Search This Blog

Sunday, March 31, 2019

Psilocybin mushroom

From Wikipedia, the free encyclopedia

A psilocybin mushroom is one of a polyphyletic group of fungi that contain any of various psychedelic compounds, including psilocybin, psilocin, and baeocystin

Common, colloquial terms for psilocybin mushrooms include psychedelic mushrooms, magic mushrooms, shrooms, and mush. Biological genera containing psilocybin mushrooms include Copelandia, Gymnopilus, Inocybe, Mycena, Panaeolus, Pholiotina, Pluteus, and Psilocybe. Psilocybin mushrooms may have been used in ancient religious rites and ceremonies. They are depicted in Stone Age rock art in Europe and Africa, but most famously represented in the Pre-Columbian sculptures and glyphs seen throughout Central and South America.

History

Early

Prehistoric rock art near Villar del Humo, Spain, offers a hypothesis that Psilocybe hispanica was used in religious rituals 6,000 years ago, and that art at the Tassili caves in southern Algeria from 7,000 to 9,000 years ago may show the species Psilocybe mairei.

Pre-Columbian mushroom stones
 
Hallucinogenic species of the Psilocybe genus have a history of use among the native peoples of Mesoamerica for religious communion, divination, and healing, from pre-Columbian times to the present day. Mushroom stones and motifs have been found in Guatemala. A statuette dating from ca. 200 CE. and depicting a mushroom strongly resembling Psilocybe mexicana was found in a west Mexican shaft and chamber tomb in the state of Colima. A Psilocybe species was known to the Aztecs as teōnanācatl (literally "divine mushroom" - agglutinative form of teōtl (god, sacred) and nanācatl (mushroom) in Náhuatl) and were reportedly served at the coronation of the Aztec ruler Moctezuma II in 1502. Aztecs and Mazatecs referred to psilocybin mushrooms as genius mushrooms, divinatory mushrooms, and wondrous mushrooms, when translated into English. Bernardino de Sahagún reported ritualistic use of teonanácatl by the Aztecs, when he traveled to Central America after the expedition of Hernán Cortés.

After the Spanish conquest, Catholic missionaries campaigned against the cultural tradition of the Aztecs, dismissing the Aztecs as idolaters, and the use of hallucinogenic plants and mushrooms, like other pre-Christian traditions, was quickly suppressed. The Spanish believed the mushroom allowed the Aztecs and others to communicate with devils. In converting people to Catholicism, the Spanish pushed for a switch from teonanácatl to the Catholic sacrament of the Eucharist. Despite this history, in some remote areas, the use of teonanácatl has persisted.

The first mention of hallucinogenic mushrooms in European medicinal literature appeared in the London Medical and Physical Journal in 1799: a man had served Psilocybe semilanceata mushrooms that he had picked for breakfast in London's Green Park to his family. The doctor who treated them later described how the youngest child "was attacked with fits of immoderate laughter, nor could the threats of his father or mother refrain him."

European use

In 1955, Valentina Pavlovna Wasson and R. Gordon Wasson became the first known European Americans to actively participate in an indigenous mushroom ceremony. The Wassons did much to publicize their discovery, even publishing an article on their experiences in Life in 1957. In 1956 Roger Heim identified the psychoactive mushroom that the Wassons had brought back from Mexico as Psilocybe, and in 1958, Albert Hofmann first identified psilocybin and psilocin as the active compounds in these mushrooms.

Inspired by the Wassons' Life article, Timothy Leary traveled to Mexico to experience psilocybin mushrooms firsthand. Upon returning to Harvard in 1960, he and Richard Alpert started the Harvard Psilocybin Project, promoting psychological and religious study of psilocybin and other psychedelic drugs. After Leary and Alpert were dismissed by Harvard in 1963, they turned their attention toward promoting the psychedelic experience to the nascent hippie counterculture.

The popularization of entheogens by Wasson, Leary, authors Terence McKenna and Robert Anton Wilson, and others has led to an explosion in the use of psilocybin mushrooms throughout the world. By the early 1970s, many psilocybin mushroom species were described from temperate North America, Europe, and Asia and were widely collected. Books describing methods of cultivating Psilocybe cubensis in large quantities were also published. The availability of psilocybin mushrooms from wild and cultivated sources has made it among the most widely used of the psychedelic drugs.

At present, psilocybin mushroom use has been reported among some groups spanning from central Mexico to Oaxaca, including groups of Nahua, Mixtecs, Mixe, Mazatecs, Zapotecs, and others. An important figure of mushroom usage in Mexico was María Sabina, who used native mushrooms, such as Psilocybe mexicana in her practice.

Occurrence

Non-Psilocybe species of psilocybin mushroom include Pluteus salicinus (top), Gymnopilus luteoviridis (center), and Panaeolus cinctulus, formerly called Panaeolus subbalteatus (bottom).
 
Present in varying concentrations in about 200 species of Basidiomycota mushrooms, psilocybin evolved from its ancestor, muscarine, some 10 to 20 million years ago. In a 2000 review on the worldwide distribution of psilocybin mushrooms, Gastón Guzmán and colleagues considered these distributed among the following genera: Psilocybe (116 species), Gymnopilus (14), Panaeolus (13), Copelandia (12), Hypholoma (6), Pluteus (6) Inocybe (6), Conocybe (4), Panaeolina (4), Gerronema (2), Agrocybe (1), Galerina (1) and Mycena (1). Guzmán increased his estimate of the number of psilocybin-containing Psilocybe to 144 species in a 2005 review. 

Global distribution of 100+ psychoactive species of genus Psilocybe mushrooms.
 
Many of these are found in Mexico (53 species), with the remainder distributed in Canada and the US (22), Europe (16), Asia (15), Africa (4), and Australia and associated islands (19). In general, psilocybin-containing species are dark-spored, gilled mushrooms that grow in meadows and woods of the subtropics and tropics, usually in soils rich in humus and plant debris. Psilocybin mushrooms occur on all continents, but the majority of species are found in subtropical humid forests. Psilocybe species commonly found in the tropics include P. cubensis and P. subcubensis. P. semilanceata, considered the world's most widely distributed psilocybin mushroom, is found in Europe, North America, Asia, South America, Australia and New Zealand, although it is absent from Mexico.

