Search This Blog

Saturday, September 25, 2021

Shockley–Queisser limit

From Wikipedia, the free encyclopedia
 
The Shockley–Queisser limit for the efficiency of a solar cell, without concentration of solar radiation. The curve is wiggly because of absorption bands in the atmosphere. In the original paper, the solar spectrum was approximated by a smooth curve, the 6000K blackbody spectrum. As a result, the efficiency graph was smooth and the values were slightly different.

In physics, the Shockley–Queisser limit (also known as the detailed balance limit, Shockley Queisser Efficiency Limit or SQ Limit, or in physical terms the radiative efficiency limit) is the maximum theoretical efficiency of a solar cell using a single p-n junction to collect power from the cell where the only loss mechanism is radiative recombination in the solar cell. It was first calculated by William Shockley and Hans-Joachim Queisser at Shockley Semiconductor in 1961, giving a maximum efficiency of 30% at 1.1 eV. This first calculation used the 6000K black-body spectrum as an approximation to the solar spectrum. Subsequent calculations have used measured global solar spectra (AM1.5G) and included a back surface mirror which increases the maximum efficiency to 33.7% for a solar cell with a bandgap of 1.34 eV. The limit is one of the most fundamental to solar energy production with photovoltaic cells, and is considered to be one of the most important contributions in the field.

The limit is that the maximum solar conversion efficiency is around 33.7% for a single p-n junction photovoltaic cell, assuming typical sunlight conditions (unconcentrated, AM 1.5 solar spectrum), and subject to other caveats and assumptions discussed below. This maximum occurs at a band gap of 1.34 eV. That is, of all the power contained in sunlight (about 1000 W/m2) falling on an ideal solar cell, only 33.7% of that could ever be turned into electricity (337 W/m2). The most popular solar cell material, silicon, has a less favorable band gap of 1.1 eV, resulting in a maximum efficiency of about 32%. Modern commercial mono-crystalline solar cells produce about 24% conversion efficiency, the losses due largely to practical concerns like reflection off the front of the cell and light blockage from the thin wires on the cell surface.

The Shockley–Queisser limit only applies to conventional solar cells with a single p-n junction; solar cells with multiple layers can (and do) outperform this limit, and so can solar thermal and certain other solar energy systems. In the extreme limit, for a multi-junction solar cell with an infinite number of layers, the corresponding limit is 68.7% for normal sunlight, or 86.8% using concentrated sunlight. (See Solar cell efficiency.)

Background

The Shockley–Queisser limit, zoomed in near the region of peak efficiency.

In a traditional solid-state semiconductor such as silicon, a solar cell is made from two doped crystals, one an n-type semiconductor, which has extra free electrons, and the other a p-type semiconductor, which is lacking free electrons, referred to as "holes." When initially placed in contact with each other, some of the electrons in the n-type portion will flow into the p-type to "fill in" the missing electrons. Eventually enough will flow across the boundary to equalize the Fermi levels of the two materials. The result is a region at the interface, the p-n junction, where charge carriers are depleted on each side of the interface. In silicon, this transfer of electrons produces a potential barrier of about 0.6 V to 0.7 V.

When the material is placed in the sun, photons from the sunlight can be absorbed in the p-type side of the semiconductor, causing electrons in the valence band to be promoted in energy to the conduction band. This process is known as photoexcitation. As the name implies, electrons in the conduction band are free to move about the semiconductor. When a load is placed across the cell as a whole, these electrons will flow from the p-type side into the n-type side, lose energy while moving through the external circuit, and then go back into the p-type material where they can re-combine with the valence-band holes they left behind. In this way, sunlight creates an electric current.

The limit

The Shockley–Queisser limit is calculated by examining the amount of electrical energy that is extracted per photon of incoming sunlight. There are several considerations:

Blackbody radiation

Any material, that is not at absolute zero (0 Kelvin), emits electromagnetic radiation through the black-body radiation effect. In a cell at room temperature, this represents approximately 7% of all the energy falling on the cell.

