watch.

Paraphasia

Patients with TSA typically exhibit paraphasia; their speech is fluent but often error-prone. Their speech is often unintelligible as they tend to use the wrong words, e.g. tree instead of train or uses words in senseless and incorrect combinations.

Diagnosis

Clinical assessment

Sensory aphasia is typically diagnosed by non-invasive evaluations. Neurologists, neuropsychologists or speech pathologists will administer oral evaluations to determine the extent of a patient’s comprehension and speech capability. Initial assessment will determine if the cause of linguistic deficiency is aphasia. If the diagnosis is then confirmed, testing will next address the type of aphasia and its severity. The Boston Diagnostic Aphasia Examination specializes in determining the severity of a sensory aphasia through the observation of conversational behaviors. Several modalities of perception and response are observed in conjunction with the subject’s ability to process sensory information. The location of the brain lesion and type of the aphasia can then be inferred from the observed symptoms. The Minnesota Test for Differential Diagnosis is the most lengthy and thorough assessment of sensory aphasia. It pinpoints weaknesses in the auditory and visual senses, as well as reading comprehension. From this differential diagnosis, a patient’s course of treatment can be determined. After treatment planning, the Porch Index of Communicative Ability is used to evaluate prognosis and the degree of recovery.

Imaging

fMRI is a measure of the increase in blood flow to localized areas of the brain that coincide with neural activity and is used to image brain activity related to a specific task or sensory process. It is a commonly used method for imaging brain activity in aphasia patients.

Sensory aphasia cannot be diagnosed through the use of imaging techniques. Differences in cognition between asymptomatic subjects and affected patients can be observed via functional magnetic resonance imaging (fMRI). However, these results only reveal temporal differences in cognition between control and diagnosed subjects. The degree of progression during therapy can also be surveyed through cognition tests monitored by fMRI. Many patients’ progress is assessed over time via repeated testing and corresponding cerebral imaging by fMRI.

Management

Due to advances in modern neuroimaging, scientists have been able to gain a better understanding of how language is learned and comprehended. Based on the new data from the world of neuroscience, improvements can be made in coping with the disorder.

Therapists have been developing multiple methods of improving speech and comprehension. These techniques utilize three general principles: maximizing therapy occurrences, ensuring behavioral and communicative relevance, and allowing patients to focus on the language tools that are still available in his or her repertoire.

Many of the following treatment techniques are used to improve auditory comprehension in patients with aphasia:

  • Using common words
  • Using concrete nouns is more effective than using adjectives, adverbs, or verbs
  • Using action verbs that are easily imagined
  • Concise and grammatically simple sentences as opposed to lengthy sentences
  • Speaking slowly, repeating oneself several times when conversing with aphasic patients
  • Using gestures

A relatively new method of language therapy involves coincidence learning. Coincidence learning focuses on the simultaneous learning of two or more events and stipulates that these events are wired together in the brain, strengthening the learning process. Therapists use coincidence learning to find and improve language correlations or coincidences that have been either damaged or deleted by severe cases of aphasia, such as transcortical sensory aphasia. This technique is important in brain function and recovery, as it strengthens associated brain areas that remain unaffected after brain damage. It can be achieved with intensive therapy hours in order to maximize time where correlation is emphasized.

Through careful analysis of neuroimaging studies, a correlation has been developed with motor function and the understanding of action verbs. For example, leg and motor areas were seen to be activated words such as "kick", leading scientists to understand the connection between motor and language processes in the brain. This is yet another example of using relationships that are related in the brain for the purpose of rehabilitating speech and comprehension.

Of huge importance in aphasia therapy is the need to start practicing as soon as possible.[citation needed] Greater recovery occurs when a patient attempts to improve their comprehension and speaking soon after aphasia occurs. There is an inverse relationship between the length of time spent not practicing and level of recovery. The patient should be pushed to their limits of verbal communication in order for them to practice and build upon their remaining language skills.

One effective therapy technique is using what are known as language games in order to encourage verbal communication. One famous example is known as "Builder's Game", where a 'builder' and a 'helper' must communicate in order to effectively work on a project. The helper must hand the builder the tools he or she may need, which requires effective oral communication. The builder succeeds by requesting tools from the assistant by usually using single word utterances, such as 'hammer' or 'nail'. Thus, when the helper hands the tool to the builder, the game incorporates action with language, a key therapy technique. The assistant would then hand the builder the requested tool. Success of the game occurs when the builder's requests are specific to ensure successful building.

Ultimately, regardless of therapy plan or method, improvement in speech does not appear overnight; it requires a significant time investment by the patient as well as a dedicated speech therapist seeking to ensure that the patient is focusing on the correct speech tasks outside of the clinic. Furthermore, the patient must collaborate with friends and family members during their free time in order to maximize the efficacy of the treatment.

Primary progressive aphasia

From Wikipedia, the free encyclopedia
 
Primary progressive aphasia
Regions of the left hemisphere that can give rise to aphasia when damaged.

In neuropathy, primary progressive aphasia (PPA) is a type of neurological syndrome in which language capabilities slowly and progressively become impaired. As with other types of aphasia, the symptoms that accompany PPA depend on what parts of the brain's left hemisphere are significantly damaged. However, unlike most other aphasias, PPA results from continuous deterioration in brain tissue, which leads to early symptoms being far less detrimental than later symptoms.

Those with PPA slowly lose the ability to speak, write, read, and generally comprehend language. Eventually, almost every patient becomes mute and completely loses the ability to understand both written and spoken language. Although it was first described as solely impairment of language capabilities while other mental functions remain intact, it is now recognized that many, if not most of those with PPA experience impairment of memory, short-term memory formation and loss of executive functions.

It was first described as a distinct syndrome by M. Marsel Mesulam in 1982. PPAs have a clinical and pathological overlap with the frontotemporal lobar degeneration spectrum of disorders and Alzheimer's disease. Unlike those affected by Alzheimer's, people with PPA are generally able to maintain self-sufficiency.

Causes

Currently, the specific causes for PPA and other degenerative brain disease similar to PPA are viewed as idiopathic (unknown). Autopsies have revealed a variety of brain abnormalities in people who had PPA. These autopsies, as well as imaging techniques such as CT scans, MRI, EEG, single photon emission computed tomography, and positron emission tomography, have generally revealed abnormalities to be almost exclusively in the left hemisphere.

Risk factors

There have been no large epidemiological studies on the incidence and prevalence of the PPA variants. Though it most likely has been underestimated, onset of PPA has been found to occur in the sixth or seventh decade.

There are no known environmental risk factors for the progressive aphasias. However, one observational, retrospective study suggested that vasectomy could be a risk factor for PPA in men. These results have yet to be replicated or demonstrated by prospective studies.

PPA is not considered a hereditary disease. However, relatives of a person with any form of frontotemporal lobar degeneration (FTLD), including PPA, are at slightly greater risk of developing PPA or another form of the condition. In a quarter of patients diagnosed with PPA, there is a family history of PPA or one of the other disorders in the FTLD spectrum of disorders. It has been found that genetic predisposition varies among the different PPA variants, with progressive nonfluent aphasia (PNFA) being more commonly familial in nature than semantic dementia (SD).

The most convincing genetic basis of PPA has been found to be a mutation in the GRN gene. Most patients with observed GRN mutations present clinical features of PNFA, but the phenotype can be atypical.

Diagnosis

Diagnostic criteria

The following diagnosis criteria were defined by Mesulam:

  • As opposed to having followed trauma to the brain, a patient must show an insidious onset and a gradual progression of aphasia, defined as a disorder of sentence and/or word usage, affecting the production and comprehension of speech.
  • The disorder in question must be the only determinant on functional impairment in the activities of the patient's daily living.
  • On the basis of diagnostic procedures, the disorder in question must be unequivocally attributed to a neurodegenerative process.

Whether or not PPA and other aphasias are the only source of cognitive impairment in a patient is often difficult to assess because: 1) as with other neurologically degenerative diseases, such as Alzheimer's disease, there are currently no reliable non-invasive diagnostic tests for aphasias, and thus neuropsychological assessments are the only tool physicians have for diagnosing patients; and 2) aphasias often affect other, non-language portions of these neuropsychological tests, such as those specific for memory.

Classification

In 2011, the classification of primary progressive aphasia was updated to include three clinical variants. Patients must first be diagnosed with PPA, and then divided into variants based on speech production features, repetition, single- word and syntax comprehension, confrontation naming, semantic knowledge, and reading/spelling. In the classical Mesulam criteria for primary progressive aphasia, there are two variants: a non-fluent type PNFA and a fluent type SD.