Effects

The effects of psilocybin mushrooms come from psilocybin and psilocin. When psilocybin is ingested, it is broken down to produce psilocin, which is responsible for the psychedelic effects. Psilocybin and psilocin create short-term increases in tolerance of users, thus making it difficult to abuse them because the more often they are taken within a short period of time, the weaker the resultant effects are. Psilocybin mushrooms have not been known to cause physical or psychological dependence (addiction). The physical effects tend to appear around 20 minutes after ingestion and will last approximately 6 hours. The effects include nausea, vomiting, muscle weakness, drowsiness, and lack of coordination, though many of them can be attributed to mold and or mildew that may accompany the drug when purchased through black market means and not grown in sterile or clean growing environments. 

As with many psychedelic substances, the effects of psychedelic mushrooms are subjective and can vary considerably among individual users. The mind-altering effects of psilocybin-containing mushrooms typically last from three to eight hours depending on dosage, preparation method, and personal metabolism. The first 3–4 hours of the trip are typically referred to as the 'peak'—in which the user experiences more vivid visuals, and distortions in reality. However, the effects can seem to last much longer to the user because of psilocybin's ability to alter time perception.

In internet surveys, some psilocybin users have reported symptoms of hallucinogen persisting perception disorder, although this is uncommon and a causal connection with psilocybin use is unclear. There is a case report of perceptual disturbances and panic disorder beginning after using psilocybin mushrooms in frequent cannabis users with a pre-existing history of derealization and anxiety.

Despite risks, mushrooms do much less damage in the UK than other recreational drugs.

Sensory

Noticeable changes to the auditory, visual, and tactile senses may become apparent around 30 minutes to an hour after ingestion, although effects may take up to two hours to take place. These shifts in perception visually include enhancement and contrasting of colors, strange light phenomena (such as auras or "halos" around light sources), increased visual acuity, surfaces that seem to ripple, shimmer, or breathe; complex open and closed eye visuals of form constants or images, objects that warp, morph, or change solid colours; a sense of melting into the environment, and trails behind moving objects. Sounds may seem to have increased clarity—music, for example, can often take on a profound sense of cadence and depth.[citation needed] Some users experience synesthesia, wherein they perceive, for example, a visualization of color upon hearing a particular sound.

Emotional

As with other psychedelics such as LSD, the experience, or "trip", is strongly dependent upon set and setting. A negative environment could contribute to a bad trip, whereas a comfortable and familiar environment would set the stage for a pleasant experience. Psychedelics make experiences more intense, so if a person enters a trip in an anxious state of mind, they will likely experience heightened anxiety on their trip. Many users find it preferable to ingest the mushrooms with friends, people with whom they are familiar, or people who are familiar with 'tripping'. The psychological consequences of psilocybin use include hallucinations and an inability to discern fantasy from reality. Panic reactions and psychosis also may occur, particularly if a user ingests a large dose. In addition to the risks associated with ingestion of psilocybin, individuals who seek to use psilocybin mushrooms also risk poisoning if one of the many varieties of poisonous mushrooms is confused with a psilocybin mushroom.

Dosage

A bag of 1.5 grams of psilocybe cubensis mushrooms.
 
Dosage of mushrooms containing psilocybin depends on the potency of the mushroom (the total psilocybin and psilocin content of the mushrooms), which varies significantly both between species and within the same species, but is typically around 0.5–2.0% of the dried weight of the mushroom. A typical low dose of the common species Psilocybe cubensis is about 1.0 to 2.5 g, while about 2.5 to 5.0 g dried mushroom material is considered a strong dose. Above 5 g is often considered a heavy dose with 5.0 grams of dried mushroom often being referred to as a "heroic dose".

A study at Johns Hopkins University found that a dose of 20 to 30mg psilocybin per 70kg occasioning mystical-type experiences brought lasting positive changes to traits including altruism, gratitude, forgiveness and feeling close to others when it was combined with meditation and an extensive spiritual practice support programme.

The concentration of active psilocybin mushroom compounds varies not only from species to species, but also from mushroom to mushroom inside a given species, subspecies or variety. The same holds true even for different parts of the same mushroom. In the species Psilocybe samuiensis, the dried cap of the mushroom contains the most psilocybin at about 0.23%–0.90%. The mycelium contains about 0.24%–0.32%.

Legality

Psilocybin mushrooms are regulated or prohibited in many countries, often carrying severe legal penalties (for example, the US Psychotropic Substances Act, the UK Misuse of Drugs Act 1971 and Drugs Act 2005, and in Canada the Controlled Drugs and Substances Act).

UN position

Psilocybin and psilocin are listed as Schedule I drugs under the United Nations 1971 Convention on Psychotropic Substances. Schedule I drugs are deemed to have a high potential for abuse and are not recognized for medical use.

Austria

Psychoactive mushrooms, in their fresh form, remain legal in some countries, such as Austria.

Netherlands

On November 29, 2008, the Netherlands announced it would ban the cultivation and use of psilocybin-containing fungi beginning December 1, 2008.

United Kingdom

Dried mushrooms were classified as illegal, as they were considered a psilocybin-containing preparation. 

The UK ban on fresh mushrooms introduced in 2005 came under much criticism, but was rushed through at the end of the 2001-2005 Parliament; until then, magic mushrooms had been sold in the UK.

United States of America

New Mexico appeals court ruled on June 14, 2005, that growing psilocybin mushrooms for personal consumption could not be considered "manufacturing a controlled substance" under state law. However, it still remains illegal under federal law.

In December 2018, Oregon’s Secretary of State approved a ballot initiative that would make psychedelic mushrooms legal among licensed therapists.

India

Psilocin is illegal in India. However, enforcement of this prohibition is complicated by the fact that while the compound itself is banned, mushrooms containing the substance are not.

Time travel (updated)

From Wikipedia, the free encyclopedia

Time travel is the concept of movement between certain points in time, analogous to movement between different points in space by an object or a person, typically using a hypothetical device known as a time machine. Time travel is a widely-recognized concept in philosophy and fiction. The idea of a time machine was popularized by H. G. Wells' 1895 novel The Time Machine.
 