Any energy lost in a cell is turned into heat, so any inefficiency in the cell increases the cell temperature when it is placed in sunlight. As the temperature of the cell increases, the outgoing radiation and heat loss through conduction and convection also increase, until an equilibrium is reached. In practice, this equilibrium is normally reached at temperatures as high as 360 Kelvin, and consequently, cells normally operate at lower efficiencies than their room-temperature rating. Module datasheets normally list this temperature dependency as TNOCT (NOCT - Nominal Operating Cell Temperature).

For a "blackbody" at normal temperatures, a very small part of this radiation (the number per unit time and per unit area given by Qc, "c" for "cell") is photons having energy greater than the band gap (wavelength less than about 1.1 microns for silicon), and part of these photons (Shockley and Queisser use the factor tc) are generated by recombination of electrons and holes, which decreases the amount of current that could be generated otherwise. This is a very small effect, but Shockley and Queisser assume that the total rate of recombination (see below) when the voltage across the cell is zero (short circuit or no light) is proportional to the blackbody radiation Qc. This rate of recombination plays a negative role in the efficiency. Shockley and Queisser calculate Qc to be 1700 photons per second per square centimetre for silicon at 300K.

Recombination

Black curve: The limit for open-circuit voltage in the Shockley–Queisser model (i.e., voltage at zero current). The red dotted line shows that this voltage is always below the bandgap. This voltage is limited by recombination.

Absorption of a photon creates an electron-hole pair, which could potentially contribute to the current. However, the reverse process must also be possible, according to the principle of detailed balance: an electron and a hole can meet and recombine, emitting a photon. This process reduces the efficiency of the cell. Other recombination processes may also exist (see "Other considerations" below), but this one is absolutely required.

In the Shockley–Queisser model, the recombination rate depends on the voltage across the cell but is the same whether or not there is light falling on the cell. A factor fc gives the ratio of recombination that produces radiation to total recombination, so the rate of recombination per unit area when V = 0 is 2tcQc/fc and thus depends on Qc, the flux of blackbody photons above the band-gap energy. The factor of 2 was included on the assumption that radiation emitted by the cell goes in both directions. (This is actually debatable if a reflective surface is used on the shady side.) When the voltage is non-zero, the concentrations of charge carriers (electrons and holes) change, and according to the authors the rate of recombination changes by a factor of exp(V/Vc), where Vc is the voltage equivalent of the temperature of the cell, or "thermal voltage", namely

(q being the charge of an electron). Thus the rate of recombination, in this model, is proportional to exp(V/Vc) times the blackbody radiation above the band-gap energy:

(This is actually an approximation, correct so long as the cell is thick enough to act as a black body, to the more accurate expression

The difference in maximum theoretical efficiency however is negligibly small, except for tiny bandgaps below 200meV.)

The rate of generation of electron-hole pairs not due to incoming sunlight stays the same, so recombination minus spontaneous generation is

where

(Shockley and Queisser take fc to be a constant, although they admit that it may itself depend on voltage.)

The rate of generation of electron-hole pairs due to sunlight is

where is the number of photons above the band-gap energy falling on the cell per unit area, and ts is the fraction of these that generate an electron-hole pair. This rate of generation is called Ish because it is the "short circuit" current (per unit area). When there is a load, then V will not be zero and we have a current equal to the rate of generation of pairs due to the sunlight minus the difference between recombination and spontaneous generation:

The open-circuit voltage is therefore given (assuming fc does not depend on voltage) by

The product of the short-circuit current Ish and the open-circuit voltage Voc Shockley and Queisser call the "nominal power". It is not actually possible to get this amount of power out of the cell, but we can get close (see "Impedance matching" below).