A third variant of primary progressive aphasia, LPA was then added, and is an atypical form of Alzheimer's disease. For PNFA, the core criteria for diagnosis include agrammatism and slow and labored speech. Inconsistent speech sound errors are also very common, including distortions, deletions, and insertions. In terms of comprehension, there are deficits in syntax and sentence comprehension due to grammatical complexity, but single- word and object comprehension is relatively maintained.

The second variant, SD, presents with deficits in single-word and object comprehension. Naming impairments can be severe, specially for low-frequency objects, and can eventually lead to a more widespread semantic memory deficiency over time. The ability to read and write can also be impaired if there are irregularities between pronunciation and spelling. However, repetition and motor speech is relatively preserved.

The logopenic variant involves impairments in word retrieval, sentence repetition, and phonological paraphasias, comparable to conduction aphasia. Compared to the semantic variant, single word comprehension and naming is spared, however, sentence comprehension presents difficulty because of length and grammatical complexity. Speech will include incomplete words, hesitations preceding content words, and repetition. However, these PPA subtypes differ from similar aphasias, as these subtypes do not occur acutely following trauma to the brain, such as following a stroke, due to differing functional and structural neuroanatomical patterns of involvement and the progressive nature of the disease.

Unlike those affected by Alzheimer's, people with PPA are generally able to maintain the ability to care for themselves, remain employed, and pursue interests and hobbies. Moreover, in diseases such as Alzheimer's disease, Pick's disease, and Creutzfeldt–Jakob disease, progressive deterioration of comprehension and production of language is just one of the many possible types of mental deterioration, such as the progressive decline of memory, motor skills, reasoning, awareness, and visuospatial skills.

Treatment

Due to the progressive, continuous nature of the disease, improvement over time seldom occurs in patients with PPA as it often does in patients with aphasias caused by trauma to the brain.

In terms of medical approaches to treating PPA, there are currently no drugs specifically used for patients with PPA, nor are there any specifically designed interventions for PPA. A large reason for this is the limited research that has been done on this disease. However, in some cases, patients with PPA are prescribed the same drugs Alzheimer's patients are normally prescribed.

The primary approach to treating PPA has been with behavioral treatment, with the hope that these methods can provide new ways for patients to communicate in order to compensate for their deteriorated abilities. Speech therapy can assist an individual with strategies to overcome difficulties. There are three very broad categories of therapy interventions for aphasia: restorative therapy approaches, compensatory therapy approaches, and social therapy approaches. Examples include word retrieval therapy and script training, communication partner training and group therapy.

Rapid and sustained improvement in speech and dementia in a patient with primary progressive aphasia utilizing off-label perispinal etanercept, an anti-TNF treatment strategy also used for Alzheimer's, has been reported. A video depicting the patient's improvement was published in conjunction with the print article. These findings have not been independently replicated and remain controversial.

History

M. Marsel Mesulam coined the term primary progressive aphasia.

Motor neuron diseases

From Wikipedia, the free encyclopedia
https://en.wikipedia.org/wiki/Motor_neuron_diseases
 
Motor neuron disease
spinal diagram

Motor neuron diseases or motor neurone diseases (MNDs) are a group of rare neurodegenerative disorders that selectively affect motor neurons, the cells which control voluntary muscles of the body. They include amyotrophic lateral sclerosis (ALS), progressive bulbar palsy (PBP), pseudobulbar palsy, progressive muscular atrophy (PMA), primary lateral sclerosis (PLS), spinal muscular atrophy (SMA) and monomelic amyotrophy (MMA), as well as some rarer variants resembling ALS.

Motor neuron diseases affect both children and adults. While each motor neuron disease affects patients differently, they all cause movement-related symptoms, mainly muscle weakness. Most of these diseases seem to occur randomly without known causes, but some forms are inherited. Studies into these inherited forms have led to discoveries of various genes (e.g. SOD1) that are thought to be important in understanding how the disease occurs.

Symptoms of motor neuron diseases can be first seen at birth or can come on slowly later in life. Most of these diseases worsen over time; while some, such as ALS, shorten one's life expectancy, others do not. Currently, there are no approved treatments for the majority of motor neuron disorders, and care is mostly symptomatic.

Signs and symptoms

A man with amyotrophic lateral sclerosis (ALS). (A) He needs assistance to stand. (B) Advanced atrophy of the tongue. (C) There is upper limb and truncal muscle atrophy with a positive Babinski sign. (D) Advanced thenar muscle atrophy.

Signs and symptoms depend on the specific disease, but motor neuron diseases typically manifest as a group of movement-related symptoms. They come on slowly, and worsen over the course of more than three months. Various patterns of muscle weakness are seen, and muscle cramps and spasms may occur. One can have difficulty breathing with climbing stairs (exertion), difficulty breathing when lying down (orthopnea), or even respiratory failure if breathing muscles become involved. Bulbar symptoms, including difficulty speaking (dysarthria), difficulty swallowing (dysphagia), and excessive saliva production (sialorrhea), can also occur. Sensation, or the ability to feel, is typically not affected. Emotional disturbance (e.g. pseudobulbar affect) and cognitive and behavioural changes (e.g. problems in word fluency, decision-making, and memory) are also seen. There can be lower motor neuron findings (e.g. muscle wasting, muscle twitching), upper motor neuron findings (e.g. brisk reflexes, Babinski reflex, Hoffman's reflex, increased muscle tone), or both.

Motor neuron diseases are seen both in children and adults. Those that affect children tend to be inherited or familial, and their symptoms are either present at birth or appear before learning to walk. Those that affect adults tend to appear after age 40. The clinical course depends on the specific disease, but most progress or worsen over the course of months. Some are fatal (e.g. ALS), while others are not (e.g. PLS).

Patterns of weakness

Various patterns of muscle weakness occur in different motor neuron diseases. Weakness can be symmetric or asymmetric, and it can occur in body parts that are distal, proximal, or both. According to Statland et al., there are three main weakness patterns that are seen in motor neuron diseases, which are:

  1. Asymmetric distal weakness without sensory loss (e.g. ALS, PLS, PMA, MMA)
  2. Symmetric weakness without sensory loss (e.g. PMA, PLS)
  3. Symmetric focal midline proximal weakness (neck, trunk, bulbar involvement; e.g. ALS, PBP, PLS)

Lower and upper motor neuron findings

Motor neuron diseases are on a spectrum in terms of upper and lower motor neuron involvement. Some have just lower or upper motor neuron findings, while others have a mix of both. Lower motor neuron (LMN) findings include muscle atrophy and fasciculations, and upper motor neuron (UMN) findings include hyperreflexia, spasticity, muscle spasm, and abnormal reflexes.

Pure upper motor neuron diseases, or those with just UMN findings, include PLS.

Pure lower motor neuron diseases, or those with just LMN findings, include PMA.

Motor neuron diseases with both UMN and LMN findings include both familial and sporadic ALS.

Causes

Most cases are sporadic and their causes are usually not known. It is thought that environmental, toxic, viral, or genetic factors may be involved.

DNA damage

TAR DNA-binding protein 43 (TDP-43), is a critical component of the non-homologous end joining (NHEJ) enzymatic pathway that repairs DNA double-strand breaks in pluripotent stem cell-derived motor neurons. TDP-43 is rapidly recruited to double-strand breaks where it acts as a scaffold for the recruitment of the XRCC4-DNA ligase protein complex that then acts to repair double-strand breaks. About 95% of ALS patients have abnormalities in the nucleus-cytoplasmic localization in spinal motor neurons of TDP43. In TDP-43 depleted human neural stem cell-derived motor neurons, as well as in sporadic ALS patients' spinal cord specimens there is significant double-strand break accumulation and reduced levels of NHEJ.

Associated risk factors

In adults, men are more commonly affected than women.

Diagnosis

Differential diagnosis can be challenging due to the number of overlapping symptoms, shared between several motor neuron diseases. Frequently, the diagnosis is based on clinical findings (i.e. LMN vs. UMN signs and symptoms, patterns of weakness), family history of MND, and a variation of tests, many of which are used to rule out disease mimics, which can manifest with identical symptoms.

Classification

Corticospinal tract. Upper motor neurons originating in the primary motor cortex synapse to either lower motor neurons in the anterior horn of the central gray matter of the spinal cord (insert) or brainstem motor neurons (not shown). Motor neuron disease can affect either upper motor neurons (UMNs) or lower motor neurons (LMNs).

