Search This Blog

Sunday, March 16, 2025

Extinction

From Wikipedia, the free encyclopedia
The thylacine (Thylacinus cynocephalus) is an example of a recently extinct species.
 
Palaeotherium is an example of an extinct genus that is only recorded from fossil records before the existence of hominids.

Extinction is the termination of a taxon by the death of its last member. A taxon may become functionally extinct before the death of its last member if it loses the capacity to reproduce and recover. Because a species' potential range may be very large, determining this moment is difficult, and is usually done retrospectively. This difficulty leads to phenomena such as Lazarus taxa, where a species presumed extinct abruptly "reappears" (typically in the fossil record) after a period of apparent absence.

More than 99% of all species that ever lived on Earth, amounting to over five billion species, are estimated to have died out. It is estimated that there are currently around 8.7 million species of eukaryotes globally, and possibly many times more if microorganisms, such as bacteria, are included. Notable extinct animal species include non-avian dinosaurs, palaeotheres, saber-toothed cats, dodos, mammoths, ground sloths, thylacines, trilobites, golden toads, and passenger pigeons.

Through evolution, species arise through the process of speciation—where new varieties of organisms arise and thrive when they are able to find and exploit an ecological niche—and species become extinct when they are no longer able to survive in changing conditions or against superior competition. The relationship between animals and their ecological niches has been firmly established. A typical species becomes extinct within 10 million years of its first appearance, although some species, called living fossils, survive with little to no morphological change for hundreds of millions of years.

Mass extinctions are relatively rare events; however, isolated extinctions of species and clades are quite common, and are a natural part of the evolutionary process. Only recently have extinctions been recorded and scientists have become alarmed at the current high rate of extinctions. Most species that become extinct are never scientifically documented. Some scientists estimate that up to half of presently existing plant and animal species may become extinct by 2100. A 2018 report indicated that the phylogenetic diversity of 300 mammalian species erased during the human era since the Late Pleistocene would require 5 to 7 million years to recover.

According to the 2019 Global Assessment Report on Biodiversity and Ecosystem Services by IPBES, the biomass of wild mammals has fallen by 82%, natural ecosystems have lost about half their area and a million species are at risk of extinction—all largely as a result of human actions. Twenty-five percent of plant and animal species are threatened with extinction. In a subsequent report, IPBES listed unsustainable fishing, hunting and logging as being some of the primary drivers of the global extinction crisis.

In June 2019, one million species of plants and animals were at risk of extinction. At least 571 plant species have been lost since 1750, but likely many more. The main cause of the extinctions is the destruction of natural habitats by human activities, such as cutting down forests and converting land into fields for farming.

A dagger symbol (†) placed next to the name of a species or other taxon normally indicates its status as extinct.

Examples

Examples of species and subspecies that are extinct include:

Definition

External mold of the extinct Lepidodendron from the Upper Carboniferous of Ohio

A species is extinct when the last existing member dies. Extinction therefore becomes a certainty when there are no surviving individuals that can reproduce and create a new generation. A species may become functionally extinct when only a handful of individuals survive, which cannot reproduce due to poor health, age, sparse distribution over a large range, a lack of individuals of both sexes (in sexually reproducing species), or other reasons.

Pinpointing the extinction (or pseudoextinction) of a species requires a clear definition of that species. If it is to be declared extinct, the species in question must be uniquely distinguishable from any ancestor or daughter species, and from any other closely related species. Extinction of a species (or replacement by a daughter species) plays a key role in the punctuated equilibrium hypothesis of Stephen Jay Gould and Niles Eldredge.

Skeleton of various extinct dinosaurs; some other dinosaur lineages still flourish in the form of birds

In ecology, extinction is sometimes used informally to refer to local extinction, in which a species ceases to exist in the chosen area of study, despite still existing elsewhere. Local extinctions may be made good by the reintroduction of individuals of that species taken from other locations; wolf reintroduction is an example of this. Species that are not globally extinct are termed extant. Those species that are extant, yet are threatened with extinction, are referred to as threatened or endangered species.

The dodo of Mauritius, shown here in a 1626 illustration by Roelant Savery, is an often-cited example of modern extinction.

Currently, an important aspect of extinction is human attempts to preserve critically endangered species. These are reflected by the creation of the conservation status "extinct in the wild" (EW). Species listed under this status by the International Union for Conservation of Nature (IUCN) are not known to have any living specimens in the wild and are maintained only in zoos or other artificial environments. Some of these species are functionally extinct, as they are no longer part of their natural habitat and it is unlikely the species will ever be restored to the wild. When possible, modern zoological institutions try to maintain a viable population for species preservation and possible future reintroduction to the wild, through use of carefully planned breeding programs.

The extinction of one species' wild population can have knock-on effects, causing further extinctions. These are also called "chains of extinction". This is especially common with extinction of keystone species.

A 2018 study indicated that the sixth mass extinction started in the Late Pleistocene could take up to 5 to 7 million years to restore mammal diversity to what it was before the human era.

Pseudoextinction

Extinction of a parent species where daughter species or subspecies are still extant is called pseudoextinction or phyletic extinction. Effectively, the old taxon vanishes, transformed (anagenesis) into a successor, or split into more than one (cladogenesis).

Pseudoextinction is difficult to demonstrate unless one has a strong chain of evidence linking a living species to members of a pre-existing species. For example, it is sometimes claimed that the extinct Hyracotherium, which was an early horse that shares a common ancestor with the modern horse, is pseudoextinct, rather than extinct, because there are several extant species of Equus, including zebra and donkey; however, as fossil species typically leave no genetic material behind, one cannot say whether Hyracotherium evolved into more modern horse species or merely evolved from a common ancestor with modern horses. Pseudoextinction is much easier to demonstrate for larger taxonomic groups.

Lazarus taxa

A Lazarus taxon or Lazarus species refers to instances where a species or taxon was thought to be extinct, but was later rediscovered. It can also refer to instances where large gaps in the fossil record of a taxon result in fossils reappearing much later, although the taxon may have ultimately become extinct at a later point.

The coelacanth, a fish related to lungfish and tetrapods, is an example of a Lazarus taxon that was known only from the fossil record and was considered to have been extinct since the end of the Cretaceous Period. In 1938, however, a living specimen was found off the Chalumna River (now Tyolomnqa) on the east coast of South Africa. Calliostoma bullatum, a species of deepwater sea snail originally described from fossils in 1844 proved to be a Lazarus species when extant individuals were described in 2019.