It is uncertain if time travel to the past is physically possible. Forward time travel, outside the usual sense of the perception of time, is an extensively-observed phenomenon and well-understood within the framework of special relativity and general relativity. However, making one body advance or delay more than a few milliseconds compared to another body is not feasible with current technology. As for backwards time travel, it is possible to find solutions in general relativity that allow for it, but the solutions require conditions that may not be physically possible. Traveling to an arbitrary point in spacetime has a very limited support in theoretical physics, and usually only connected with quantum mechanics or wormholes, also known as Einstein-Rosen bridges.

History of the time travel concept

Some ancient myths depict a character skipping forward in time. In Hindu mythology, the Mahabharata mentions the story of King Raivata Kakudmi, who travels to heaven to meet the creator Brahma and is surprised to learn when he returns to Earth that many ages have passed. The Buddhist Pāli Canon mentions the relativity of time. The Payasi Sutta tells of one of the Buddha's chief disciples, Kumara Kassapa, who explains to the skeptic Payasi that time in the Heavens passes differently than on Earth. The Japanese tale of "Urashima Tarō", first described in the Nihongi (720) tells of a young fisherman named Urashima Taro who visits an undersea palace. After three days, he returns home to his village and finds himself 300 years in the future, where he has been forgotten, his house is in ruins, and his family has died. In Jewish tradition, the 1st-century BC scholar Honi ha-M'agel is said to have fallen asleep and slept for seventy years. When waking up he returned home but found none of the people he knew, and no one believed his claims of who he was.

Shift to science fiction

Early science fiction stories feature characters who sleep for years and awaken in a changed society, or are transported to the past through supernatural means. Among them L'An 2440, rêve s'il en fût jamais (1770) by Louis-Sébastien Mercier, Rip Van Winkle (1819) by Washington Irving, Looking Backward (1888) by Edward Bellamy, and When the Sleeper Awakes (1899) by H.G. Wells. Prolonged sleep, like the more familiar time machine, is used as a means of time travel in these stories.

The earliest work about backwards time travel is uncertain. Samuel Madden's Memoirs of the Twentieth Century (1733) is a series of letters from British ambassadors in 1997 and 1998 to diplomats in the past, conveying the political and religious conditions of the future. Because the narrator receives these letters from his guardian angel, Paul Alkon suggests in his book Origins of Futuristic Fiction that "the first time-traveler in English literature is a guardian angel." Madden does not explain how the angel obtains these documents, but Alkon asserts that Madden "deserves recognition as the first to toy with the rich idea of time-travel in the form of an artifact sent backward from the future to be discovered in the present." In the science fiction anthology Far Boundaries (1951), editor August Derleth claims that an early short story about time travel is Missing One's Coach: An Anachronism, written for the Dublin Literary Magazine by an anonymous author in 1838. While the narrator waits under a tree for a coach to take him out of Newcastle, he is transported back in time over a thousand years. He encounters the Venerable Bede in a monastery and explains to him the developments of the coming centuries. However, the story never makes it clear whether these events are real or a dream. Another early work about time travel is The Forebears of Kalimeros: Alexander, son of Philip of Macedon by Alexander Veltman published in 1836.

Mr. and Mrs. Fezziwig dance in a vision shown to Scrooge by the Ghost of Christmas Past.
 
Charles Dickens's A Christmas Carol (1843) has early depictions of time travel in both directions, as the protagonist, Ebenezer Scrooge, is transported to Christmases past and future. Other stories employ the same template, where a character naturally goes to sleep, and upon waking up finds themself in a different time. A clearer example of backward time travel is found in the popular 1861 book Paris avant les hommes (Paris before Men) by the French botanist and geologist Pierre Boitard, published posthumously. In this story, the protagonist is transported to the prehistoric past by the magic of a "lame demon" (a French pun on Boitard's name), where he encounters a Plesiosaur and an apelike ancestor and is able to interact with ancient creatures. Edward Everett Hale's "Hands Off" (1881) tells the story of an unnamed being, possibly the soul of a person who has recently died, who interferes with ancient Egyptian history by preventing Joseph's enslavement. This may have been the first story to feature an alternate history created as a result of time travel.

Early time machines

One of the first stories to feature time travel by means of a machine is "The Clock that Went Backward" by Edward Page Mitchell, which appeared in the New York Sun in 1881. However, the mechanism borders on fantasy. An unusual clock, when wound, runs backwards and transports people nearby back in time. The author does not explain the origin or properties of the clock. Enrique Gaspar y Rimbau's El Anacronópete (1887) may have been the first story to feature a vessel engineered to travel through time. Andrew Sawyer has commented that the story "does seem to be the first literary description of a time machine noted so far", adding that "Edward Page Mitchell's story 'The Clock That Went Backward' (1881) is usually described as the first time-machine story, but I'm not sure that a clock quite counts." H. G. Wells's The Time Machine (1895) popularized the concept of time travel by mechanical means.

Time travel in physics

Some theories, most notably special and general relativity, suggest that suitable geometries of spacetime or specific types of motion in space might allow time travel into the past and future if these geometries or motions were possible. In technical papers, physicists discuss the possibility of closed timelike curves, which are world lines that form closed loops in spacetime, allowing objects to return to their own past. There are known to be solutions to the equations of general relativity that describe spacetimes which contain closed timelike curves, such as Gödel spacetime, but the physical plausibility of these solutions is uncertain. 

Many in the scientific community believe that backward time travel is highly unlikely. Any theory that would allow time travel would introduce potential problems of causality. The classic example of a problem involving causality is the "grandfather paradox": what if one were to go back in time and kill one's own grandfather before one's father was conceived? Some physicists, such as Novikov and Deutsch, suggested that these sorts of temporal paradoxes can be avoided through the Novikov self-consistency principle or to a variation of the many-worlds interpretation with interacting worlds.