Motor neuron disease describes a collection of clinical disorders, characterized by progressive muscle weakness and the degeneration of the motor neuron on electrophysiological testing. The term "motor neuron disease" has varying meanings in different countries. Similarly, the literature inconsistently classifies which degenerative motor neuron disorders can be included under the umbrella term "motor neuron disease". The four main types of MND are marked (*) in the table below.

All types of MND can be differentiated by two defining characteristics:

  1. Is the disease sporadic or inherited?
  2. Is there involvement of the upper motor neurons (UMN), the lower motor neurons (LMN), or both?

Sporadic or acquired MNDs occur in patients with no family history of degenerative motor neuron disease. Inherited or genetic MNDs adhere to one of the following inheritance patterns: autosomal dominant, autosomal recessive, or X-linked. Some disorders, like ALS, can occur sporadically (85%) or can have a genetic cause (15%) with the same clinical symptoms and progression of disease.

UMNs are motor neurons that project from the cortex down to the brainstem or spinal cord. LMNs originate in the anterior horns of the spinal cord and synapse on peripheral muscles. Both motor neurons are necessary for the strong contraction of a muscle, but damage to an UMN can be distinguished from damage to a LMN by physical exam.

Type UMN degeneration LMN degeneration
Sporadic MNDs
Sporadic amyotrophic lateral sclerosis (ALS)* Yes Yes
Primary lateral sclerosis (PLS)* Yes No
Progressive muscular atrophy (PMA)* No Yes
Progressive bulbar palsy (PBP)* Yes Yes, bulbar region
Pseudobulbar palsy Yes, bulbar region No
Monomelic amyotrophy (MMA) No Yes
Inherited MNDs
Familial amyotrophic lateral sclerosis (ALS)* Yes Yes

Tests

  • Cerebrospinal fluid (CSF) tests: Analysis of the fluid from around the brain and spinal cord could reveal signs of an infection or inflammation.
  • Magnetic resonance imaging (MRI): An MRI of the brain and spinal cord is recommended in patients with UMN signs and symptoms to explore other causes, such as a tumor, inflammation, or lack of blood supply (stroke).
  • Electromyogram (EMG) & nerve conduction study (NCS): The EMG, which evaluates muscle function, and NCS, which evaluates nerve function, are performed together in patients with LMN signs.
  • For patients with MND affecting the LMNs, the EMG will show evidence of: (1) acute denervation, which is ongoing as motor neurons degenerate, and (2) chronic denervation and reinnervation of the muscle, as the remaining motor neurons attempt to fill in for lost motor neurons.
  • By contrast, the NCS in these patients is usually normal. It can show a low compound muscle action potential (CMAP), which results from the loss of motor neurons, but the sensory neurons should remain unaffected.
  • Tissue biopsy: Taking a small sample of a muscle or nerve may be necessary if the EMG/NCS is not specific enough to rule out other causes of progressive muscle weakness, but it is rarely used.

Treatment

There are no known curative treatments for the majority of motor neuron disorders. Physiotherapy helps maintain movement and function when someone is affected by disability, injury or illness. This is achieved through movement and exercise, manual therapy, education and advice. Although physiotherapy can’t reverse the effects of MND, or Kennedy’s disease, it can help maintain range of movement and comfort for as long as possible.

Prognosis

The table below lists life expectancy for patients who are diagnosed with MND.

Type Median survival time
from start of symptoms
Amyotrophic lateral sclerosis (ALS) 2–5 years
Primary lateral sclerosis (PLS) 8–10 years
Progressive muscular atrophy (PMA) 2–4 years
Progressive bulbar palsy (PBP) 6 months – 3 years
Pseudobulbar palsy No change in survival

Terminology

In the United States and Canada, the term motor neuron disease usually refers to the group of disorders while amyotrophic lateral sclerosis is frequently called Lou Gehrig's disease. In the United Kingdom and Australia, the term motor neuron(e) disease is used for amyotrophic lateral sclerosis, although is not uncommon to refer to the entire group.

While MND refers to a specific subset of similar diseases, there are numerous other diseases of motor neurons that are referred to collectively as "motor neuron disorders", for instance the diseases belonging to the spinal muscular atrophies group. However, they are not classified as "motor neuron diseases" by the 11th edition of the International Statistical Classification of Diseases and Related Health Problems (ICD-11), which is the definition followed in this article.

Epigenetics of neurodegenerative diseases

Para-sagittal MRI of the head in a patient with benign familial macrocephaly

Neurodegenerative diseases are a heterogeneous group of complex disorders linked by the degeneration of neurons in either the peripheral nervous system or the central nervous system. Their underlying causes are extremely variable and complicated by various genetic and/or environmental factors. These diseases cause progressive deterioration of the neuron resulting in decreased signal transduction and in some cases even neuronal death. Peripheral nervous system diseases may be further categorized by the type of nerve cell (motor, sensory, or both) affected by the disorder. Effective treatment of these diseases is often prevented by lack of understanding of the underlying molecular and genetic pathology. Epigenetic therapy is being investigated as a method of correcting the expression levels of misregulated genes in neurodegenerative diseases.

Neurodengenerative diseases of motor neurons can cause degeneration of motor neurons involved in voluntary muscle control such as muscle contraction and relaxation. This article will cover the epigenetics and treatment of amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy (SMA). See the Motor Neuron Fact Sheet for details regarding other motor neuron diseases. Neurodegenerative diseases of the central nervous system can affect the brain and spinal cord. This article will cover the epigenetics and treatment of Alzheimer's disease (AD), Huntington's disease (HD), and Parkinson's disease (PD). These diseases are characterized by chronic and progressive neuronal dysfunction, sometimes leading to behavioral abnormalities (as with PD), and, ultimately, neuronal death, resulting in dementia.

Neurodegenerative diseases of sensory neurons can cause degeneration of sensory neurons involved in transmitting sensory information such as hearing and seeing. The main group of sensory neuron diseases are hereditary sensory and autonomic neuropathies (HSAN) such as HSAN I, HSAN II, and Charcot-Marie-Tooth Type 2B (CMT2B). Though some sensory neuron diseases are recognized as neurodegenerative, epigenetic factors have not yet been clarified in the molecular pathology.

Epigenetics and epigenetic drugs

The nucleus of a human cell showing the location of euchromatin

The term epigenetics refers to three levels of gene regulation: (1) DNA methylation, (2) histone modifications, and (3) non-coding RNA (ncRNA) function. Briefly, histone-mediated transcriptional control occurs by the wrapping of DNA around a histone core. This DNA-histone structure is called a nucleosome; the more tightly the DNA is bound by the nucleosome, and the more tightly a string of nucleosomes are compressed among each other, the greater the repressive effect on transcription of genes in the DNA sequences near or wrapped around the histones, and vice versa (i.e. looser DNA binding and relaxed compaction leads to a comparatively derepressed state, resulting in facultative heterochromatin or, even further derepressed, euchromatin). At its most repressive state, involving many folds into itself and other scaffolding proteins, DNA-histone structures form constitutive heterochromatin. This chromatin structure is mediated by these three levels of gene regulation. The most relevant epigenetic modifications to treatment of neurodegenerative diseases are DNA methylation and histone protein modifications via methylation or acetylation.

  • In mammals, methylation occurs on DNA and histone proteins. DNA methylation occurs on the cytosine of CpG dinucleotides in the genomic sequence, and protein methylation occurs on the amino termini of the core histone proteins – most commonly on lysine residues. CpG refers to a dinucleotide composed of a cytosine deoxynucleotide immediately adjacent to a guanine deoxynucleotide. A cluster of CpG dinucleotides clustered together is called a CpG island, and in mammals, these CpG islands are one of the major classes of gene promoters, onto or around which transcription factors may bind and transcription can begin. Methylation of CpG dinucleotides and/or islands within gene promoters is associated with transcriptional repression via interference of transcription factor binding and recruitment of transcriptional repressors with methyl binding domains. Methylation of intragenic regions is associated with increased transcription. The group of enzymes responsible for addition of methyl groups to DNA are called DNA methyltransferases (DNMTs). The enzyme responsible for removal of methyl group are called DNA demethylases. The effects of histone methylation are residue dependent (e.g. which amino acid on which histone tail is methylated) therefore the resulting transcriptional activity and chromatin regulation can vary. The enzymes responsible for the addition of methyl groups to histones are called histone methyltransferases (HMTs). The enzymes responsible for the removal of methyl groups from histone are histone demethylases.
  • Acetylation occurs on the lysine residues found at the amino N-terminal of histone tails. Histone acetylation is most commonly associated with relaxed chromatin, transcriptional derepression, and thus actively transcribed genes. Histone acetyltransferases (HATs) are enzymes responsible for the addition of acetyl groups, and histone deacetylases (HDACs) are enzymes responsible for the removal of acetyl groups. Therefore, the addition or removal of an acetyl group to a histone can alter the expression of nearby genes. The majority of drugs being investigated are inhibitors of proteins that remove acetyl from histones or histone deacetylases (HDACs).
  • Briefly, ncRNAs are involved in signaling cascades with epigenetic marking enzymes such as HMTs, and/or with RNA interference(RNAi) machinery. Frequently these signaling cascades result in epigenetic repression (for one example, see X-chromosome inactivation), though there are some cases in which the opposite is true. For example, BACE1-AS ncRNA expression is upregulated in Alzheimer's disease patients and results in increased stability of BACE1 – the mRNA precursor to an enzyme involved in Alzheimer's disease.