Attenborough's long-beaked echidna (Zaglossus attenboroughi) is an example of a Lazarus species from Papua New Guinea that had last been sighted in 1962 and believed to be possibly extinct, until it was recorded again in November 2023.

Some species currently thought to be extinct have had continued speculation that they may still exist, and in the event of rediscovery would be considered Lazarus species. Examples include the thylacine, or Tasmanian tiger (Thylacinus cynocephalus), the last known example of which died in Hobart Zoo in Tasmania in 1936; the Japanese wolf (Canis lupus hodophilax), last sighted over 100 years ago; the American ivory-billed woodpecker (Campephilus principalis), with the last universally accepted sighting in 1944; and the slender-billed curlew (Numenius tenuirostris), not seen since 2007.

Causes

The passenger pigeon, one of the hundreds of species of extinct birds, was hunted to extinction over the course of a few decades.

As long as species have been evolving, species have been going extinct. It is estimated that over 99.9% of all species that ever lived are extinct. The average lifespan of a species is 1–10 million years, although this varies widely between taxa. A variety of causes can contribute directly or indirectly to the extinction of a species or group of species. "Just as each species is unique", write Beverly and Stephen C. Stearns, "so is each extinction ... the causes for each are varied—some subtle and complex, others obvious and simple". Most simply, any species that cannot survive and reproduce in its environment and cannot move to a new environment where it can do so, dies out and becomes extinct. Extinction of a species may come suddenly when an otherwise healthy species is wiped out completely, as when toxic pollution renders its entire habitat unliveable; or may occur gradually over thousands or millions of years, such as when a species gradually loses out in competition for food to better adapted competitors. Extinction may occur a long time after the events that set it in motion, a phenomenon known as extinction debt.

Assessing the relative importance of genetic factors compared to environmental ones as the causes of extinction has been compared to the debate on nature and nurture. The question of whether more extinctions in the fossil record have been caused by evolution or by competition or by predation or by disease or by catastrophe is a subject of discussion; Mark Newman, the author of Modeling Extinction, argues for a mathematical model that falls in all positions. By contrast, conservation biology uses the extinction vortex model to classify extinctions by cause. When concerns about human extinction have been raised, for example in Sir Martin Rees' 2003 book Our Final Hour, those concerns lie with the effects of climate change or technological disaster.

Human-driven extinction started as humans migrated out of Africa more than 60,000 years ago. Currently, environmental groups and some governments are concerned with the extinction of species caused by humanity, and they try to prevent further extinctions through a variety of conservation programs. Humans can cause extinction of a species through overharvesting, pollution, habitat destruction, introduction of invasive species (such as new predators and food competitors), overhunting, and other influences. Explosive, unsustainable human population growth and increasing per capita consumption are essential drivers of the extinction crisis. According to the International Union for Conservation of Nature (IUCN), 784 extinctions have been recorded since the year 1500, the arbitrary date selected to define "recent" extinctions, up to the year 2004; with many more likely to have gone unnoticed. Several species have also been listed as extinct since 2004.

Genetics and demographic phenomena

If adaptation increasing population fitness is slower than environmental degradation plus the accumulation of slightly deleterious mutations, then a population will go extinct. Smaller populations have fewer beneficial mutations entering the population each generation, slowing adaptation. It is also easier for slightly deleterious mutations to fix in small populations; the resulting positive feedback loop between small population size and low fitness can cause mutational meltdown.

Limited geographic range is the most important determinant of genus extinction at background rates but becomes increasingly irrelevant as mass extinction arises. Limited geographic range is a cause both of small population size and of greater vulnerability to local environmental catastrophes.

Extinction rates can be affected not just by population size, but by any factor that affects evolvability, including balancing selection, cryptic genetic variation, phenotypic plasticity, and robustness. A diverse or deep gene pool gives a population a higher chance in the short term of surviving an adverse change in conditions. Effects that cause or reward a loss in genetic diversity can increase the chances of extinction of a species. Population bottlenecks can dramatically reduce genetic diversity by severely limiting the number of reproducing individuals and make inbreeding more frequent.

Genetic pollution

Extinction sometimes results for species evolved to specific ecologies that are subjected to genetic pollution—i.e., uncontrolled hybridization, introgression and genetic swamping that lead to homogenization or out-competition from the introduced (or hybrid) species. Endemic populations can face such extinctions when new populations are imported or selectively bred by people, or when habitat modification brings previously isolated species into contact. Extinction is likeliest for rare species coming into contact with more abundant ones; interbreeding can swamp the rarer gene pool and create hybrids, depleting the purebred gene pool (for example, the endangered wild water buffalo is most threatened with extinction by genetic pollution from the abundant domestic water buffalo). Such extinctions are not always apparent from morphological (non-genetic) observations. Some degree of gene flow is a normal evolutionary process; nevertheless, hybridization (with or without introgression) threatens rare species' existence.

The gene pool of a species or a population is the variety of genetic information in its living members. A large gene pool (extensive genetic diversity) is associated with robust populations that can survive bouts of intense selection. Meanwhile, low genetic diversity (see inbreeding and population bottlenecks) reduces the range of adaptions possible. Replacing native with alien genes narrows genetic diversity within the original population, thereby increasing the chance of extinction.

Habitat degradation

Scorched land resulting from slash-and-burn agriculture

Habitat degradation is currently the main anthropogenic cause of species extinctions. The main cause of habitat degradation worldwide is agriculture, with urban sprawl, logging, mining, and some fishing practices close behind. The degradation of a species' habitat may alter the fitness landscape to such an extent that the species is no longer able to survive and becomes extinct. This may occur by direct effects, such as the environment becoming toxic, or indirectly, by limiting a species' ability to compete effectively for diminished resources or against new competitor species.

Habitat destruction, particularly the removal of vegetation that stabilizes soil, enhances erosion and diminishes nutrient availability in terrestrial ecosystems. This degradation can lead to a reduction in agricultural productivity. Furthermore, increased erosion contributes to poorer water quality by elevating the levels of sediment and pollutants in rivers and streams.

Habitat degradation through toxicity can kill off a species very rapidly, by killing all living members through contamination or sterilizing them. It can also occur over longer periods at lower toxicity levels by affecting life span, reproductive capacity, or competitiveness.

Habitat degradation can also take the form of a physical destruction of niche habitats. The widespread destruction of tropical rainforests and replacement with open pastureland is widely cited as an example of this; elimination of the dense forest eliminated the infrastructure needed by many species to survive. For example, a fern that depends on dense shade for protection from direct sunlight can no longer survive without forest to shelter it. Another example is the destruction of ocean floors by bottom trawling.