General relativity

Time travel to the past is theoretically possible in certain general relativity spacetime geometries that permit traveling faster than the speed of light, such as cosmic strings, transversable wormholes, and Alcubierre drive. The theory of general relativity does suggest a scientific basis for the possibility of backward time travel in certain unusual scenarios, although arguments from semiclassical gravity suggest that when quantum effects are incorporated into general relativity, these loopholes may be closed. These semiclassical arguments led Stephen Hawking to formulate the chronology protection conjecture, suggesting that the fundamental laws of nature prevent time travel, but physicists cannot come to a definite judgment on the issue without a theory of quantum gravity to join quantum mechanics and general relativity into a completely unified theory.

Different spacetime geometries

The theory of general relativity describes the universe under a system of field equations that determine the metric, or distance function, of spacetime. There exist exact solutions to these equations that include closed time-like curves, which are world lines that intersect themselves; some point in the causal future of the world line is also in its causal past, a situation which is akin to time travel. Such a solution was first proposed by Kurt Gödel, a solution known as the Gödel metric, but his (and others') solution requires the universe to have physical characteristics that it does not appear to have, such as rotation and lack of Hubble expansion. Whether general relativity forbids closed time-like curves for all realistic conditions is still being researched.

Wormholes

Wormholes are a hypothetical warped spacetime which are permitted by the Einstein field equations of general relativity. A proposed time-travel machine using a traversable wormhole would hypothetically work in the following way: One end of the wormhole is accelerated to some significant fraction of the speed of light, perhaps with some advanced propulsion system, and then brought back to the point of origin. Alternatively, another way is to take one entrance of the wormhole and move it to within the gravitational field of an object that has higher gravity than the other entrance, and then return it to a position near the other entrance. For both of these methods, time dilation causes the end of the wormhole that has been moved to have aged less, or become "younger", than the stationary end as seen by an external observer; however, time connects differently through the wormhole than outside it, so that synchronized clocks at either end of the wormhole will always remain synchronized as seen by an observer passing through the wormhole, no matter how the two ends move around. This means that an observer entering the "younger" end would exit the "older" end at a time when it was the same age as the "younger" end, effectively going back in time as seen by an observer from the outside. One significant limitation of such a time machine is that it is only possible to go as far back in time as the initial creation of the machine; in essence, it is more of a path through time than it is a device that itself moves through time, and it would not allow the technology itself to be moved backward in time. 

According to current theories on the nature of wormholes, construction of a traversable wormhole would require the existence of a substance with negative energy, often referred to as "exotic matter". More technically, the wormhole spacetime requires a distribution of energy that violates various energy conditions, such as the null energy condition along with the weak, strong, and dominant energy conditions. However, it is known that quantum effects can lead to small measurable violations of the null energy condition, and many physicists believe that the required negative energy may actually be possible due to the Casimir effect in quantum physics. Although early calculations suggested a very large amount of negative energy would be required, later calculations showed that the amount of negative energy can be made arbitrarily small.

In 1993, Matt Visser argued that the two mouths of a wormhole with such an induced clock difference could not be brought together without inducing quantum field and gravitational effects that would either make the wormhole collapse or the two mouths repel each other. Because of this, the two mouths could not be brought close enough for causality violation to take place. However, in a 1997 paper, Visser hypothesized that a complex "Roman ring" (named after Tom Roman) configuration of an N number of wormholes arranged in a symmetric polygon could still act as a time machine, although he concludes that this is more likely a flaw in classical quantum gravity theory rather than proof that causality violation is possible.

Other approaches based on general relativity

Another approach involves a dense spinning cylinder usually referred to as a Tipler cylinder, a GR solution discovered by Willem Jacob van Stockum in 1936 and Kornel Lanczos in 1924, but not recognized as allowing closed timelike curves until an analysis by Frank Tipler in 1974. If a cylinder is infinitely long and spins fast enough about its long axis, then a spaceship flying around the cylinder on a spiral path could travel back in time (or forward, depending on the direction of its spiral). However, the density and speed required is so great that ordinary matter is not strong enough to construct it. A similar device might be built from a cosmic string, but none are known to exist, and it does not seem to be possible to create a new cosmic string. Physicist Ronald Mallett is attempting to recreate the conditions of a rotating black hole with ring lasers, in order to bend spacetime and allow for time travel.

A more fundamental objection to time travel schemes based on rotating cylinders or cosmic strings has been put forward by Stephen Hawking, who proved a theorem showing that according to general relativity it is impossible to build a time machine of a special type (a "time machine with the compactly generated Cauchy horizon") in a region where the weak energy condition is satisfied, meaning that the region contains no matter with negative energy density (exotic matter). Solutions such as Tipler's assume cylinders of infinite length, which are easier to analyze mathematically, and although Tipler suggested that a finite cylinder might produce closed timelike curves if the rotation rate were fast enough, he did not prove this. But Hawking points out that because of his theorem, "it can't be done with positive energy density everywhere! I can prove that to build a finite time machine, you need negative energy." This result comes from Hawking's 1992 paper on the chronology protection conjecture, where he examines "the case that the causality violations appear in a finite region of spacetime without curvature singularities" and proves that "there will be a Cauchy horizon that is compactly generated and that in general contains one or more closed null geodesics which will be incomplete. One can define geometrical quantities that measure the Lorentz boost and area increase on going round these closed null geodesics. If the causality violation developed from a noncompact initial surface, the averaged weak energy condition must be violated on the Cauchy horizon." This theorem does not rule out the possibility of time travel by means of time machines with the non-compactly generated Cauchy horizons (such as the Deutsch-Politzer time machine) or in regions which contain exotic matter, which would be used for traversable wormholes or the Alcubierre drive.

Quantum physics

No-communication theorem

When a signal is sent from one location and received at another location, then as long as the signal is moving at the speed of light or slower, the mathematics of simultaneity in the theory of relativity show that all reference frames agree that the transmission-event happened before the reception-event. When the signal travels faster than light, it is received before it is sent, in all reference frames. The signal could be said to have moved backward in time. This hypothetical scenario is sometimes referred to as a tachyonic antitelephone.