Epigenetic drugs target the proteins responsible for modifications on DNA or histone. Current epigenetic drugs include but are not limited to: HDAC inhibitors (HDACi), HAT modulators, DNA methyltransferase inhibitors, and histone demethylase inhibitors. The majority of epigenetic drugs tested for use against neurodegenerative diseases are HDAC inhibitors; however, some DNMT inhibitors have been tested as well. While the majority of epigenetic drug treatments have been conducted in mouse models, some experiments have been performed on human cells as well as in human drug trials (see table below). There are inherent risks in using epigenetic drugs as therapies for neurodegenerative disorders as some epigenetic drugs (e.g. HDACis such as sodium butyrate) are non-specific in their targets, which leaves potential for off-target epigenetic marks causing unwanted epigenetic modifications.

Epigenetic Drugs
Function Classification Drug ALS AD HD PD SMA
DNA-methylation inhibitor chemical analogue of cytidine Azathioprine
M (ny)
M (ny)
HDAC inhibitor (small molecule) benzamide M344



MC 19
fatty acid Sodium butyrate
M (y) 5, 6, 7 ; H (ny) D (y) 11 M (y) 14; R (y) 15;

D (y) 16, 18; H (ny)

MC 20; M (y) 21; H (ny)
Sodium phenylbutyrate M (y) 1; H (y) 2 M (y) 8; H (ny) H (ys) 12
MC 20; H (v) 21, 22
Valproic acid M (y) 2; H (ni) 3 M (y) 9; H (ny) D (y) 11 R (y) 17; H (ny) MC 23, 24; M (y) 25;

H (v) 26, 27, 28, 29

hydroxamic acid Trichostatin A M (y) 4; H (ny) M (y) 10; H (ny) MC 13; D (y) 11
M (y) 30, 31; H (ny)
Vorinostat (suberanilohydroxamic acid-SAHA)
M (y) 9; H (ny) MC 13; D (y) 11 D (y) 18 MC 32, 33; M (y) 34; H (ny)
Disease: amyotrophic lateral sclerosis (ALS), Alzheimer's disease (AD), Huntington's disease (HD), spinal muscular atrophy (SMA), Parkinson's disease (PD)
Tested on: mouse (M), only mouse cells (MC), human (H), Drosophila (D), rat (R)
Successful treatment: yes (y), yes but with side effects (ys), not yet (ny), variable (v), no improvement (ni)

Neurodegenerative diseases of motor neurons

Amyotrophic lateral sclerosis (ALS)

Amyotrophic lateral sclerosis (ALS), also known as Lou Gehrig's disease, is a motor neuron disease that involves neurogeneration. All skeletal muscles in the body are controlled by motor neurons that communicate signals from the brain to the muscle through a neuromuscular junction. When the motor neurons degenerate, the muscles no longer receive signals from the brain and begin to waste away. ALS is characterized by stiff muscles, muscle twitching, and progressive muscle weakness from muscle wasting. The parts of the body affected by early symptoms of ALS depend on which motor neurons in the body are damaged first, usually the limbs. As the disease progresses most patients are unable to walk or use their arms and eventually develop difficulty speaking, swallowing and breathing. Most patients retain cognitive function and sensory neurons are generally unaffected. Patients are often diagnosed after the age of 40 and the median survival time from onset to death is around 3–4 years. In the final stages, patients can lose voluntary control of eye muscles and often die of respiratory failure or pneumonia as a result of degeneration of the motor neurons and muscles required for breathing. Currently there is no cure for ALS, only treatments that may prolong life.

Genetics and underlying causes

To date, multiple genes and proteins have been implicated in ALS. One of the common themes between many of these genes and their causative mutations is the presence of protein aggregates in motor neurons. Other common molecular features in ALS patients are altered RNA metabolism and general histone hypoacetylation.

Chromosome 21
SOD1
The SOD1 gene on chromosome 21 that codes for the superoxide dismutase protein is associated with 2% of cases and is believed to be transmitted in an autosomal dominant manner. Many different mutations in SOD1 have been documented in ALS patients with varying degrees of progressiveness. SOD1 protein is responsible for destroying naturally occurring, but harmful superoxide radicals produced by the mitochondria. Most of the SOD1 mutations associated with ALS are gain-of-function mutations in which the protein retains its enzymatic activity, but aggregate in motor neurons causing toxicity. Normal SOD protein is also implicated in other cases of ALS due to potentially cellular stress. An ALS mouse model through gain-of-function mutations in SOD1 has been developed.
c9orf72
A gene called c9orf72 was found to have a hexanucleotide repeat in the non-coding region of the gene in association with ALS and ALS-FTD. These hexanucleotide repeats may be present in up 40% of familial ALS cases and 10% of sporadic cases. C9orf72 likely functions as a guanine exchange factor for a small GTPase, but this is likely not related to the underlying cause of ALS. The hexanucleotide repeats are likely causing cellular toxicity after they are spliced out of the c9orf72 mRNA transcripts and accumulate in the nuclei of affected cells.
UBQLN2
The UBQLN2 gene encodes the protein ubiquilin 2 which is responsible for controlling the degradation of ubiquitinated proteins in the cell. Mutations in UBQLN2 interfere with protein degradation resulting in neurodegeneration through abnormal protein aggregation. This form of ALS is X chromosome-linked and dominantly inherited and can also be associated with dementia.

Epigenetic treatment with HDAC inhibitors

ALS patients and mouse models show general histone hypoacetylation that can ultimately trigger apoptosis of cells. In experiments with mice, HDAC inhibitors counteract this hypoacetylation, reactivate aberrantly down-regulated genes, and counteract apoptosis initiation. Furthermore, HDAC inhibitors are known to prevent SOD1 protein aggregates in vitro.

Sodium phenylbutyrate
Sodium phenylbutyrate treatment in a SOD1 mouse model of ALS showed improved motor performance and coordination, decreased neural atrophy and neural loss, and increased weight gain. Release of pro-apoptotic factors was also abrogated as well as a general increase in histone acetylation. A human trial using phenylbuturate in ALS patients showed some increase in histone acetylation, but the study did not report whether ALS symptoms improved with treatment.
Valproic scid
Valproic acid in mice studies restored histone acetylation levels, increased levels of pro-survival factors, and mice showed improved motor performance. However, while the drug delayed the onset of ALS, it did not increase lifespan or prevent denervation. Human trials of valproic acid in ALS patients did not improve survival or slow progression.
Trichostatin A
Trichostatin A trials in mouse ALS models restored histone acetylation in spinal neurons, decreased axon demyelination, and increased survival of mice.

Spinal muscular atrophy (SMA)

Alpha motor neurons are derived from the basal plate (basal lamina).

Spinal muscular atrophy (SMA) is an autosomal recessive motor neuron disease caused by mutations in the SMN1 gene. Symptoms vary greatly with each subset of SMA and the stage of the disease. General symptoms include overall muscle weakness and poor muscle tone including extremities and respiratory muscles leading to difficulty walking, breathing, and feeding. Depending on the type of SMA, the disease can present itself from infancy through adulthood. As SMN protein generally promotes the survival of motor neurons, mutations in SMN1 results in slow degeneration motor neurons leading to progressive system-wide muscle wasting. Specifically, over time, decreased levels of SMN protein results in gradual death of the alpha motor neurons in the anterior horn of the spinal cord and brain. Muscles depend on connections to motor neurons and the central nervous system to stimulate muscle maintenance and therefore degeneration of motor neurons and subsequent denervation of muscles lead to loss of muscle control and muscle atrophy. The muscles of the lower extremities are often affected first followed by upper extremities and sometimes the muscles of respiration and mastication. In general, proximal muscle is always affected more than distal muscle.