Diminished resources or introduction of new competitor species also often accompany habitat degradation. Global warming has allowed some species to expand their range, bringing competition to other species that previously occupied that area. Sometimes these new competitors are predators and directly affect prey species, while at other times they may merely outcompete vulnerable species for limited resources. Vital resources including water and food can also be limited during habitat degradation, leading to extinction.

Predation, competition, and disease

The golden toad was last seen on May 15, 1989. Decline in amphibian populations is ongoing worldwide.

In the natural course of events, species become extinct for a number of reasons, including but not limited to: extinction of a necessary host, prey or pollinator, interspecific competition, inability to deal with evolving diseases and changing environmental conditions (particularly sudden changes) which can act to introduce novel predators, or to remove prey. Recently in geological time, humans have become an additional cause of extinction of some species, either as a new mega-predator or by transporting animals and plants from one part of the world to another. Such introductions have been occurring for thousands of years, sometimes intentionally (e.g. livestock released by sailors on islands as a future source of food) and sometimes accidentally (e.g. rats escaping from boats). In most cases, the introductions are unsuccessful, but when an invasive alien species does become established, the consequences can be catastrophic. Invasive alien species can affect native species directly by eating them, competing with them, and introducing pathogens or parasites that sicken or kill them; or indirectly by destroying or degrading their habitat. Human populations may themselves act as invasive predators. According to the "overkill hypothesis", the swift extinction of the megafauna in areas such as Australia (40,000 years before present), North and South America (12,000 years before present), Madagascar, Hawaii (AD 300–1000), and New Zealand (AD 1300–1500), resulted from the sudden introduction of human beings to environments full of animals that had never seen them before and were therefore completely unadapted to their predation techniques.

Coextinction

The large Haast's eagle and moa from New Zealand

Coextinction refers to the loss of a species due to the extinction of another; for example, the extinction of parasitic insects following the loss of their hosts. Coextinction can also occur when a species loses its pollinator, or to predators in a food chain who lose their prey. "Species coextinction is a manifestation of one of the interconnectednesses of organisms in complex ecosystems ... While coextinction may not be the most important cause of species extinctions, it is certainly an insidious one." Coextinction is especially common when a keystone species goes extinct. Models suggest that coextinction is the most common form of biodiversity loss. There may be a cascade of coextinction across the trophic levels. Such effects are most severe in mutualistic and parasitic relationships. An example of coextinction is the Haast's eagle and the moa: the Haast's eagle was a predator that became extinct because its food source became extinct. The moa were several species of flightless birds that were a food source for the Haast's eagle.

Climate change

Extinction as a result of climate change has been confirmed by fossil studies. Particularly, the extinction of amphibians during the Carboniferous Rainforest Collapse, 305 million years ago. A 2003 review across 14 biodiversity research centers predicted that, because of climate change, 15–37% of land species would be "committed to extinction" by 2050. The ecologically rich areas that would potentially suffer the heaviest losses include the Cape Floristic Region and the Caribbean Basin. These areas might see a doubling of present carbon dioxide levels and rising temperatures that could eliminate 56,000 plant and 3,700 animal species. Climate change has also been found to be a factor in habitat loss and desertification.

Sexual selection and male investment

Studies of fossils following species from the time they evolved to their extinction show that species with high sexual dimorphism, especially characteristics in males that are used to compete for mating, are at a higher risk of extinction and die out faster than less sexually dimorphic species, the least sexually dimorphic species surviving for millions of years while the most sexually dimorphic species die out within mere thousands of years. Earlier studies based on counting the number of currently living species in modern taxa have shown a higher number of species in more sexually dimorphic taxa which have been interpreted as higher survival in taxa with more sexual selection, but such studies of modern species only measure indirect effects of extinction and are subject to error sources such as dying and doomed taxa speciating more due to splitting of habitat ranges into more small isolated groups during the habitat retreat of taxa approaching extinction. Possible causes of the higher extinction risk in species with more sexual selection shown by the comprehensive fossil studies that rule out such error sources include expensive sexually selected ornaments having negative effects on the ability to survive natural selection, as well as sexual selection removing a diversity of genes that under current ecological conditions are neutral for natural selection but some of which may be important for surviving climate change.

Mass extinctions

CambrianOrdovicianSilurianDevonianCarboniferousPermianTriassicJurassicCretaceousPaleogeneNeogene
Marine extinction intensity during Phanerozoic
%
Millions of years ago
 
The blue graph shows the apparent percentage (not the absolute number) of marine animal genera becoming extinct during any given time interval. It does not represent all marine species, just those that are readily fossilized. The labels of the traditional "Big Five" extinction events and the more recently recognised Capitanian mass extinction event are clickable links; see Extinction event for more details. (source and image info)

There have been at least five mass extinctions in the history of life on earth, and four in the last 350 million years in which many species have disappeared in a relatively short period of geological time. A massive eruptive event that released large quantities of tephra particles into the atmosphere is considered to be one likely cause of the "Permian–Triassic extinction event" about 250 million years ago, which is estimated to have killed 90% of species then existing. There is also evidence to suggest that this event was preceded by another mass extinction, known as Olson's Extinction. The Cretaceous–Paleogene extinction event (K–Pg) occurred 66 million years ago, at the end of the Cretaceous period; it is best known for having wiped out non-avian dinosaurs, among many other species.

Modern extinctions

The changing distribution of the world's land mammals in tonnes of carbon. The biomass of wild land mammals has declined by 85% since the emergence of humans.

According to a 1998 survey of 400 biologists conducted by New York's American Museum of Natural History, nearly 70% believed that the Earth is currently in the early stages of a human-caused mass extinction, known as the Holocene extinction. In that survey, the same proportion of respondents agreed with the prediction that up to 20% of all living populations could become extinct within 30 years (by 2028). A 2014 special edition of Science declared there is widespread consensus on the issue of human-driven mass species extinctions. A 2020 study published in PNAS stated that the contemporary extinction crisis "may be the most serious environmental threat to the persistence of civilization, because it is irreversible."

Biologist E. O. Wilson estimated in 2002 that if current rates of human destruction of the biosphere continue, one-half of all plant and animal species of life on earth will be extinct in 100 years. More significantly, the current rate of global species extinctions is estimated as 100 to 1,000 times "background" rates (the average extinction rates in the evolutionary time scale of planet Earth), faster than at any other time in human history, while future rates are likely 10,000 times higher. However, some groups are going extinct much faster. Biologists Paul R. Ehrlich and Stuart Pimm, among others, contend that human population growth and overconsumption are the main drivers of the modern extinction crisis.