Quantum-mechanical phenomena such as quantum teleportation, the EPR paradox, or quantum entanglement might appear to create a mechanism that allows for faster-than-light (FTL) communication or time travel, and in fact some interpretations of quantum mechanics such as the Bohm interpretation presume that some information is being exchanged between particles instantaneously in order to maintain correlations between particles. This effect was referred to as "spooky action at a distance" by Einstein. 

Nevertheless, the fact that causality is preserved in quantum mechanics is a rigorous result in modern quantum field theories, and therefore modern theories do not allow for time travel or FTL communication. In any specific instance where FTL has been claimed, more detailed analysis has proven that to get a signal, some form of classical communication must also be used. The no-communication theorem also gives a general proof that quantum entanglement cannot be used to transmit information faster than classical signals.

Interacting many-worlds interpretation

A variation of Everett's many-worlds interpretation (MWI) of quantum mechanics provides a resolution to the grandfather paradox that involves the time traveler arriving in a different universe than the one they came from; it's been argued that since the traveler arrives in a different universe's history and not their own history, this is not "genuine" time travel. The accepted many-worlds interpretation suggests that all possible quantum events can occur in mutually exclusive histories. However, some variations allow different universes to interact. This concept is most often used in science-fiction, but some physicists such as David Deutsch have suggested that a time traveler should end up in a different history than the one he started from. On the other hand, Stephen Hawking has argued that even if the MWI is correct, we should expect each time traveler to experience a single self-consistent history, so that time travelers remain within their own world rather than traveling to a different one. The physicist Allen Everett argued that Deutsch's approach "involves modifying fundamental principles of quantum mechanics; it certainly goes beyond simply adopting the MWI". Everett also argues that even if Deutsch's approach is correct, it would imply that any macroscopic object composed of multiple particles would be split apart when traveling back in time through a wormhole, with different particles emerging in different worlds.

Experimental results

Certain experiments carried out give the impression of reversed causality, but fail to show it under closer examination. 

The delayed choice quantum eraser experiment performed by Marlan Scully involves pairs of entangled photons that are divided into "signal photons" and "idler photons", with the signal photons emerging from one of two locations and their position later measured as in the double-slit experiment. Depending on how the idler photon is measured, the experimenter can either learn which of the two locations the signal photon emerged from or "erase" that information. Even though the signal photons can be measured before the choice has been made about the idler photons, the choice seems to retroactively determine whether or not an interference pattern is observed when one correlates measurements of idler photons to the corresponding signal photons. However, since interference can only be observed after the idler photons are measured and they are correlated with the signal photons, there is no way for experimenters to tell what choice will be made in advance just by looking at the signal photons, only by gathering classical information from the entire system; thus causality is preserved.

The experiment of Lijun Wang might also show causality violation since it made it possible to send packages of waves through a bulb of caesium gas in such a way that the package appeared to exit the bulb 62 nanoseconds before its entry, but a wave package is not a single well-defined object but rather a sum of multiple waves of different frequencies, and the package can appear to move faster than light or even backward in time even if none of the pure waves in the sum do so. This effect cannot be used to send any matter, energy, or information faster than light, so this experiment is understood not to violate causality either. 

The physicists Günter Nimtz and Alfons Stahlhofen, of the University of Koblenz, claim to have violated Einstein's theory of relativity by transmitting photons faster than the speed of light. They say they have conducted an experiment in which microwave photons traveled "instantaneously" between a pair of prisms that had been moved up to 3 ft (0.91 m) apart, using a phenomenon known as quantum tunneling. Nimtz told New Scientist magazine: "For the time being, this is the only violation of special relativity that I know of." However, other physicists say that this phenomenon does not allow information to be transmitted faster than light. Aephraim Steinberg, a quantum optics expert at the University of Toronto, Canada, uses the analogy of a train traveling from Chicago to New York, but dropping off train cars at each station along the way, so that the center of the train moves forward at each stop; in this way, the speed of the center of the train exceeds the speed of any of the individual cars.

Shengwang Du claims in a peer-reviewed journal to have observed single photons' precursors, saying that they travel no faster than c in a vacuum. His experiment involved slow light as well as passing light through a vacuum. He generated two single photons, passing one through rubidium atoms that had been cooled with a laser (thus slowing the light) and passing one through a vacuum. Both times, apparently, the precursors preceded the photons' main bodies, and the precursor traveled at c in a vacuum. According to Du, this implies that there is no possibility of light traveling faster than c and, thus, no possibility of violating causality.

Absence of time travelers from the future

Krononauts
 
The absence of time travelers from the future is a variation of the Fermi paradox. As the absence of extraterrestrial visitors does not prove they do not exist, so the absence of time travelers fails to prove time travel is physically impossible; it might be that time travel is physically possible but is never developed or is cautiously used. Carl Sagan once suggested the possibility that time travelers could be here but are disguising their existence or are not recognized as time travelers. Some versions of general relativity suggest that time travel might only be possible in a region of spacetime that is warped a certain way, and hence time travelers would not be able to travel back to earlier regions in spacetime, before this region existed. Stephen Hawking stated that this would explain why the world has not already been overrun by "tourists from the future."

Several experiments have been carried out to try to entice future humans, who might invent time travel technology, to come back and demonstrate it to people of the present time. Events such as Perth's Destination Day or MIT's Time Traveler Convention heavily publicized permanent "advertisements" of a meeting time and place for future time travelers to meet. In 1982, a group in Baltimore, Maryland, identifying itself as the Krononauts, hosted an event of this type welcoming visitors from the future. These experiments only stood the possibility of generating a positive result demonstrating the existence of time travel, but have failed so far—no time travelers are known to have attended either event. Some versions of the many-worlds interpretation can be used to suggest that future humans have traveled back in time, but have traveled back to the meeting time and place in a parallel universe.

Forward time travel in physics

Time dilation

Transversal time dilation. The blue dots represent a pulse of light. Each pair of dots with light "bouncing" between them is a clock. For each group of clocks, the other group appears to be ticking more slowly, because the moving clock's light pulse has to travel a larger distance than the stationary clock's light pulse. That is so, even though the clocks are identical and their relative motion is perfectly symmetric.
 