Genetic cause

Spinal muscular atrophy is linked to genetic mutations in the SMN1 (Survival of Motor Neuron 1) gene. The SMN protein is widely expressed in neurons and serves many functions within neurons including spliceosome construction, mRNA axon transport, neurite outgrowth during development, and neuromuscular junction formation. The causal function loss in SMA is currently unknown.

SMN1 is located in a telomeric region of human chromosome 5 and also contains SMN2 in a centromeric region. SMN1 and SMN2 are nearly identical except for a single nucleotide change in SMN2 resulting in an alternative splicing site where intron 6 meets exon 8. This single base pair change leads to only 10–20% of SMN2 transcripts resulting in fully functional SMN protein and 80–90% of transcripts leading to a truncated protein that is rapidly degraded. Most SMA patients have 2 or more copies of the SMN2 gene with more copies resulting in a decrease in disease severity. Most SMA patients have either point mutations or a deletion in exon 7 often leading to a protein product similar to the truncated and degraded version of the SMN2 protein. In SMA patients this small amount of functional SMN2 protein product allows for some neurons to survive.

Epigenetic treatment through SMN2 gene activation

Although SMA is not caused by an epigenetic mechanism, therapeutic drugs that target epigenetic marks may provide SMA patients with some relief, halting or even reversing the progression of the disease. As SMA patients with higher copy numbers of the SMN2 gene have less severe symptoms, researchers predicted that epigenetic drugs that increased SMN2 mRNA expression would increase the amount of functional SMN protein in neurons leading to a reduction in SMA symptoms. Histone deacetylase (HDAC) inhibitors are the main compounds that have been tested to increase SMN2 mRNA expression. Inhibiting HDACs would allow for hyperacetylation of the SMN2 gene loci theoretically resulting in an increase in SMN2 expression. Many of these HDAC inhibitors (HDACi) are first tested in mouse models of SMA created through a variety of mutations in the mouse SMN1 gene. If the mice show improvement and the drug does not cause very many side effects or toxicity, the drug may be used in human clinical trials. Human trials with all of the below HDAC inhibitors are extremely variable and often impacted by the patient's exact SMA subtype.

Quisinostat (JNJ-26481585)
Quisinostat is effective at low doses resulting in some improved neuromuscular function in mouse model of SMA, but survival was not increased. No human trials have been conducted.
Sodium butyrate
Sodium butyrate was the first HDAC inhibitor tested in SMA mouse models. It prolonged SMA mouse life span by 35% and showed increased levels of SMN protein in spinal cord tissue. However, sodium butyrate has not been used in human trials to date.
Sodium phenylbutyrate
Sodium phenylbutyrate increases SMN2 full length mRNA transcripts in cell culture but drug application must be repeated in order to maintain results. Human trials show mixed results with one study showing increased SMA transcript levels in blood and improved motor function, but a larger trial showing no effects on disease progression or motor function.
Valproic acid
Valproic acid added to cells from SMA patients increased SMN2 mRNA and protein levels and that the drug directly activates SMN2 promoter. In a SMA mouse model, valproic acid was added to the drinking water and restored motor neuron density and increased motor neuron number over a period of 8 months. Human trials are extremely variable showing increased SMN2 levels and increased muscle strength in some trials and absolutely no effects in other trials.
M344
M344 is a benzamide that shows promising results in fibroblast cell culture and increases level of splicing factors known to modulate SMN2 transcripts, but the drug was determined toxic and research has not progressed to in vivo testing.
Trichostatin A
Trichostatin A treatment shows promising results in mice. In one study, Trichostatin A combined with extra nourishment in early onset mouse SMA models resulted in improved motor function and survival and delays progressive denervation of muscles. A second study in a SMA mouse model showed increased SMN2 transcripts with daily injections. No human trials have been conducted.
Vorinostat (SAHA)
Vorinostat is a second generation inhibitor that is fairly non-toxic and found to be effective in cell culture at low concentrations and increases histone acetylation at the SMN2 promoter. In a SMA mouse model, SAHA treatment resulted in weight gain, increased SMN2 transcripts levels in muscles and spinal cord, and motor neuron loss and denervation were halted. No human trials have been conducted.

Myasthenia gravis

Myasthenia gravis is an autoimmune disease affecting synapses at the neuromuscular junction, whereby antibodies produced primarily in the thymus gland by B-cells associate with postsynaptic nicotinic acetylcholine receptors (AChR), along with other NMJ post-synaptic receptors (MuSK-R and low-density lipoprotein receptor). These antibodies include acetylcholine receptor antibodies, MuSK antibodies, and low-density lipoprotein receptor related protein 4 antibodies (LRP4-Ab). Antibody binding to their respective receptors causes the destruction of those receptors, leading to a reduction in the number of postsynaptic acetylcholinergic receptors and a reduction in overall acetylcholine transport. Disease symptoms include muscular weakness that fatigues due to overuse, but improves with rest. Hallmark symptoms due to muscular weakness include ptosis, double vision, dysphagia, as well as aberrant speech.

Myasthenia gravis is a relatively rare disease, occurring in about 3–30 individuals per 100,000, but has been rising over the past couple decades. There exists two variations of myasthenia gravis with respect to age and gender demographics: early-onset myasthenia gravis, which has a higher incidence among females, and late-onset myasthenia gravis, which has a higher incidence among males.

Epigenetic factors

There has been extensive research on the genetic basis of myasthenia gravis, however evidence does not suggest that it is an inherited disease. There has also been extensive research on the epigenetic contribution to myasthenia gravis. DNA methylation and noncoding RNA, such as miRNA (micro RNA) and long noncoding RNA (lncRNA), are epigenetic factors that play a significant role in increasing the likelihood of acquiring myasthenia gravis. In addition, the thymus is a key organ in the immune response that is often negatively affected by abnormal miRNA expression and DNA methylation.

miRNA

Micro RNA (miRNA) are single-stranded non-coding RNAs that bind their target mRNAs. From there, they can regulate gene expression by inhibiting translation or degrading the mRNA strand, oftentimes in B-cells and T-cells of the immunological process. With respect to myasthenia gravis, abnormal miRNA function is associated with immunoregulatory pathogenesis, and each miRNA has its own unique downstream effects.

The thymus is an important endocrine organ implicated in myasthenia gravis. In normal, healthy development, the thymus shrinks in size over time. In those with thymus-associated myasthenia gravis there are correlations with thymomas in late-onset myasthenia gravis as well as thymic hyperplasia with germinal centers in early-onset myasthenia gravis, and each of these conditions can be attributed partly to irregular miRNA function. In late-onset myasthenia gravis subjects, it was shown that miRNA-12a-5p expression was increased in thymoma-associated myasthenia gravis. MiRNA-12a-5p inhibits expression of the gene FoxP3, a gene known to be associated with normal thymus development and whose alteration is attributed to thymomas. Additionally, an association between thymoma-associated myasthenia gravis and decreased miR-376a/miR-376c expression was found. Autoimmune regulation is known to be downregulated in thymoma-associated myasthenia gravis, and in thymus cells with downregulated autoimmune regulation there was simultaneous downregulation in miR-376a, miR-376c, and miRNA-12a-5p expression. In early-onset myasthenia gravis patients, 61 miRNA's were found to be either significantly downregulated or upregulated. The most downregulated miRNA was found to be miR-7-5p, whose target gene is CCL21. CCL21 is known to aberrantly recruit B-cells in the thymus of early-onset myasthenia gravis patients, and was found to be highly expressed in early-onset myasthenia gravis patients, potentially explaining the abnormally large amounts of B cells found in thymic hyperplasia.

Aside from miRNA's corresponding to altered thymus function, there are other several key miRNA's that are correlated with myasthenia gravis. MiR-15 cluster (miR-15a, miR-15b, and miR-15c) was shown to be associated with autoimmunity, in that its downregulation increased CXCL10 expression, a target gene involved in T-cell signaling. CXCL10 expression was also shown to be increased in the thymus of myasthenia gravis patients. Additionally, miR-146 was found to be upregulated in myasthenia gravis patients. In these patients with upregulated miR-146, there was a concurrent increase in proteins that correspond to a wide array of immune responses, specifically TLR4, CD40, and CD80.