In January 2020, the UN's Convention on Biological Diversity drafted a plan to mitigate the contemporary extinction crisis by establishing a deadline of 2030 to protect 30% of the Earth's land and oceans and reduce pollution by 50%, with the goal of allowing for the restoration of ecosystems by 2050. The 2020 United Nations' Global Biodiversity Outlook report stated that of the 20 biodiversity goals laid out by the Aichi Biodiversity Targets in 2010, only 6 were "partially achieved" by the deadline of 2020. The report warned that biodiversity will continue to decline if the status quo is not changed, in particular the "currently unsustainable patterns of production and consumption, population growth and technological developments". In a 2021 report published in the journal Frontiers in Conservation Science, some top scientists asserted that even if the Aichi Biodiversity Targets set for 2020 had been achieved, it would not have resulted in a significant mitigation of biodiversity loss. They added that failure of the global community to reach these targets is hardly surprising given that biodiversity loss is "nowhere close to the top of any country's priorities, trailing far behind other concerns such as employment, healthcare, economic growth, or currency stability."

History of scientific understanding

Tyrannosaurus, one of the many extinct dinosaur genera. The cause of the Cretaceous–Paleogene extinction event is a subject of much debate amongst researchers.
Georges Cuvier's 1812 unpublished version of the skeletal reconstruction of Anoplotherium commune with muscles. Today, the Paleogene mammal is thought to have gone extinct from the Grande Coupure extinction event in western Europe.
Georges Cuvier compared fossil mammoth jaws to those of living elephants, concluding that they were distinct from any known living species.

For much of history, the modern understanding of extinction as the end of a species was incompatible with the prevailing worldview. Prior to the 19th century, much of Western society adhered to the belief that the world was created by God and as such was complete and perfect. This concept reached its heyday in the 1700s with the peak popularity of a theological concept called the great chain of being, in which all life on earth, from the tiniest microorganism to God, is linked in a continuous chain. The extinction of a species was impossible under this model, as it would create gaps or missing links in the chain and destroy the natural order. Thomas Jefferson was a firm supporter of the great chain of being and an opponent of extinction, famously denying the extinction of the woolly mammoth on the grounds that nature never allows a race of animals to become extinct.

A series of fossils were discovered in the late 17th century that appeared unlike any living species. As a result, the scientific community embarked on a voyage of creative rationalization, seeking to understand what had happened to these species within a framework that did not account for total extinction. In October 1686, Robert Hooke presented an impression of a nautilus to the Royal Society that was more than two feet in diameter, and morphologically distinct from any known living species. Hooke theorized that this was simply because the species lived in the deep ocean and no one had discovered them yet. While he contended that it was possible a species could be "lost", he thought this highly unlikely. Similarly, in 1695, Sir Thomas Molyneux published an account of enormous antlers found in Ireland that did not belong to any extant taxa in that area. Molyneux reasoned that they came from the North American moose and that the animal had once been common on the British Isles. Rather than suggest that this indicated the possibility of species going extinct, he argued that although organisms could become locally extinct, they could never be entirely lost and would continue to exist in some unknown region of the globe. The antlers were later confirmed to be from the extinct deer Megaloceros. Hooke and Molyneux's line of thinking was difficult to disprove. When parts of the world had not been thoroughly examined and charted, scientists could not rule out that animals found only in the fossil record were not simply "hiding" in unexplored regions of the Earth.

Georges Cuvier is credited with establishing the modern conception of extinction in a 1796 lecture to the French Institute, though he would spend most of his career trying to convince the wider scientific community of his theory. Cuvier was a well-regarded geologist, lauded for his ability to reconstruct the anatomy of an unknown species from a few fragments of bone. His primary evidence for extinction came from mammoth skulls found near Paris. Cuvier recognized them as distinct from any known living species of elephant, and argued that it was highly unlikely such an enormous animal would go undiscovered. In 1798, he studied a fossil from the Paris Basin that was first observed by Robert de Lamanon in 1782, first hypothesizing that it belonged to a canine but then deciding that it instead belonged to an animal that was unlike living ones. His study paved the way to his naming of the extinct mammal genus Palaeotherium in 1804 based on the skull and additional fossil material along with another extinct contemporary mammal genus Anoplotherium. In both genera, he noticed that their fossils shared some similarities with other mammals like ruminants and rhinoceroses but still had distinct differences. In 1812, Cuvier, along with Alexandre Brongniart and Geoffroy Saint-Hilaire, mapped the strata of the Paris basin. They saw alternating saltwater and freshwater deposits, as well as patterns of the appearance and disappearance of fossils throughout the record. From these patterns, Cuvier inferred historic cycles of catastrophic flooding, extinction, and repopulation of the earth with new species.

Cuvier's fossil evidence showed that very different life forms existed in the past than those that exist today, a fact that was accepted by most scientists. The primary debate focused on whether this turnover caused by extinction was gradual or abrupt in nature. Cuvier understood extinction to be the result of cataclysmic events that wipe out huge numbers of species, as opposed to the gradual decline of a species over time. His catastrophic view of the nature of extinction garnered him many opponents in the newly emerging school of uniformitarianism.

Jean-Baptiste Lamarck, a gradualist and colleague of Cuvier, saw the fossils of different life forms as evidence of the mutable character of species. While Lamarck did not deny the possibility of extinction, he believed that it was exceptional and rare and that most of the change in species over time was due to gradual change. Unlike Cuvier, Lamarck was skeptical that catastrophic events of a scale large enough to cause total extinction were possible. In his geological history of the earth titled Hydrogeologie, Lamarck instead argued that the surface of the earth was shaped by gradual erosion and deposition by water, and that species changed over time in response to the changing environment.

Charles Lyell, a noted geologist and founder of uniformitarianism, believed that past processes should be understood using present day processes. Like Lamarck, Lyell acknowledged that extinction could occur, noting the total extinction of the dodo and the extirpation of indigenous horses to the British Isles. He similarly argued against mass extinctions, believing that any extinction must be a gradual process. Lyell also showed that Cuvier's original interpretation of the Parisian strata was incorrect. Instead of the catastrophic floods inferred by Cuvier, Lyell demonstrated that patterns of saltwater and freshwater deposits, like those seen in the Paris basin, could be formed by a slow rise and fall of sea levels.