The ratio of the open-circuit voltage to the band-gap voltage Shockley and Queisser call V. Under open-circuit conditions, we have

Asymptotically, this gives

or

where Vs is the voltage equivalent of the temperature of the sun. As the ratio Vc/Vs goes to zero, the open-circuit voltage goes to the band-gap voltage, and as it goes to one, the open-circuit voltage goes to zero. This is why the efficiency falls if the cell heats up. In fact this expression represents the thermodynamic upper limit of the amount of work that can be obtained from a heat source at the temperature of the sun and a heat sink at the temperature of the cell.

Spectrum losses

Since the act of moving an electron from the valence band to the conduction band requires energy, only photons with more than that amount of energy will produce an electron-hole pair. In silicon the conduction band is about 1.1 eV away from the valence band, this corresponds to infrared light with a wavelength of about 1.1 microns. In other words, photons of red, yellow and blue light and some near-infrared will contribute to power production, whereas radio waves, microwaves, and most infrared photons will not. This places an immediate limit on the amount of energy that can be extracted from the sun. Of the 1,000 W/m2 in AM1.5 sunlight, about 19% of that has less than 1.1 eV of energy, and will not produce power in a silicon cell.

Another important contributor to losses is that any energy above and beyond the bandgap energy is lost. While blue light has roughly twice the energy of red light, that energy is not captured by devices with a single p-n junction. The electron is ejected with higher energy when struck by a blue photon, but it loses this extra energy as it travels toward the p-n junction (the energy is converted into heat). This accounts for about 33% of the incident sunlight, meaning that, for silicon, from spectrum losses alone there is a theoretical conversion efficiency limit of about 48%, ignoring all other factors.

There is a trade-off in the selection of a bandgap. If the band gap is large, not as many photons create pairs, whereas if the band gap is small, the electron-hole pairs do not contain as much energy.

Shockley and Queisser call the efficiency factor associated with spectrum losses u, for "ultimate efficiency function". Shockley and Queisser calculated that the best band gap for sunlight happens to be 1.1 eV, the value for silicon, and gives a u of 44%. They used blackbody radiation of 6000K for sunlight, and found that the optimum band gap would then have an energy of 2.2 kTs. (At that value, 22% of the blackbody radiation energy would be below the band gap.) Using a more accurate spectrum may give a slightly different optimum. A blackbody at 6000 K puts out 7348 W per square centimetre, so a value for u of 44% and a value of 5.73×1018 photons per joule (corresponding to a band gap of 1.09 V, the value used by Shockley and Queisser) gives Qs equal to 1.85×1022 photons per second per square centimetre.

Impedance matching

If the resistance of the load is too high, the current will be very low, while if the load resistance is too low, the voltage drop across it will be very low. There is an optimal load resistance that will draw the most power from the solar cell at a given illumination level. Shockley and Queisser call the ratio of power extracted to IshVoc the impedance matching factor, m. (It is also called the fill factor.) The optimum depends on the shape of the I versus V curve. For very low illumination, the curve is more or less a diagonal line, and m will be 1/4. But for high illumination, m approaches 1. Shockley and Queisser give a graph showing m as a function of the ratio zoc of the open-circuit voltage to the thermal voltage Vc. According to the authors, this ratio is well approximated by ln(fQs/Qc), where f is the combination of factors fsfωts/(2tc), in which fω is the solid angle of the sun divided by π. The maximum value of f without light concentration (with reflectors for example) is just fω/2, or 1.09×10−5, according to the authors. Using the above-mentioned values of Qs and Qc, this gives a ratio of open-circuit voltage to thermal voltage of 32.4 (Voc equal to 77% of the band gap). The authors derive the equation

which can be solved to find zm, the ratio of optimal voltage to thermal voltage. For a zoc of 32.4, we find zm equal to 29.0. One can then use the formula

to find the impedance matching factor. For a zoc of 32.4, this comes to 86.5%.