DNA methylation

DNA methylation is the epigenetic process by which methyl groups are added to either adenine or cytosine bases, which results in the repression of that sequence when cytosine methylation occurs. DNA methylation was found to be a factor in increasing the likelihood of acquiring myasthenia gravis, albeit this topic has not been widely researched. Research in China has identified the gene CTLA-4 (cytotoxic T lymphocyte antigen-4) as being highly methylated in myasthenia gravis patients compared to control groups throughout the entire span of the disease. The CTLA-4 gene produces an antigen of the same name that is presented on killer T-cells and allows for the suppression of the immune response. Methylation of this gene represses production of the antigen CTLA-4—a pattern seen in a significant majority of myasthenia gravis patients—and can explain the elevated immune response seen in myasthenia gravis. Furthermore, myasthenia gravis patients with thymic abnormalities (approximately 10–20% of all myasthenia gravis patients) had even higher levels of CTLA-4 methylation than other myasthenia gravis patients. It is not extensively researched why certain genes are hypermethylated in these cases, but information on myasthenia gravis largely points to upregulation of the DNA methyltransferase genes DNMT1, DNMT3A, and DNMT3B in patients with myasthenia gravis.

In addition to CTLA-4 methylation, hypermethylation of the growth hormone secretagogue receptor gene was seen in patients with thymoma-associated late-onset myasthenia gravis. Growth hormone secretagogue receptor hypermethylation is detected in a wide variety of cancers, however only recently has been correlated with the development of thymoma-associated myasthenia gravis. Although it is seen in approximately 1/4 of thymoma-associated myasthenia gravis subjects, it is not a reliable biomarker for the disease, and its relevance to disease progression is not well known.

Long ncRNA

Long ncRNA (lncRNA) are a second type of non-coding RNA that are key post-transcriptional modifiers of protein-coding gene expression. These also play a significant role in myasthenia gravis. Their aberrant regulation can cause differential expression in downstream genes. For instance, the differential expression of lncRNA interferon gamma antisense RNA negatively regulates the expression of HLA-DRB and HLA-DOB, two genes implicated in the body's autoimmune response by differentiating endogenous and foreign proteins. As seen in myasthenia gravis patients with downregulated lethal (let)-7 lncRNA, it was also found that the level of let-7 lncRNA was negatively correlated with levels of interleukin (IL)-10, a gene responsible for inhibiting cytokine secretion/activation, antigen presentation, and macrophage activity, but also for exhibiting anti-tumor effects. Therefore, the negative correlation between let-7 lncRNA and IL-10 levels and its specific effects on myasthenia gravis development are ambiguous.

In addition to aberrant regulation of downstream target genes, lncRNA also affect expression by acting as competing endogenous RNA (ceRNA). The competing endogenous RNA theory states that transcripts sharing common miRNA binding sites can compete to bind these identical miRNAs, and in this way lncRNAs can bind miRNAs, regulating their downstream binding activity and affecting their function. In the case of myasthenia gravis, the lncRNA small nucleolar RNA host gene (SNHG) 16 regulates the expression of IL-10 by adsorbing let-7c-5p, a miRNA that commonly associates with IL-10, as a competing endogenous RNA.

Epigenetic treatments

Diagnosis of myasthenia gravis, individual prognosis, and the level of treatment needed can be determined by detecting the amounts of circulating miRNA.

Immunosuppressants represent a large category in clinical studies for myasthenia gravis treatment, as they reduce the hyperactive immunological response in T-cells presenting acetylcholine receptor-binding antigens. By overexpressing miR-146, studies show that patients with early-onset myasthenia gravis can have antigen-specific suppressive effects. This has implications in reducing the immune response of myasthenia gravis patients and improving prognosis. Likewise, miR-155 is proven to be correlated with myasthenia gravis-associated thymic inflammation and immune response. Research is being conducted whereas repression of miR-155 could reduce these aberrant effects. Lastly, the miRNA's miR-150-5p and miR-21-5p are consistently shown to be elevated in myasthenia gravis patients with acetylcholinergic receptor antibodies (in contrast to the MuSK-binding variant of myasthenia gravis), therefore these two miRNA's are reliable biomarkers in detecting this variant of myasthenia gravis.

Neurodegenerative diseases of the central nervous system

Alzheimer's disease (AD)

Alzheimer's disease (AD) is the most prevalent form of dementia among the elderly. The disease is characterized behaviorally by chronic and progressive decline in cognitive function, beginning with short-term memory loss, and neurologically by buildup of misfolded tau protein and associated neurofibrillary tangles, and by amyloid-beta senile plaques amyloid-beta senile plaques. Several genetic factors have been identified as contributing to AD, including mutations to the amyloid precursor protein (APP) and presenilins 1 and 2 genes, and familial inheritance of apolipoprotein E allele epsilon 4. In addition to these common factors, there are a number of other genes that have shown altered expression in Alzheimer's disease, some of which are associated with epigenetic factors.

Epigenetic factors

Brain-derived neurotrophic factor
ncRNA
ncRNA that is encoded antisense from an intron within the beta-amyloid cleaving enzyme gene, BACE1, is involved in AD. This ncRNA, BACE1-AS (for antisense), which overlaps exon 6 of BACE1, is involved in increasing the stability of the BACE1 mRNA transcript. As that gene's name suggests, BACE1 is an enzymatic protein that cleaves the amyloid precursor protein into the insoluble amyloid beta form, which then aggregates into senile plaques. With increased stability of BACE1 mRNA resulting from BACE1-AS, more BACE1 mRNA is available for translation into BACE1 protein.
miRNA
factors have not consistently been shown to play a role in progression of AD. miRNAs are involved in post-transcriptional gene silencing via inhibiting translation or involvement in RNAi pathways. Some studies have shown upregulation of miRNA-146a, which differentially regulates neuroimmune-related Interleukin-1R associated kinases IRAK1 and IRAK2 expression, in human AD brain, while other studies have shown upregulation or downregulation of miRNA-9 in brain.
DNA methylation
In Alzheimer's disease cases, global DNA hypomethylation and gene-specific hypermethylation has been observed, though findings have varied between studies, especially in studies of human brains. Hypothetically, global hypomethylation should be associated with global increases in transcription, since CpG islands are most prevalent in gene promoters; gene-specific hypermethylation, however, would indicate that these hypermethylated genes are repressed by the methylation marks. Generally, repressive hypermethylation of genes related to learning and memory has been observed in conjunction with derepressive hypomethylation of neuroinflammatory genes and genes related to pathological expression of Alzheimer's disease. Reduced methylation has been found in the long-term memory-associated temporal neocortex neurons in monozygotic twins with Alzheimer's disease compared to the healthy twin. Global hypomethylation of CpG dinucleotides has also been observed in hippocampus and in entorhinal cortex layer II of human AD patients, both of which are susceptible to AD pathology. These results, found by probing with immunoassays, have been challenged by studies that interrogate DNA sequence by bisulfite sequencing, a CpG transformation technique which is sensitive to CpG methylation status, in which global hypomethylation has been observed.
COX-2
At the individual gene level, hypomethylation and thus derepression of COX-2 occurs, inhibition of which reduces inflammation and pain, and hypermethylation of BDNF, a neurotrophic factor important for long-term memory.[85] Expression of CREB, an activity-dependent transcription factor involved in regulating BDNF among many other genes, has also been shown to be hypermethylated, and thus repressed, in AD brains, further reducing BDNF transcription. Furthermore, synaptophysin (SYP), the major synaptic vesicle protein-encoding gene, has been shown to be hypermethylated and thus repressed, and transcription factor NF-κB, which is involved in immune signaling, has been shown to be hypomethylated and thus derepressed. Taken together, these results have elucidated a role for dysregulation of genes involved in learning and memory and synaptic transmission, as well as with immune response.
Hypomethylation
has been observed in promoters of presenilin 1, GSK3beta, which phosphorylates tau protein, and BACE1, an enzyme that cleaves APP into the amyloid-beta form, which in turn aggregates into insoluble senile plaques. Repressive hypermethylation caused by amyloid-beta has been observed at the promoter of NEP, the gene for neprilysin, which is the major amyloid-beta clearing enzyme in the brain. This repression of NEP could result in a feed-forward buildup of senile plaques; combined with the observed increase in AD brains of BACE1-AS and corresponding increases in BACE1 protein and amyloid beta, multiple levels of epigenetic regulation may be involved in controlling amyloid-beta formation, clearance or aggregation, and senile plaque deposition. There may be some effect of age in levels of DNA methylation at specific gene promoters, as one study found greater levels of methylation at APP promoters in AD patients up to 70 years old, but lower levels of methylation in patients greater than 70 years old. Studies on differential DNA methylation in human AD brains remain largely inconclusive possibly owing to the high degree of variability between individuals and to the numerous combinations of factors that may lead to AD.
Histone marks
Acetylation of lysine residues on histone tails is typically associated with transcriptional activation, whereas deacetylation is associated with transcriptional repression. There are few studies investigating specific histone marks in AD. These studies have elucidated a decrease in acetylation of lysines 18 and 23 on N-terminal tails of histone 3 (H3K18 and H3K23, respectively) and increases in HDAC2 in AD brains - both marks related to transcriptional repression. Age-related cognitive decline has been associated with deregulation of H4K12 acetylation, a cognitive effect that was restored in mice by induction of this mark.