The concept of extinction was integral to Charles Darwin's On the Origin of Species, with less fit lineages disappearing over time. For Darwin, extinction was a constant side effect of competition. Because of the wide reach of On the Origin of Species, it was widely accepted that extinction occurred gradually and evenly (a concept now referred to as background extinction). It was not until 1982, when David Raup and Jack Sepkoski published their seminal paper on mass extinctions, that Cuvier was vindicated and catastrophic extinction was accepted as an important mechanism. The current understanding of extinction is a synthesis of the cataclysmic extinction events proposed by Cuvier, and the background extinction events proposed by Lyell and Darwin.

Human attitudes and interests

A great hammerhead caught by a sport fisherman. Human exploitation now threatens the survival of this species. Overfishing is the primary driver of shark population declines, which have fallen over 71% since 1970.

Extinction is an important research topic in the field of zoology, and biology in general, and has also become an area of concern outside the scientific community. A number of organizations, such as the Worldwide Fund for Nature, have been created with the goal of preserving species from extinction. Governments have attempted, through enacting laws, to avoid habitat destruction, agricultural over-harvesting, and pollution. While many human-caused extinctions have been accidental, humans have also engaged in the deliberate destruction of some species, such as dangerous viruses, and the total destruction of other problematic species has been suggested. Other species were deliberately driven to extinction, or nearly so, due to poaching or because they were "undesirable", or to push for other human agendas. One example was the near extinction of the American bison, which was nearly wiped out by mass hunts sanctioned by the United States government, to force the removal of Native Americans, many of whom relied on the bison for food.

Biologist Bruce Walsh states three reasons for scientific interest in the preservation of species: genetic resources, ecosystem stability, and ethics; and today the scientific community "stress[es] the importance" of maintaining biodiversity.

In modern times, commercial and industrial interests often have to contend with the effects of production on plant and animal life. However, some technologies with minimal, or no, proven harmful effects on Homo sapiens can be devastating to wildlife (for example, DDT). Biogeographer Jared Diamond notes that while big business may label environmental concerns as "exaggerated", and often cause "devastating damage", some corporations find it in their interest to adopt good conservation practices, and even engage in preservation efforts that surpass those taken by national parks.

Governments sometimes see the loss of native species as a loss to ecotourism, and can enact laws with severe punishment against the trade in native species in an effort to prevent extinction in the wild. Nature preserves are created by governments as a means to provide continuing habitats to species crowded by human expansion. The 1992 Convention on Biological Diversity has resulted in international Biodiversity Action Plan programmes, which attempt to provide comprehensive guidelines for government biodiversity conservation. Advocacy groups, such as The Wildlands Project and the Alliance for Zero Extinctions, work to educate the public and pressure governments into action.

People who live close to nature can be dependent on the survival of all the species in their environment, leaving them highly exposed to extinction risks. However, people prioritize day-to-day survival over species conservation; with human overpopulation in tropical developing countries, there has been enormous pressure on forests due to subsistence agriculture, including slash-and-burn agricultural techniques that can reduce endangered species's habitats.

Antinatalist philosopher David Benatar concludes that any popular concern about non-human species extinction usually arises out of concern about how the loss of a species will impact human wants and needs, that "we shall live in a world impoverished by the loss of one aspect of faunal diversity, that we shall no longer be able to behold or use that species of animal." He notes that typical concerns about possible human extinction, such as the loss of individual members, are not considered in regards to non-human species extinction. Anthropologist Jason Hickel speculates that the reason humanity seems largely indifferent to anthropogenic mass species extinction is that we see ourselves as separate from the natural world and the organisms within it. He says that this is due in part to the logic of capitalism: "that the world is not really alive, and it is certainly not our kin, but rather just stuff to be extracted and discarded – and that includes most of the human beings living here too."

Planned extinction

Completed

Proposed

Disease agents

The poliovirus is now confined to small parts of the world due to extermination efforts.

Dracunculus medinensis, or Guinea worm, a parasitic worm which causes the disease dracunculiasis, is now close to eradication thanks to efforts led by the Carter Center.

Treponema pallidum pertenue, a bacterium which causes the disease yaws, is in the process of being eradicated.

Disease vectors

Biologist Olivia Judson has advocated the deliberate extinction of certain disease-carrying mosquito species. In a September 25, 2003 article in The New York Times, she advocated "specicide" of thirty mosquito species by introducing a genetic element that can insert itself into another crucial gene, to create recessive "knockout genes". She says that the Anopheles mosquitoes (which spread malaria) and Aedes mosquitoes (which spread dengue fever, yellow fever, elephantiasis, and other diseases) represent only 30 of around 3,500 mosquito species; eradicating these would save at least one million human lives per year, at a cost of reducing the genetic diversity of the family Culicidae by only 1%. She further argues that since species become extinct "all the time" the disappearance of a few more will not destroy the ecosystem: "We're not left with a wasteland every time a species vanishes. Removing one species sometimes causes shifts in the populations of other species—but different need not mean worse." In addition, anti-malarial and mosquito control programs offer little realistic hope to the 300 million people in developing nations who will be infected with acute illnesses this year. Although trials are ongoing, she writes that if they fail "we should consider the ultimate swatting."

Biologist E. O. Wilson has advocated the eradication of several species of mosquito, including malaria vector Anopheles gambiae. Wilson stated, "I'm talking about a very small number of species that have co-evolved with us and are preying on humans, so it would certainly be acceptable to remove them. I believe it's just common sense."

There have been many campaigns – some successful – to locally eradicate tsetse flies and their trypanosomes in areas, countries, and islands of Africa (including Príncipe). There are currently serious efforts to do away with them all across Africa, and this is generally viewed as beneficial and morally necessary, although not always.

Cloning

The Pyrenean ibex, the only animal to have been brought back from extinction and the only one to go extinct twice. The ibex apparently only lived for several minutes.

Some, such as Harvard geneticist George M. Church, believe that ongoing technological advances will let us "bring back to life" an extinct species by cloning, using DNA from the remains of that species. Proposed targets for cloning include the mammoth, the thylacine, and the Pyrenean ibex. For this to succeed, enough individuals would have to be cloned, from the DNA of different individuals (in the case of sexually reproducing organisms) to create a viable population. Though bioethical and philosophical objections have been raised, the cloning of extinct creatures seems theoretically possible.

In 2003, scientists tried to clone the extinct Pyrenean ibex (C. p. pyrenaica). This attempt failed: of the 285 embryos reconstructed, 54 were transferred to 12 Spanish ibexes and ibex–domestic goat hybrids, but only two survived the initial two months of gestation before they, too, died. In 2009, a second attempt was made to clone the Pyrenean ibex: one clone was born alive, but died seven minutes later, due to physical defects in the lungs.