There is a great deal of observable evidence for time dilation in special relativity and gravitational time dilation in general relativity, for example in the famous and easy-to-replicate observation of atmospheric muon decay. The theory of relativity states that the speed of light is invariant for all observers in any frame of reference; that is, it is always the same. Time dilation is a direct consequence of the invariance of the speed of light. Time dilation may be regarded in a limited sense as "time travel into the future": a person may use time dilation so that a small amount of proper time passes for them, while a large amount of proper time passes elsewhere. This can be achieved by traveling at relativistic speeds or through the effects of gravity.

For two identical clocks moving relative to each other without accelerating, each clock measures the other to be ticking slower. This is possible due to the relativity of simultaneity. However, the symmetry is broken if one clock accelerates, allowing for less proper time to pass for one clock than the other. The twin paradox describes this: one twin remains on Earth, while the other undergoes acceleration to relativistic speed as they travel into space, turn around, and travel back to Earth; the traveling twin ages less than the twin who stayed on Earth, because of the time dilation experienced during their acceleration. General relativity treats the effects of acceleration and the effects of gravity as equivalent, and shows that time dilation also occurs in gravity wells, with a clock deeper in the well ticking more slowly; this effect is taken into account when calibrating the clocks on the satellites of the Global Positioning System, and it could lead to significant differences in rates of aging for observers at different distances from a large gravity well such as a black hole.

A time machine that utilizes this principle might be, for instance, a spherical shell with a diameter of 5 meters and the mass of Jupiter. A person at its center will travel forward in time at a rate four times that of distant observers. Squeezing the mass of a large planet into such a small structure is not expected to be within humanity's technological capabilities in the near future. With current technologies, it is only possible to cause a human traveler to age less than companions on Earth by a few milliseconds, the current record being about 20 milliseconds for the cosmonaut Sergei Krikalev.

Philosophy

Philosophers have discussed the nature of time since at least the time of ancient Greece; for example, Parmenides presented the view that time is an illusion. Centuries later, Isaac Newton supported the idea of absolute time, while his contemporary Gottfried Wilhelm Leibniz maintained that time is only a relation between events and it cannot be expressed independently. The latter approach eventually gave rise to the spacetime of relativity.

Presentism vs. eternalism

Many philosophers have argued that relativity implies eternalism, the idea that the past and future exist in a real sense, not only as changes that occurred or will occur to the present. Philosopher of science Dean Rickles disagrees with some qualifications, but notes that "the consensus among philosophers seems to be that special and general relativity are incompatible with presentism." Some philosophers view time as a dimension equal to spatial dimensions, that future events are "already there" in the same sense different places exist, and that there is no objective flow of time; however, this view is disputed.

The bar and ring paradox is an example of the relativity of simultaneity. Both ends of the bar pass through the ring simultaneously in the rest frame of the ring (left), but the ends of the bar pass one after the other in the rest frame of the bar (right).
 
Presentism is a school of philosophy that holds that the future and the past exist only as changes that occurred or will occur to the present, and they have no real existence of their own. In this view, time travel is impossible because there is no future or past to travel to. Keller and Nelson have argued that even if past and future objects do not exist, there can still be definite truths about past and future events, and thus it is possible that a future truth about a time traveler deciding to travel back to the present date could explain the time traveler's actual appearance in the present; these views are contested by some authors.

Presentism in classical spacetime deems that only the present exists; this is not reconcilable with special relativity, shown in the following example: Alice and Bob are simultaneous observers of event O. For Alice, some event E is simultaneous with O, but for Bob, event E is in the past or future. Therefore, Alice and Bob disagree about what exists in the present, which contradicts classical presentism. "Here-now presentism" attempts to reconcile this by only acknowledging the time and space of a single point; this is unsatisfactory because objects coming and going from the "here-now" alternate between real and unreal, in addition to the lack of a privileged "here-now" that would be the "real" present. "Relativized presentism" acknowledges that there are infinite frames of reference, each of them has a different set of simultaneous events, which makes it impossible to distinguish a single "real" present, and hence either all events in time are real—blurring the difference between presentism and eternalism—or each frame of reference exists in its own reality. Options for presentism in special relativity appear to be exhausted, but Gödel and others suspect presentism may be valid for some forms of general relativity. Generally, the idea of absolute time and space is considered incompatible with general relativity; there is no universal truth about the absolute position of events which occur at different times, and thus no way to determine which point in space at one time is at the universal "same position" at another time, and all coordinate systems are on equal footing as given by the principle of diffeomorphism invariance.

The grandfather paradox

A common objection to the idea of traveling back in time is put forth in the grandfather paradox or the argument of auto-infanticide. If one were able to go back in time, inconsistencies and contradictions would ensue if the time traveler were to change anything; there is a contradiction if the past becomes different from the way it is. The paradox is commonly described with a person who travels to the past and kills their own grandfather, prevents the existence of their father or mother, and therefore their own existence. Philosophers question whether these paradoxes make time travel impossible. Some philosophers answer the paradoxes by arguing that it might be the case that backward time travel could be possible but that it would be impossible to actually change the past in any way, an idea similar to the proposed Novikov self-consistency principle in physics.

Ontological paradox

Compossibility

According to the philosophical theory of compossibility, what can happen, for example in the context of time travel, must be weighed against the context of everything relating to the situation. If the past is a certain way, it's not possible for it to be any other way. What can happen when a time traveler visits the past is limited to what did happen, in order to prevent logical contradictions.

Self-consistency principle

The Novikov self-consistency principle, named after Igor Dmitrievich Novikov, states that any actions taken by a time traveler or by an object that travels back in time were part of history all along, and therefore it is impossible for the time traveler to "change" history in any way. The time traveler's actions may be the cause of events in their own past though, which leads to the potential for circular causation, sometimes called a predestination paradox, ontological paradox, or bootstrap paradox. The term bootstrap paradox was popularized by Robert A. Heinlein's story "By His Bootstraps". The Novikov self-consistency principle proposes that the local laws of physics in a region of spacetime containing time travelers cannot be any different from the local laws of physics in any other region of spacetime.