Treatments

Treatment for prevention or management of Alzheimer's disease has proven troublesome since the disease is chronic and progressive, and many epigenetic drugs act globally and not in a gene-specific manner. As with other potential treatments to prevent or ameliorate symptoms of AD, these therapies do not work to cure, but only ameliorate symptoms of the disease temporarily, underscoring the chronic, progressive nature of AD, and the variability of methylation in AD brains.

Folate and other B vitamins
B vitamins are involved in the metabolic pathway that leads to SAM production. SAM is the donor of the methyl group utilized by DNA methyltransferases (DNMTs) to methylate CpGs. Using animal models, Fuso et al. have demonstrated restoration of methylation at previously hypomethylated promoters of presenilin 1, BACE1 and APP – a hypothetically stable epigenetic modification that should repress those genes and slow the progression of AD. Dietary SAM supplementation has also been shown to reduce oxidative stress and delay buildup of neurological hallmarks of AD such as amyloid beta and phosphorylated tau protein in transgenic AD mice.
AZA
Khan and colleagues have demonstrated a potential role for neuroglobinin attenuating amyloid-related neurotoxicity. 5-aza-2' deoxycitidine (AZA, or decitabine), a DNMT inhibitor, has shown some evidence for regulating neuroglobin expression, though this finding has not been tested in AD models.
Histone-directed treatments
Though studies of histone marks in AD brains are few in number, several studies have looked at the effects of HDACis in treatment of Alzheimer's disease. Class I and II HDAC inhibitors such as trichostatin A, vorinostat, and sodium butyrate, and Class III HDACis, such as nicotinamide, have been effective at treating symptoms in animal models of AD. While promising as a therapeutic in animal models, studies on the long-term efficacy of HDACis and human trials have yet to be conducted.
Sodium butyrate
Sodium butyrate is a class I and II HDACi and has been shown to recover learning and memory after 4 weeks, decrease phosphorylated tau protein, and restore dendritic spine density in the hippocampus of AD transgenic mice. Histone acetylation resulting from diffuse sodium butyrate application is especially prevalent in the hippocampus, and genes involved in learning and memory showed increased acetylation in AD mice treated with this drug.
Trichostatin A
Trichostatin A is also a class I and II HDACi that rescues fear learning in a fear conditioning paradigm in transgenic AD mice to wild type levels via acetylation on histone 4 lysine tails.
Vorinostat
Vorinostat is a class I and II HDACi that has been shown to be especially effective at inhibiting HDAC2 and restoring memory functions in non-AD models of learning deficits. One study showed vorinostat is effective at reversing contextual memory deficits in transgenic AD mice.

Huntington's (HD)

This is a transverse section of the striatum from a structural MR image. The striatum includes the caudate nucleus and putamen. The image also includes the globus pallidus, which is sometimes included when using the term corpus striatum.
This is a transverse section of the striatum from a structural MR image. The striatum, in red, includes the caudate nucleus (top), the putamen (right), and, when including the term 'corpus' striatum, the globus pallidus (lower left).

Huntington's disease (HD) is an inherited disorder that causes progressive degeneration of neurons within the cerebral cortex and striatum of the brain resulting in loss of motor functions (involuntary muscle contractions), decline in cognitive ability (eventually resulting in dementia), and changes in behavior.

Genetics and underlying causes

Huntington's is caused by an autosomal dominant mutation expanding the number of glutamine codon repeats (CAG) within the Huntingtin gene (Htt). The Htt gene encodes for the huntingtin protein which plays a role in normal development but its exact function remains unknown. The length of this CAG repeat correlates with the age-of-onset of the disease. The average person without Huntington's has less than 36 CAG repeats present within the Htt gene. When this repeat length exceeds 36, the onset of neuronal degradation and the physical symptoms of Huntington's can range from as early as 5 years of age (CAG repeat > 70) to as late as 80 years of age (CAG repeat < 39).

This CAG expansion results in mRNA downregulation of specific genes, decreased histone acetylation, and increased histone methylation. The exact mechanism of how this repeat causes gene dysregulation is unknown, but epigenome modification may play a role. For early-onset Huntington's (ages 5–15), both transgenic mice and mouse striatal cell lines show brain specific histone H3 hypoacetylation and decreased histone association at specific downregulated genes within the striatum (namely Bdnf, Cnr1, Drd2 – dopamine 2 receptor, and Penk1 – preproenkephalin). For both late- and early-onset Huntington's, the H3 and H4 core histones associated with these downregulated genes in Htt mutants have hypoacetylation (decreased acetylation) compared to wild-type Htt. This hypoacetylation is sufficient to cause tighter chromatin packing and mRNA downregulation.

Along with H3 hypoacetylation, both human patients and mice with the mutant Htt have increased levels of histone H3 lysine 9 trimethylation. This increase in H3-K9 trimethylation is linked to an increased expression of the methyltransferase ESET/SETDB1 (ERG-associated protein with SET domain (ESET)), which targets and trimethylates H3-K9 residues. It is proposed that this hypermethylation may account for the onset of specific gene repression in Htt mutants.

HDAC inhibitors

Huntington patients and both mouse and Drosophila models show histone H3 and H4 hypoacetylation. There are currently no treatments for the disease but numerous HDAC inhibitors have been tested and shown to reverse the certain symptoms caused by the Htt mutation.

  • Sodium butyrate
Sodium butyrate treatment slowed neuronal degeneration in Drosophila models. Sodium butyrate treatment also increased histone H3 acetylation and normalized mRNA levels for mutant Htt downregulated genes.
  • Valproic acid
Valproic acid treatment increased mutant Htt H3 and H4 acetylation levels comparable to wild-type Htt in Drosophila models.
  • Sodium phenylbutyrate
Sodium phenylbutyrate phase II human trials with 12 to 15 g/day showed restored mRNA levels of Htt mutant repressed genes but also had adverse side effects such as nausea, headaches, and gain instability. Phenylbutyrate has also been shown to increase histone acetylation, decrease histone methylation, increase survival rate, and decrease the rate of neuronal degradation in Htt mutant mouse models.
  • Trichostatin A
Trichostatin A (TSA) treatment increased mutant Htt H3 and H4 acetylation levels comparable to wild-type Htt in Drosophila models. TSA treatment has also been shown to increase alpha-tubulin lysine 40 acetylation in mouse striatal cells and increase intracellular transport of BDNF, a brain-derived neurotrophic factor that function in nerve growth and maintenance within the brain.
  • Vorinostat (SAHA)
Vorinostat treatment slowed photoreceptor degeneration and improved longevity of adult Htt mutant Drosophila. Like TSA, SAHA treatment increased alpha-tubulin lysine 40 acetylation in mouse striatal cells and also increased intracellular transport of BDNF.

Parkinson's disease (PD)

Lewy bodies

Parkinson's disease (PD) is characterized by progressive degeneration of dopaminergic neurons in the substantia nigra by causes unknown. Several genes and environmental factors (e.g. pesticide exposure) may play a role in onset of PD. Hallmarks include mutations to the alpha-synuclein gene, SNCA, as well as PARK2, PINK1, UCHL1, DJ1, and LRRK2 genes, and fibrillar accumulation of Lewy bodies from misfolded alpha-synuclein. Symptoms are most noticeably manifested in disorders of movement, including shaking, rigidity, deficits in making controlled movements, and slow and difficult walking. The late stages of the disease result in dementia and depression. Levodopa and dopaminergic therapy may ameliorate symptoms, though there is no treatment to halt progression of the disease.