All together

Considering the spectrum losses alone, a solar cell has a peak theoretical efficiency of 48% (or 44% according to Shockley and Queisser – their "ultimate efficiency factor"). Thus the spectrum losses represent the vast majority of lost power. Including the effects of recombination and the I versus V curve, the efficiency is described by the following equation:

with

where u, v, and m are respectively the ultimate efficiency factor, the ratio of open-circuit voltage Vop to band-gap voltage Vg, and the impedance matching factor (all discussed above), and Vc is the thermal voltage, and Vs is the voltage equivalent of the temperature of the Sun. Letting ts be 1, and using the values mentioned above of 44%, 77%, and 86.5% for the three factors gives about 29% overall efficiency. Shockley and Queisser say 30% in their abstract, but do not give a detailed calculation. A more recent reference gives, for a single-junction cell, a theoretical peak performance of about 33.7%, or about 337 W/m2 in AM1.5.

When the amount of sunlight is increased using reflectors or lenses, the factor fω (and therefore f) will be higher. This raises both v and m. Shockley and Queisser include a graph showing the overall efficiency as a function of band gap for various values of f. For a value of 1, the graph shows a maximum efficiency of just over 40%, getting close to the ultimate efficiency (by their calculation) of 44%.

Other considerations

Shockley and Queisser's work considered the most basic physics only; there are a number of other factors that further reduce the theoretical power.

Limited mobility

When an electron is ejected through photoexcitation, the atom it was formerly bound to is left with a net positive charge. Under normal conditions, the atom will pull off an electron from a surrounding atom in order to neutralize itself. That atom will then attempt to remove an electron from another atom, and so forth, producing an ionization chain reaction that moves through the cell. Since these can be viewed as the motion of a positive charge, it is useful to refer to them as "holes", a sort of virtual positive electron.

Like electrons, holes move around the material, and will be attracted towards a source of electrons. Normally these are provided through an electrode on the back surface of the cell. Meanwhile, the conduction-band electrons are moving forward towards the electrodes on the front surface. For a variety of reasons, holes in silicon move much more slowly than electrons. This means that during the finite time while the electron is moving forward towards the p-n junction, it may meet a slowly moving hole left behind by a previous photoexcitation. When this occurs, the electron recombines at that atom, and the energy is lost (normally through the emission of a photon of that energy, but there are a variety of possible processes).

Recombination places an upper limit on the rate of production; past a certain rate there are so many holes in motion that new electrons will never make it to the p-n junction. In silicon this reduces the theoretical performance under normal operating conditions by another 10% over and above the thermal losses noted above. Materials with higher electron (or hole) mobility can improve on silicon's performance; gallium arsenide (GaAs) cells gain about 5% in real-world examples due to this effect alone. In brighter light, when it is concentrated by mirrors or lenses for example, this effect is magnified. Normal silicon cells quickly saturate, while GaAs continue to improve at concentrations as high as 1500 times.

Non-radiative recombination

Recombination between electrons and holes is detrimental in a solar cell, so designers try to minimize it. However, radiative recombination—when an electron and hole recombine to create a photon that exits the cell into the air—is inevitable, because it is the time-reversed process of light absorption. Therefore, the Shockley–Queisser calculation takes radiative recombination into account; but it assumes (optimistically) that there is no other source of recombination. More realistic limits, which are lower than the Shockley–Queisser limit, can be calculated by taking into account other causes of recombination. These include recombination at defects and grain boundaries.

In crystalline silicon, even if there are no crystalline defects, there is still Auger recombination, which occurs much more often than radiative recombination. By taking this into account, the theoretical efficiency of crystalline silicon solar cells was calculated to be 29.4%.

Frequency-dependent absorption

The Ozdemir-Barone method considers two additional factors in calculating the solar efficiency limit, namely, the frequency dependence of the absorption and reflectance in certain materials. According to Shockley-Quiesser limit, solar cell efficiency of semiconductors depend on the band gap of the material. Here, it is assumed that optical absorption starts above the band gap of the material. However, due to finite temperature, optical excitations are possible below the optical gap. We can clearly see this from the tail of the imaginary dielectric function below the optical gap depending on temperature. Since imaginary dielectric functions is, even though low, non-zero below the optical gap, there is absorption of light below the optical gap. For thick enough materials this can cause significant absorption. In the Shockley-Quiesser limit, 100% light absorption is assumed above the band gap of the material. However, there are two problems with this assumption. First, there can be absorbance below the band gap of the material at finite temperatures. Secondly, reflectance of the material is non-zero, therefore absorbance cannot be 100% above the band gap. These two problems are solved in Ozdemir-Barone method.