Mushroom

From Wikipedia, the free encyclopedia
Pholiota squarrosa growing at the base of a tree

A mushroom or toadstool is the fleshy, spore-bearing fruiting body of a fungus, typically produced above ground, on soil, or on its food source. Toadstool generally denotes one poisonous to humans.

The standard for the name "mushroom" is the cultivated white button mushroom, Agaricus bisporus; hence, the word "mushroom" is most often applied to those fungi (Basidiomycota, Agaricomycetes) that have a stem (stipe), a cap (pileus), and gills (lamellae, sing. lamella) on the underside of the cap. "Mushroom" also describes a variety of other gilled fungi, with or without stems; therefore the term is used to describe the fleshy fruiting bodies of some Ascomycota. The gills produce microscopic spores which help the fungus spread across the ground or its occupant surface.

Forms deviating from the standard morphology usually have more specific names, such as "bolete", "truffle", "puffball", "stinkhorn", and "morel", and gilled mushrooms themselves are often called "agarics" in reference to their similarity to Agaricus or their order Agaricales. By extension, the term "mushroom" can also refer to either the entire fungus when in culture, the thallus (called mycelium) of species forming the fruiting bodies called mushrooms, or the species itself.

Etymology

Amanita muscaria, the most easily recognised "toadstool", is frequently depicted in fairy stories and on greeting cards. It is often associated with gnomes.

The terms "mushroom" and "toadstool" go back centuries and were never precisely defined, nor was there consensus on application. During the 15th and 16th centuries, the terms mushrom, mushrum, muscheron, mousheroms, mussheron, or musserouns were used.

The term "mushroom" and its variations may have been derived from the French word mousseron in reference to moss (mousse). Delineation between edible and poisonous fungi is not clear-cut, so a "mushroom" may be edible, poisonous, or unpalatable. The word toadstool appeared first in 14th century England as a reference for a "stool" for toads, possibly implying an inedible poisonous fungus.

Identification

Identifying what is and is not a mushroom requires a basic understanding of their macroscopic structure. Most are basidiomycetes and gilled. Their spores, called basidiospores, are produced on the gills and fall in a fine rain of powder from under the caps as a result. At the microscopic level, the basidiospores are shot off basidia and then fall between the gills in the dead air space. As a result, for most mushrooms, if the cap is cut off and placed gill-side-down overnight, a powdery impression reflecting the shape of the gills (or pores, or spines, etc.) is formed (when the fruit body is sporulating). The color of the powdery print, called a spore print, is useful in both classifying and identifying mushrooms. Spore print colors include white (most common), brown, black, purple-brown, pink, yellow, and creamy, but almost never blue, green, or red.

Morphological characteristics of the caps of mushrooms

While modern identification of mushrooms is quickly becoming molecular, the standard methods for identification are still used by most and have developed into a fine art harking back to medieval times and the Victorian era, combined with microscopic examination. The presence of juices upon breaking, bruising-reactions, odors, tastes, shades of color, habitat, habit, and season are all considered by both amateur and professional mycologists. Tasting and smelling mushrooms carries its own hazards because of poisons and allergens. Chemical tests are also used for some genera.

In general, identification to genus can often be accomplished in the field using a local field guide. Identification to species, however, requires more effort. A mushroom develops from a button stage into a mature structure, and only the latter can provide certain characteristics needed for the identification of the species. However, over-mature specimens lose features and cease producing spores. Many novices have mistaken humid water marks on paper for white spore prints, or discolored paper from oozing liquids on lamella edges for colored spored prints.

Classification

A mushroom (probably Russula brevipes) parasitized by Hypomyces lactifluorum resulting in a "lobster mushroom"

Typical mushrooms are the fruit bodies of members of the order Agaricales, whose type genus is Agaricus and type species is the field mushroom, Agaricus campestris. However in modern molecularly defined classifications, not all members of the order Agaricales produce mushroom fruit bodies, and many other gilled fungi, collectively called mushrooms, occur in other orders of the class Agaricomycetes. For example, chanterelles are in the Cantharellales, false chanterelles such as Gomphus are in the Gomphales, milk-cap mushrooms (Lactarius, Lactifluus) and russulas (Russula), as well as Lentinellus, are in the Russulales, while the tough, leathery genera Lentinus and Panus are among the Polyporales, but Neolentinus is in the Gloeophyllales, and the little pin-mushroom genus, Rickenella, along with similar genera, are in the Hymenochaetales.

Within the main body of mushrooms, in the Agaricales, are common fungi like the common fairy-ring mushroom, shiitake, enoki, oyster mushrooms, fly agarics and other Amanitas, magic mushrooms like species of Psilocybe, paddy straw mushrooms, shaggy manes, etc.

An atypical mushroom is the lobster mushroom, which is a fruitbody of a Russula or Lactarius mushroom that has been deformed by the parasitic fungus Hypomyces lactifluorum. This gives the affected mushroom an unusual shape and red color that resembles that of a boiled lobster.

Other mushrooms are not gilled, so the term "mushroom" is loosely used, and giving a full account of their classifications is difficult. Some have pores underneath (and are usually called boletes), others have spines, such as the hedgehog mushroom and other tooth fungi, and so on. "Mushroom" has been used for polypores, puffballs, jelly fungi, coral fungi, bracket fungi, stinkhorns, and cup fungi. Thus, the term is more one of common application to macroscopic fungal fruiting bodies than one having precise taxonomic meaning. Approximately 14,000 species of mushrooms are described.

Morphology

Amanita jacksonii buttons emerging from their universal veils
The blue gills of Lactarius indigo, a milk-cap mushroom
Lycoperdon perlatum (the "common puffball") has a glebal hymenium; when young, the interior is white, but it becomes brown containing powdery spores as the fungus matures.
Morchella elata asci viewed with phase contrast microscopy

A mushroom develops from a nodule, or pinhead, less than two millimeters in diameter, called a primordium, which is typically found on or near the surface of the substrate. It is formed within the mycelium, the mass of threadlike hyphae that make up the fungus. The primordium enlarges into a roundish structure of interwoven hyphae roughly resembling an egg, called a "button". The button has a cottony roll of mycelium, the universal veil, that surrounds the developing fruit body. As the egg expands, the universal veil ruptures and may remain as a cup, or volva, at the base of the stalk, or as warts or volval patches on the cap. Many mushrooms lack a universal veil, therefore they do not have either a volva or volval patches. Often, a second layer of tissue, the partial veil, covers the bladelike gills that bear spores. As the cap expands the veil breaks, and remnants of the partial veil may remain as a ring, or annulus, around the middle of the stalk or as fragments hanging from the margin of the cap. The ring may be skirt-like as in some species of Amanita, collar-like as in many species of Lepiota, or merely the faint remnants of a cortina (a partial veil composed of filaments resembling a spiderweb), which is typical of the genus Cortinarius. Mushrooms lacking partial veils do not form an annulus.