Epigenetic factors

ncRNA
Reductions of miR-133b correlated to decreased numbers of dopaminergic neurons in the midbrain of PD patients. miR-132, meanwhile, is negatively correlated with dopaminergic neuron differentiation in the midbrain. miR-7 and miR-153 act to reduce alpha-synuclein levels (a hallmark of PD) but are reduced in PD brain.
DNA methylation
Neurons of PD patients show hypomethylation of tumor necrosis factor (TNF) alpha encoding sequence, overexpression of which leads to apoptosis of neurons. Cerebrospinal fluid of PD patients also shows elevated TNF alpha. Research indicates there may be a link between DNA methylation and SNCA expression. Furthermore, human and mouse models have shown reduction of nuclear DNMT1 levels in PD subjects, resulting in hypomethylated states associated with transcriptional repression.
Histone marks
alpha-synuclein, the protein encoded by SNCA, can associate with histones and prevent their acetylation in concert with the HDACs HDAC1 and Sirt2. Furthermore, it has been demonstrated that alpha-synuclein binds histone 3 and inhibits its acetylation in Drosophila. Dopamine depletion in Parkinson's disease is associated with repressive histone modifications, including reduced H3K4me3, and lower levels of H3 and H4 lysine acetylation after levodopa therapy (a common treatment of PD).

Treatments

Epigenetic treatments tested in models of PD are few, though some promising research has been conducted. Most treatments investigated thus far are directed at histone modifications and analysis of their roles in mediating alpha-synuclein expression and activity. Pesticides and paraquat increase histone acetylation, producing neurotoxic effects similar to those seen in PD, such as apoptosis of dopaminergic cells. Despite this, treatment with HDACis seems to have a neuroprotective effect.

Sodium butyrate
Several studies using different animal models have demonstrated that sodium butyrate may be effective in reducing alpha-synuclein-related neurotoxicity. In Drosophila, sodium butyrate improved locomotor impairment and reduced early mortality rates.
Valproic acid
In an inducible rat model of PD, valproic acid had a neuroprotective effect by preventing translocation of alpha-synuclein into cell nuclei.
Vorinostat
In an alpha-synuclein overexpressing Drosophila model of PD, vorinostat (as well as sodium butyrate) reduced alpha-synuclein-mediated neurotoxicity.
siRNA inhibition of SIRT2
Treatment with SIRT2 inhibiting siRNA leads to reduced alpha-synuclein neurotoxicity AK-1 or AGK-2.

Multiple sclerosis

Multiple sclerosis (MS) is a demyelinating neurodegenerative disease that does not have a confirmed cause, but is widely considered to be an autoimmune disease in nature. It is indicated by demyelination of the nerves of the brain and spinal cord. Its symptoms are unique in nature and vary, but include those that have degenerative effects in the eyes and limbs. These can present themselves as numbness or atrophy, shock like sensations, paralysis, as well as lack of coordination or tremors, within the extremities. Within the eye, multiple sclerosis can cause blurriness, double vision, pain, or vision loss. Multiple sclerosis effects can be presented throughout other realms of the body, but is largely characterized by these main symptoms. Some of these can include loss of sexual or excretory function and epilepsy. While there are a few subcategories of multiple sclerosis, in most instances, the disease afflicts in a relapsing nature, where relapses of symptoms might not occur for extended periods of time, yielding more to the uncertainty of the disease. There is no known cure for MS, but measures can be taken post relapse to regain loss of function and the symptoms can be mitigated via therapeutic or medicinal means.

Epigenetic factors

Because of the outside factors that precede multiple sclerosis and the heritability typically occurring within the mother, it is thought to have an epigenetic cause. Some factors that may increase the incidence of MS are smoking, vitamin deficiency, and a history of some viral infections—which are factors that can induce epigenetic change.

Human leukocyte antigen-DRB1*15 allele

Human leukocyte antigen-DRB1*15 haplotype is a potential risk factor of MS. Because of the increased likelihood of the mother's human leukocyte antigen-DRB1*15 allele being passed onto their children, this contributes to the instances of MS being more prevalent from the mother. HLA-DRB1 is thought to be regulated via epigenetic means. The correlation of MS and this allele is speculated to be due to the presence of hypomethylation in the CpG island of HLA-DRB1, and those that carry the allele tend to exhibit this hypomethylation. HLA-DRB1 exon 2 is a particular region where evidence has shown that methylation is shown to be important in regulation. Research has furthered the evidence that variation in HLA-DRB1 DMR, which is a mechanism that is methylation regulated, that in turn regulates increased HLA-DRB1 expression, displays an increased risk for MS, and the exhibition of the disease.

miRNA

Higher levels of expression of specific types of miRNA are often seen in the brain of those afflicted, showing an association of these types of miRNA and MS. Higher expression of miR-155 and miR-326 is often associated with CD4+T cell differentiation, and with this differentiation, instances of autoimmune encephalitis occur, which is the link with which it is thought that smoking can induce epigenetic changes that increase susceptibility to MS. Higher expression levels of miR-18b, miR-493, miR-599, and miR-96 are often seen in patients diagnosed with MS. miR-145 detection appears to be a promising future diagnostic tool due to its high specificity of 90% and sensitivity of 89.5% in whole blood testing due to its capability of distinguishing healthy patients versus those with MS. A symptom associated with MS patients is white matter lesions in the brain, and these lesions when biopsied showed higher expression of miR-155, miR-326 and miR-34a. These are especially notable due to the fact that overexpression of these miRNA's cause downregulation of CD47, leading to myelin phagocytosis, because of CD47's role of inhibiting macrophage activity.

DNA methylation

MS patients can be identified through observation of abnormal DNA methylation patterns in genes responsible for inflammation and myelination factor expression. Methylation occurs in the genomic region, CpG island, and is imperative in regulation of transcription. A methylated CpG region typically is the mechanism that will silence a gene, whereas a hypomethylated region is able to induce transcription. Using methylation inhibitors it has been shown that allowing higher proliferation of T cells can be achieved by preventing silencing. Abnormalities in methylation patterns increase the generation of CD4+T auto reactive. Hypomethylation of CpG regions of the PAD2 gene, a regulator of MBP which in turn regulates myelin, is also associated with higher instances of MS. This hypomethylation leads to overexpression of the PAD2 gene. These patterns have been observed in the white matter of patients with MS. While methylation is an indicator of MS, its effects are more specialized to location in MS, for example, where these patterns are observed in white matter.

Histone modifications

Association of abnormal histone modification in MS patients can be found in lesions located in the brain, with most instances of this being observed in patients over time and in lesions located in the frontal lobe. Higher instance of histone acetylation can be seen in patients afflicted over time, but this is counteracted by lower instances of histone acetylation in lesions found on the brain early in the course of the disease. The mechanisms by which histone modifications work in the progression of MS are unconfirmed, but changes in acetylation are often associated with the disease.

Treatments

HDAC inhibitors

Trichostatin

Positive responses were observed in animal trials utilizing this HDAC inhibitor, associated with mediation of inflammatory pathways and thus resulting in lower instances of inflammatory responses in the brain. It was also shown to be effective in decreasing levels of disability when the mice were in a relapsing stage of MS. Trichostatin's mediation of symptoms is not well known but is thought to work in increasing acetylation at the H3 and H4 histones in CD4+T cells where MS patients often display differences in acetylation levels at these histones that control patients do not.

Vorinostat

Animal trials were utilized along with the testing of human myeloid dendritic cells. Not much is known about the mechanisms of vorinostat; however regulation of Th1/Th17 cytokine expression, which are responsible for inducing inflammation, were observed, thereby decreasing instances of inflammation and demyelination. Decreased patterns of T cell proliferation were also observed, similar to how trichostatin mediates disease symptoms.

Valpropic acid

Valpropic acid has been shown to have positive results in animal trials, in the mitigation of the disease by regulating the severity and duration of MS. Its mechanism is decreasing the presentation of miRNA. Its mechanism for such has been observed in rats by shifting Th1 and Th17 to Th2 (responsible for inducing inflammation), thereby downregulating miRNA expression in inflammatory cytokines, tumor mediating mechanisms, and the spine. This is another instance in which T cell expression regulation is present, by preventing proliferation through interference of its pathway, similar to trichostatin and vorinostat. Another effect of VPA is its prevention of macrophage and lymphocyte proliferation in the spinal cords of MS rats. Currently, no HDAC inhibitors are in use for the mitigation of symptoms in MS patients; however, some are in pre-clinical trials at this time.

Animal welfare

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Animal_we...