Exceeding the limit

Breakdown of the causes for the Shockley–Queisser limit. The black height is energy that can be extracted as useful electrical power (the Shockley–Queisser efficiency limit); the pink height is energy of below-bandgap photons; the green height is energy lost when hot photogenerated electrons and holes relax to the band edges; the blue height is energy lost in the tradeoff between low radiative recombination versus high operating voltage. Designs that exceed the Shockley–Queisser limit work by overcoming one or more of these three loss processes.

It is important to note that the analysis of Shockley and Queisser was based on the following assumptions:

  1. One electron–hole pair excited per incoming photon
  2. Thermal relaxation of the electron–hole pair energy in excess of the band gap
  3. Illumination with non-concentrated sunlight

None of these assumptions is necessarily true, and a number of different approaches have been used to significantly surpass the basic limit.

Multijunction cells

The most widely explored path to higher efficiency solar cells has been multijunction photovoltaic cells, also known as "tandem cells". These cells use multiple p-n junctions, each one tuned to a particular frequency of the spectrum. This reduces the problem discussed above, that a material with a single given bandgap cannot absorb sunlight below the bandgap, and cannot take full advantage of sunlight far above the bandgap. In the most common design, a high-bandgap solar cell sits on top, absorbing high-energy, shorter-wavelength light, and transmitting the rest. Beneath it is a lower-bandgap solar cell which absorbs some of the lower-energy, longer-wavelength light. There may be yet another cell beneath that one, with as many as four layers in total.

The calculation of the fundamental efficiency limits of these multijunction cells works in a fashion similar to those for single-junction cells, with the caveat that some of the light will be converted to other frequencies and re-emitted within the structure. Using methods similar to the original Shockley–Queisser analysis with these considerations in mind produces similar results; a two-layer cell can reach 42% efficiency, three-layer cells 49%, and a theoretical infinity-layer cell 68% in non-concentrated sunlight.

The majority of tandem cells that have been produced to date use three layers, tuned to blue (on top), yellow (middle) and red (bottom). These cells require the use of semiconductors that can be tuned to specific frequencies, which has led to most of them being made of gallium arsenide (GaAs) compounds, often germanium for red, GaAs for yellow, and GaInP2 for blue. They are very expensive to produce, using techniques similar to microprocessor construction but with "chip" sizes on the scale of several centimeters. In cases where outright performance is the only consideration, these cells have become common; they are widely used in satellite applications for instance, where the power-to-weight ratio overwhelms practically every other consideration. They also can be used in concentrated photovoltaic applications (see below), where a relatively small solar cell can serve a large area.

Tandem cells are not restricted to high-performance applications; they are also used to make moderate-efficiency photovoltaics out of cheap but low-efficiency materials. One example is amorphous silicon solar cells, where triple-junction tandem cells are commercially available from Uni-Solar and other companies.

Light concentration

Sunlight can be concentrated with lenses or mirrors to much higher intensity. The sunlight intensity is a parameter in the Shockley–Queisser calculation, and with more concentration, the theoretical efficiency limit increases somewhat. If, however, the intense light heats up the cell, which often occurs in practice, the theoretical efficiency limit may go down all things considered.

In practice, the choice of whether or not to use light concentration is based primarily on other factors besides the small change in solar cell efficiency. These factors include the relative cost per area of solar cells versus focusing optics like lenses or mirrors, the cost of sunlight-tracking systems, the proportion of light successfully focused onto the solar cell, and so on.