The stalk (also called the stipe, or stem) may be central and support the cap in the middle, or it may be off-center or lateral, as in species of Pleurotus and Panus. In other mushrooms, a stalk may be absent, as in the polypores that form shelf-like brackets. Puffballs lack a stalk, but may have a supporting base. Other mushrooms including truffles, jellies, earthstars, and bird's nests usually do not have stalks, and a specialized mycological vocabulary exists to describe their parts.

The way the gills attach to the top of the stalk is an important feature of mushroom morphology. Mushrooms in the genera Agaricus, Amanita, Lepiota and Pluteus, among others, have free gills that do not extend to the top of the stalk. Others have decurrent gills that extend down the stalk, as in the genera Omphalotus and Pleurotus. There are a great number of variations between the extremes of free and decurrent, collectively called attached gills. Finer distinctions are often made to distinguish the types of attached gills: adnate gills, which adjoin squarely to the stalk; notched gills, which are notched where they join the top of the stalk; adnexed gills, which curve upward to meet the stalk, and so on. These distinctions between attached gills are sometimes difficult to interpret, since gill attachment may change as the mushroom matures, or with different environmental conditions.

Microscopic features

A hymenium is a layer of microscopic spore-bearing cells that covers the surface of gills. In the nongilled mushrooms, the hymenium lines the inner surfaces of the tubes of boletes and polypores, or covers the teeth of spine fungi and the branches of corals. In the Ascomycota, spores develop within microscopic elongated, sac-like cells called asci, which typically contain eight spores in each ascus. The Discomycetes, which contain the cup, sponge, brain, and some club-like fungi, develop an exposed layer of asci, as on the inner surfaces of cup fungi or within the pits of morels. The Pyrenomycetes, tiny dark-colored fungi that live on a wide range of substrates including soil, dung, leaf litter, and decaying wood, as well as other fungi, produce minute, flask-shaped structures called perithecia, within which the asci develop.

In the basidiomycetes, usually four spores develop on the tips of thin projections called sterigmata, which extend from club-shaped cells called a basidia. The fertile portion of the Gasteromycetes, called a gleba, may become powdery as in the puffballs or slimy as in the stinkhorns. Interspersed among the asci are threadlike sterile cells called paraphyses. Similar structures called cystidia often occur within the hymenium of the Basidiomycota. Many types of cystidia exist, and assessing their presence, shape, and size is often used to verify the identification of a mushroom.

The most important microscopic feature for identification of mushrooms is the spores. Their color, shape, size, attachment, ornamentation, and reaction to chemical tests often can be the crux of an identification. A spore often has a protrusion at one end, called an apiculus, which is the point of attachment to the basidium, termed the apical germ pore, from which the hypha emerges when the spore germinates.

Growth

Many species of mushrooms seemingly appear overnight, growing or expanding rapidly. This phenomenon is the source of several common expressions in the English language including "to mushroom" or "mushrooming" (expanding rapidly in size or scope) and "to pop up like a mushroom" (to appear unexpectedly and quickly). In reality, all species of mushrooms take several days to form primordial mushroom fruit bodies, though they do expand rapidly by the absorption of fluids.

The cultivated mushroom, as well as the common field mushroom, initially form a minute fruiting body, referred to as the pin stage because of their small size. Slightly expanded, they are called buttons, once again because of the relative size and shape. Once such stages are formed, the mushroom can rapidly pull in water from its mycelium and expand, mainly by inflating preformed cells that took several days to form in the primordia.

Similarly, there are other mushrooms, like Parasola plicatilis (formerly Coprinus plicatlis), that grow rapidly overnight and may disappear by late afternoon on a hot day after rainfall. The primordia form at ground level in lawns in humid spaces under the thatch and after heavy rainfall or in dewy conditions balloon to full size in a few hours, release spores, and then collapse.

Not all mushrooms expand overnight; some grow very slowly and add tissue to their fruiting bodies by growing from the edges of the colony or by inserting hyphae. For example, Pleurotus nebrodensis grows slowly, and because of this combined with human collection, it is now critically endangered.

Though mushroom fruiting bodies are short-lived, the underlying mycelium can itself be long-lived and massive. A colony of Armillaria solidipes (formerly known as Armillaria ostoyae) in Malheur National Forest in the United States is estimated to be 2,400 years old, possibly older, and spans an estimated 2,200 acres (8.9 km2). Most of the fungus is underground and in decaying wood or dying tree roots in the form of white mycelia combined with black shoelace-like rhizomorphs that bridge colonized separated woody substrates.

Nutrition

Mushrooms (brown, Italian)
or Crimini (raw)
Nutritional value per 100 g (3.5 oz)
Energy94 kJ (22 kcal)

4.3 g
Dietary fiber0.6 g

0.1 g

2.5 g

Vitamins and minerals

Other constituentsQuantity
Water92.1 g
Selenium26 ug
Copper0.5 mg
Vitamin D (UV exposed)1276 IU

Percentages estimated using US recommendations for adults, except for potassium, which is estimated based on expert recommendation from the National Academies.

Raw brown mushrooms are 92% water, 4% carbohydrates, 2% protein and less than 1% fat. In a 100 grams (3.5 ounces) amount, raw mushrooms provide 22 calories and are a rich source (20% or more of the Daily Value, DV) of B vitamins, such as riboflavin, niacin and pantothenic acid, selenium (37% DV) and copper (25% DV), and a moderate source (10–19% DV) of phosphorus, zinc and potassium (table). They have minimal or no vitamin C and sodium content.

Vitamin D

The vitamin D content of a mushroom depends on postharvest handling, in particular the unintended exposure to sunlight. The US Department of Agriculture provided evidence that UV-exposed mushrooms contain substantial amounts of vitamin D. When exposed to ultraviolet (UV) light, even after harvesting, ergosterol in mushrooms is converted to vitamin D2, a process now used intentionally to supply fresh vitamin D mushrooms for the functional food grocery market. In a comprehensive safety assessment of producing vitamin D in fresh mushrooms, researchers showed that artificial UV light technologies were equally effective for vitamin D production as in mushrooms exposed to natural sunlight, and that UV light has a long record of safe use for production of vitamin D in food.

Human use

Edible mushrooms

Agaricus bisporus, one of the most widely cultivated and consumed mushrooms
Ferula mushroom in Bingöl, Turkey. This is an edible type of mushroom.