The philosopher Kelley L. Ross argues in "Time Travel Paradoxes" that in a scenario involving a physical object whose world-line or history forms a closed loop in time there can be a violation of the second law of thermodynamics. Ross uses "Somewhere in Time" as an example of such an ontological paradox, where a watch is given to a person, and 60 years later the same watch is brought back in time and given to the same character. Ross states that entropy of the watch will increase, and the watch carried back in time will be more worn with each repetition of its history. The second law of thermodynamics is understood by modern physicists to be a statistical law, so decreasing entropy or non-increasing entropy are not impossible, just improbable. Additionally, entropy statistically increases in systems which are isolated, so non-isolated systems, such as an object, that interact with the outside world, can become less worn and decrease in entropy, and it's possible for an object whose world-line forms a closed loop to be always in the same condition in the same point of its history.

Daniel Greenberger and Karl Svozil proposed that quantum theory gives a model for time travel where the past must be self-consistent.

In fiction

Time travel themes in science fiction and the media can generally be grouped into three categories: immutable timeline; mutable timeline; and alternate histories, as in the interacting-many-worlds interpretation. Frequently in fiction, timeline is used to refer to all physical events in history, so that in time travel stories where events can be changed, the time traveler is described as creating a new or altered timeline. This usage is distinct from the use of the term timeline to refer to a type of chart that illustrates a particular series of events, and the concept is also distinct from a world line, a term from Einstein's theory of relativity which refers to the entire history of a single object.

Novikov self-consistency principle

From Wikipedia, the free encyclopedia

The Novikov self-consistency principle, also known as the Novikov self-consistency conjecture and Larry Niven's law of conservation of history, is a principle developed by Russian physicist Igor Dmitriyevich Novikov in the mid-1980s. Novikov intended it to solve the problem of paradoxes in time travel, which is theoretically permitted in certain solutions of general relativity that contain what are known as closed timelike curves. The principle asserts that if an event exists that would cause a paradox or any "change" to the past whatsoever, then the probability of that event is zero. It would thus be impossible to create time paradoxes.

History

Physicists have long known that some solutions to the theory of general relativity contain closed timelike curves—for example the Gödel metric. Novikov discussed the possibility of closed timelike curves (CTCs) in books he wrote in 1975 and 1983, offering the opinion that only self-consistent trips back in time would be permitted. In a 1990 paper by Novikov and several others, "Cauchy problem in spacetimes with closed timelike curves", the authors state:
The only type of causality violation that the authors would find unacceptable is that embodied in the science-fiction concept of going backward in time and killing one's younger self ("changing the past"). Some years ago one of us (Novikov) briefly considered the possibility that CTCs might exist and argued that they cannot entail this type of causality violation: events on a CTC are already guaranteed to be self-consistent, Novikov argued; they influence each other around a closed curve in a self-adjusted, cyclical, self-consistent way. The other authors recently have arrived at the same viewpoint.
We shall embody this viewpoint in a principle of self-consistency, which states that the only solutions to the laws of physics that can occur locally in the real Universe are those which are globally self-consistent. This principle allows one to build a local solution to the equations of physics only if that local solution can be extended to a part of a (not necessarily unique) global solution, which is well defined throughout the nonsingular regions of the space-time.
Among the co-authors of this 1990 paper were Kip Thorne, Mike Morris, and Ulvi Yurtsever, who in 1988 had stirred up renewed interest in the subject of time travel in general relativity with their paper "Wormholes, Time Machines, and the Weak Energy Condition", which showed that a new general relativity solution known as a traversable wormhole could lead to closed timelike curves, and unlike previous CTC-containing solutions, it did not require unrealistic conditions for the universe as a whole. After discussions with another co-author of the 1990 paper, John Friedman, they convinced themselves that time travel needn't lead to unresolvable paradoxes, regardless of the object sent through the wormhole.

"Polchinski's paradox".
 
Echeverria and Klinkhammer's resolution
 
By way of response, physicist Joseph Polchinski wrote them a letter arguing that one could avoid the issue of free will by considering a potentially paradoxical scenario involving a billiard ball sent back in time through a wormhole. In Polchinski's scenario, the billiard ball is fired into the wormhole at an angle such that, if it continues along its path, it will exit in the past at just the right angle to collide with its earlier self, knocking it off track and preventing it from entering the wormhole in the first place. Thorne would refer to this scenario as "Polchinski's paradox" in 1994.

Upon considering the scenario, Fernando Echeverria and Gunnar Klinkhammer, two students at Caltech (where Thorne taught), arrived at a solution to the problem that managed to avoid any inconsistencies. In the revised scenario, the ball emerges from the future at a different angle than the one that generates the paradox, and delivers its younger self a glancing blow instead of knocking it completely away from the wormhole. This blow alters its trajectory by just the right degree, meaning it will travel back in time with the angle required to deliver its younger self the necessary glancing blow. Echeverria and Klinkhammer actually found that there was more than one self-consistent solution, with slightly different angles for the glancing blow in each situation. Later analysis by Thorne and Robert Forward illustrated that for certain initial trajectories of the billiard ball, there could actually be an infinite number of self-consistent solutions.

Echeverria, Klinkhammer and Thorne published a paper discussing these results in 1991; in addition, they reported that they had tried to see if they could find any initial conditions for the billiard ball for which there were no self-consistent extensions, but were unable to do so. Thus it is plausible that there exist self-consistent extensions for every possible initial trajectory, although this has not been proven. This only applies to initial conditions outside of the chronology-violating region of spacetime, which is bounded by a Cauchy horizon. This could mean that the Novikov self-consistency principle does not actually place any constraints on systems outside of the region of space-time where time travel is possible, only inside it. 