A wide variety of optical systems can be used to concentrate sunlight, including ordinary lenses and curved mirrors, fresnel lenses, arrays of small flat mirrors, and luminescent solar concentrators. Another proposal suggests spreading out an array of microscopic solar cells on a surface, and focusing light onto them via microlens arrays, while yet another proposal suggests designing a semiconductor nanowire array in such a way that light is concentrated in the nanowires.

Intermediate band photovoltaics

There has been some work on producing mid-energy states within single crystal structures. These cells would combine some of the advantages of the multi-junction cell with the simplicity of existing silicon designs. A detailed limit calculation for these cells with infinite bands suggests a maximum efficiency of 77.2% To date, no commercial cell using this technique has been produced.

Photon upconversion

As discussed above, photons with energy below the bandgap are wasted in ordinary single-junction solar cells. One way to reduce this waste is to use photon upconversion, i.e. incorporating into the module a molecule or material that can absorb two or more below-bandgap photons and then emit one above-bandgap photon. Another possibility is to use two-photon absorption, but this can only work at extremely high light concentration.

Thermal photon upconversion

Thermal upconversion is based on the absorption of photons with low energies in the upconverter, which heats up and re-emits photons with higher energies. The upconversion efficiency can be improved by controlling the optical density of states of the absorber and also by tuning the angularly-selective emission characteristics. For example, a planar thermal upconverting platform can have a front surface that absorbs low-energy photons incident within a narrow angular range, and a back surface that efficiently emits only high-energy photons. A hybrid thermophotovoltaic platform exploiting thermal upconversion was theoretically predicted to demonstrate maximum conversion efficiency of 73% under illumination by non-concentrated sunlight. A detailed analysis of non-ideal hybrid platforms that allows for up to 15% of absorption/re-emission losses yielded limiting efficiency value of 45% for Si PV cells.

Hot electron capture

One of the main loss mechanisms is due to the loss of excess carrier energy above the bandgap. It should be no surprise that there has been a considerable amount of research into ways to capture the energy of the carriers before they can lose it in the crystal structure. One system under investigation for this is quantum dots.

Multiple exciton generation

A related concept is to use semiconductors that generate more than one excited electron per absorbed photon, instead of a single electron at the band edge. Quantum dots have been extensively investigated for this effect, and they have been shown to work for solar-relevant wavelengths in prototype solar cells.

Another, more straightforward way to utilise multiple exciton generation is a process called singlet fission (or singlet exciton fission) by which a singlet exciton is converted into two triplet excitons of lower energy. This allows for higher theoretical efficiencies when coupled to a low bandgap semiconductor and quantum efficiencies exceeding 100% have been reported.

Also in materials where the (excited) electrons interact strongly with the remaining electrons such as Mott insulators multiple excitons can be generated.

Fluorescent downconversion/downshifting

Another possibility for increased efficiency is to convert the frequency of light down towards the bandgap energy with a fluorescent material. In particular, to exceed the Shockley–Queisser limit, it is necessary for the fluorescent material to convert a single high-energy photon into several lower-energy ones (quantum efficiency > 1). For example, one photon with more than double the bandgap energy can become two photons above the bandgap energy. In practice, however, this conversion process tends to be relatively inefficient. If a very efficient system were found, such a material could be painted on the front surface of an otherwise standard cell, boosting its efficiency for little cost. In contrast, considerable progress has been made in the exploration of fluorescent downshifting, which converts high-energy light (e. g., UV light) to low-energy light (e. g., red light) with a quantum efficiency smaller than 1. The cell may be more sensitive to these lower-energy photons. Dyes, rare-earth phosphors and quantum dots are actively investigated for fluorescent downshifting. For example, silicon quantum dots enabled downshifting has led to the efficiency enhancement of the state-of-the-art silicon solar cells.

Thermophotovoltaic downconversion

Thermophotovoltaic cells are similar to phosphorescent systems, but use a plate to act as the downconvertor. Solar energy falling on the plate, typically black-painted metal, is re-emitted as lower-energy IR, which can then be captured in an IR cell. This relies on a practical IR cell being available, but the theoretical conversion efficiency can be calculated. For a converter with a bandgap of 0.92 eV, efficiency is limited to 54% with a single-junction cell, and 85% for concentrated light shining on ideal components with no optical losses and only radiative recombination.