Mushrooms are used extensively in cooking, in many cuisines (notably Chinese, Korean, European, and Japanese). Humans have valued them as food since antiquity.

Most mushrooms sold in supermarkets have been commercially grown on mushroom farms. The most common of these, Agaricus bisporus, is considered safe for most people to eat because it is grown in controlled, sterilized environments. Several varieties of A. bisporus are grown commercially, including whites, crimini, and portobello. Other cultivated species available at many grocers include Hericium erinaceus, shiitake, maitake (hen-of-the-woods), Pleurotus, and enoki. In recent years, increasing affluence in developing countries has led to a considerable growth in interest in mushroom cultivation, which is now seen as a potentially important economic activity for small farmers.

China is a major edible mushroom producer. The country produces about half of all cultivated mushrooms, and around 2.7 kilograms (6.0 lb) of mushrooms are consumed per person per year by 1.4 billion people. In 2014, Poland was the world's largest mushroom exporter, reporting an estimated 194,000 tonnes (191,000 long tons; 214,000 short tons) annually.

Separating edible from poisonous species requires meticulous attention to detail; there is no single trait by which all toxic mushrooms can be identified, nor one by which all edible mushrooms can be identified. People who collect mushrooms for consumption are known as mycophagists, and the act of collecting them for such is known as mushroom hunting, or simply "mushrooming". Even edible mushrooms may produce allergic reactions in susceptible individuals, from a mild asthmatic response to severe anaphylactic shock. Even the cultivated A. bisporus contains small amounts of hydrazines, the most abundant of which is agaritine (a mycotoxin and carcinogen). However, the hydrazines are destroyed by moderate heat when cooking.

A number of species of mushrooms are poisonous; although some resemble certain edible species, consuming them could be fatal. Eating mushrooms gathered in the wild is risky and should only be undertaken by individuals knowledgeable in mushroom identification. Common best practice is for wild mushroom pickers to focus on collecting a small number of visually distinctive, edible mushroom species that cannot be easily confused with poisonous varieties. Common mushroom hunting advice is that if a mushroom cannot be positively identified, it should be considered poisonous and not eaten.

Toxic mushrooms

Young Amanita phalloides "death cap" mushrooms, with a matchbox for size comparison

Many mushroom species produce secondary metabolites that can be toxic, mind-altering, antibiotic, antiviral, or bioluminescent. Although there are only a small number of deadly species, several others can cause particularly severe and unpleasant symptoms. Toxicity likely plays a role in protecting the function of the basidiocarp: the mycelium has expended considerable energy and protoplasmic material to develop a structure to efficiently distribute its spores. One defense against consumption and premature destruction is the evolution of chemicals that render the mushroom inedible, either causing the consumer to vomit the meal (see emetics), or to learn to avoid consumption altogether. In addition, due to the propensity of mushrooms to absorb heavy metals, including those that are radioactive, as late as 2008, European mushrooms may have included toxicity from the 1986 Chernobyl disaster and continued to be studied.

Psychoactive mushrooms

Psilocybe zapotecorum, a hallucinogenic mushroom

Mushrooms with psychoactive properties have long played a role in various native medicine traditions in cultures all around the world. They have been used as sacrament in rituals aimed at mental and physical healing, and to facilitate visionary states. One such ritual is the velada ceremony. A practitioner of traditional mushroom use is the shaman or curandera (priest-healer).

Psilocybin mushrooms, also referred to as psychedelic mushrooms, possess psychedelic properties. Commonly known as "magic mushrooms" or "'shrooms", they are openly available in smart shops in many parts of the world, or on the black market in those countries which have outlawed their sale. Psilocybin mushrooms have been reported to facilitate profound and life-changing insights often described as mystical experiences. Recent scientific work has supported these claims, as well as the long-lasting effects of such induced spiritual experiences.

There are over 100 psychoactive mushroom species of genus Psilocybe native to regions all around the world.

Psilocybin, a naturally occurring chemical in certain psychedelic mushrooms such as Psilocybe cubensis, is being studied for its ability to help people suffering from psychological disorders, such as obsessive–compulsive disorder. Minute amounts have been reported to stop cluster and migraine headaches. A double-blind study, done by Johns Hopkins Hospital, showed psychedelic mushrooms could provide people an experience with substantial personal meaning and spiritual significance. In the study, one third of the subjects reported ingestion of psychedelic mushrooms was the single most spiritually significant event of their lives. Over two-thirds reported it among their five most meaningful and spiritually significant events. On the other hand, one-third of the subjects reported extreme anxiety. However the anxiety went away after a short period of time. Psilocybin mushrooms have also shown to be successful in treating addiction, specifically with alcohol and cigarettes.

A few species in the genus Amanita, most recognizably A. muscaria, but also A. pantherina, among others, contain the psychoactive compound muscimol. The muscimol-containing chemotaxonomic group of Amanitas contains no amatoxins or phallotoxins, and as such are not hepatoxic, though if not properly cured will be non-lethally neurotoxic due to the presence of ibotenic acid. The Amanita intoxication is similar to Z-drugs in that it includes CNS depressant and sedative-hypnotic effects, but also dissociation and delirium in high doses.

Folk medicine

Ganoderma lingzhi

Some mushrooms are used in folk medicine. In a few countries, extracts, such as polysaccharide-K, schizophyllan, polysaccharide peptide, or lentinan, are government-registered adjuvant cancer therapies, but clinical evidence for efficacy and safety of these extracts in humans has not been confirmed. Although some mushroom species or their extracts may be consumed for therapeutic effects, some regulatory agencies, such as the US Food and Drug Administration, regard such use as a dietary supplement, which does not have government approval or common clinical use as a prescription drug.

Other uses

A tinder fungus, Fomes fomentarius

Mushrooms can be used for dyeing wool and other natural fibers. The chromophores of mushroom dyes are organic compounds and produce strong and vivid colors, and all colors of the spectrum can be achieved with mushroom dyes. Before the invention of synthetic dyes, mushrooms were the source of many textile dyes.

Some fungi, types of polypores loosely called mushrooms, have been used as fire starters (known as tinder fungi).

Mushrooms and other fungi play a role in the development of new biological remediation techniques (e.g., using mycorrhizae to spur plant growth) and filtration technologies (e.g. using fungi to lower bacterial levels in contaminated water).

There is an ongoing research in the field of genetic engineering aimed towards creation of the enhanced qualities of mushrooms for such domains as nutritional value enhancement, as well as medical use.

Extinction

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Extinctio...