Even if self-consistent extensions can be found for arbitrary initial conditions outside the Cauchy Horizon, the finding that there can be multiple distinct self-consistent extensions for the same initial condition—indeed, Echeverria et al. found an infinite number of consistent extensions for every initial trajectory they analyzed—can be seen as problematic, since classically there seems to be no way to decide which extension the laws of physics will choose. To get around this difficulty, Thorne and Klinkhammer analyzed the billiard ball scenario using quantum mechanics, performing a quantum-mechanical sum over histories (path integral) using only the consistent extensions, and found that this resulted in a well-defined probability for each consistent extension. The authors of Cauchy problem in spacetimes with closed timelike curves write:
The simplest way to impose the principle of self-consistency in quantum mechanics (in a classical space-time) is by a sum-over-histories formulation in which one includes all those, and only those, histories that are self-consistent. It turns out that, at least formally (modulo such issues as the convergence of the sum), for every choice of the billiard ball's initial, nonrelativistic wave function before the Cauchy horizon, such a sum over histories produces unique, self-consistent probabilities for the outcomes of all sets of subsequent measurements. ... We suspect, more generally, that for any quantum system in a classical wormhole spacetime with a stable Cauchy horizon, the sum over all self-consistent histories will give unique, self-consistent probabilities for the outcomes of all sets of measurements that one might choose to make.

Assumptions

The Novikov consistency principle assumes certain conditions about what sort of time travel is possible. Specifically, it assumes either that there is only one timeline, or that any alternative timelines (such as those postulated by the many-worlds interpretation of quantum mechanics) are not accessible. 

Given these assumptions, the constraint that time travel must not lead to inconsistent outcomes could be seen merely as a tautology, a self-evident truth that can not possibly be false. However, the Novikov self-consistency principle is intended to go beyond just the statement that history must be consistent, making the additional nontrivial assumption that the universe obeys the same local laws of physics in situations involving time travel that it does in regions of space-time that lack closed timelike curves. This is clarified in the above-mentioned "Cauchy problem in spacetimes with closed timelike curves", where the authors write:
That the principle of self-consistency is not totally tautological becomes clear when one considers the following alternative: The laws of physics might permit CTCs; and when CTCs occur, they might trigger new kinds of local physics which we have not previously met. ... The principle of self-consistency is intended to rule out such behavior. It insists that local physics is governed by the same types of physical laws as we deal with in the absence of CTCs: the laws that entail self-consistent single valuedness for the fields. In essence, the principle of self-consistency is a principle of no new physics. If one is inclined from the outset to ignore or discount the possibility of new physics, then one will regard self-consistency as a trivial principle.

Implications for time travelers

The assumptions of the self-consistency principle can be extended to hypothetical scenarios involving intelligent time travelers as well as unintelligent objects such as billiard balls. The authors of "Cauchy problem in spacetimes with closed timelike curves" commented on the issue in the paper's conclusion, writing:
If CTCs are allowed, and if the above vision of theoretical physics' accommodation with them turns out to be more or less correct, then what will this imply about the philosophical notion of free will for humans and other intelligent beings? It certainly will imply that intelligent beings cannot change the past. Such change is incompatible with the principle of self-consistency. Consequently, any being who went through a wormhole and tried to change the past would be prevented by physical law from making the change; i.e., the "free will" of the being would be constrained. Although this constraint has a more global character than constraints on free will that follow from the standard, local laws of physics, it is not obvious to us that this constraint is more severe than those imposed by standard physical law.
Similarly, physicist and astronomer J. Craig Wheeler concludes that:
According to the consistency conjecture, any complex interpersonal interactions must work themselves out self-consistently so that there is no paradox. That is the resolution. This means, if taken literally, that if time machines exist, there can be no free will. You cannot will yourself to kill your younger self if you travel back in time. You can coexist, take yourself out for a beer, celebrate your birthday together, but somehow circumstances will dictate that you cannot behave in a way that leads to a paradox in time. Novikov supports this point of view with another argument: physics already restricts your free will every day. You may will yourself to fly or to walk through a concrete wall, but gravity and condensed-matter physics dictate that you cannot. Why, Novikov asks, is the consistency restriction placed on a time traveler any different?

Time-loop logic

Time-loop logic, coined by roboticist and futurist Hans Moravec, is a hypothetical system of computation that exploits the Novikov self-consistency principle to compute answers much faster than possible with the standard model of computational complexity using Turing machines. In this system, a computer sends a result of a computation backwards through time and relies upon the self-consistency principle to force the sent result to be correct, provided the machine can reliably receive information from the future and provided the algorithm and the underlying mechanism are formally correct. An incorrect result or no result can still be produced if the time travel mechanism or algorithm are not guaranteed to be accurate. 

A simple example is an iterative method algorithm. Moravec states:
Make a computing box that accepts an input, which represents an approximate solution to some problem, and produces an output that is an improved approximation. Conventionally you would apply such a computation repeatedly a finite number of times, and then settle for the better, but still approximate, result. Given an appropriate negative delay something else is possible: [...] the result of each iteration of the function is brought back in time to serve as the "first" approximation. As soon as the machine is activated, a so-called "fixed-point" of F, an input which produces an identical output, usually signaling a perfect answer, appears (by an extraordinary coincidence!) immediately and steadily. [...] If the iteration does not converge, that is, if F has no fixed point, the computer outputs and inputs will shut down or hover in an unlikely intermediate state.

Quantum computation with a negative delay

Physicist David Deutsch showed in 1991 that this model of computation could solve NP problems in polynomial time, and Scott Aaronson later extended this result to show that the model could also be used to solve PSPACE problems in polynomial time. Deutsch shows that quantum computation with a negative delay—backwards time travel—produces only self-consistent solutions, and the chronology-violating region imposes constraints that are not apparent through classical reasoning. Researchers published in 2014 a simulation in which they claim to have validated Deutsch's model with photons. However, it was shown in an article by Tolksdorf and Verch that Deutsch's self-consistency condition can be fulfilled to arbitrary precision in any quantum system described according to relativistic quantum field theory even on spacetimes which do not admit closed timelike curves, casting doubts on whether Deutsch's model is really characteristic of quantum processes simulating closed timelike curves in the sense of general relativity.

Scientific acceptance

General relativity researcher Matt Visser views causal loops and Novikov's self-consistency principle as an ad hoc solution and supposes that there are far more damaging implications of time travel. Time-travel researcher Serguei Krasnikov similarly finds no inherent fault in causal loops, but finds other problems with time travel in general relativity.

Quantum decoherence

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Quantum_decoherence ...