Solar cell research

From Wikipedia, the free encyclopedia

Reported timeline of research solar cell energy conversion efficiencies since 1976 (National Renewable Energy Laboratory)

There are currently many research groups active in the field of photovoltaics in universities and research institutions around the world. This research can be categorized into three areas: making current technology solar cells cheaper and/or more efficient to effectively compete with other energy sources; developing new technologies based on new solar cell architectural designs; and developing new materials to serve as more efficient energy converters from light energy into electric current or light absorbers and charge carriers.

Silicon processing

One way of reducing the cost is to develop cheaper methods of obtaining silicon that is sufficiently pure. Silicon is a very common element, but is normally bound in silica, or silica sand. Processing silica (SiO2) to produce silicon is a very high energy process - at current efficiencies, it takes one to two years for a conventional solar cell to generate as much energy as was used to make the silicon it contains. More energy efficient methods of synthesis are not only beneficial to the solar industry, but also to industries surrounding silicon technology as a whole.

The current industrial production of silicon is via the reaction between carbon (charcoal) and silica at a temperature around 1700 °C. In this process, known as carbothermic reduction, each tonne of silicon (metallurgical grade, about 98% pure) is produced with the emission of about 1.5 tonnes of carbon dioxide.

Solid silica can be directly converted (reduced) to pure silicon by electrolysis in a molten salt bath at a fairly mild temperature (800 to 900 °C). While this new process is in principle the same as the FFC Cambridge Process which was first discovered in late 1996, the interesting laboratory finding is that such electrolytic silicon is in the form of porous silicon which turns readily into a fine powder, with a particle size of a few micrometers, and may therefore offer new opportunities for development of solar cell technologies.

Another approach is also to reduce the amount of silicon used and thus cost, is by micromachining wafers into very thin, virtually transparent layers that could be used as transparent architectural coverings. The technique involves taking a silicon wafer, typically 1 to 2 mm thick, and making a multitude of parallel, transverse slices across the wafer, creating a large number of slivers that have a thickness of 50 micrometres and a width equal to the thickness of the original wafer. These slices are rotated 90 degrees, so that the surfaces corresponding to the faces of the original wafer become the edges of the slivers. The result is to convert, for example, a 150 mm diameter, 2 mm-thick wafer having an exposed silicon surface area of about 175 cm2 per side into about 1000 slivers having dimensions of 100 mm × 2 mm × 0.1 mm, yielding a total exposed silicon surface area of about 2000 cm2 per side. As a result of this rotation, the electrical doping and contacts that were on the face of the wafer are located at the edges of the sliver, rather than at the front and rear as in the case of conventional wafer cells. This has the interesting effect of making the cell sensitive from both the front and rear of the cell (a property known as bifaciality). Using this technique, one silicon wafer is enough to build a 140 watt panel, compared to about 60 wafers needed for conventional modules of same power output.

Nanocrystalline solar cells

These structures make use of some of the same thin-film light absorbing materials but are overlain as an extremely thin absorber on a supporting matrix of conductive polymer or mesoporous metal oxide having a very high surface area to increase internal reflections (and hence increase the probability of light absorption). Using nanocrystals allows one to design architectures on the length scale of nanometers, the typical exciton diffusion length. In particular, single-nanocrystal ('channel') devices, an array of single p-n junctions between the electrodes and separated by a period of about a diffusion length, represent a new architecture for solar cells and potentially high efficiency.

Thin-film processing

Thin-film photovoltaic cells can use less than 1% of the expensive raw material (silicon or other light absorbers) compared to wafer-based solar cells, leading to a significant price drop per Watt peak capacity. There are many research groups around the world actively researching different thin-film approaches and/or materials.

One particularly promising technology is crystalline silicon thin films on glass substrates. This technology combines the advantages of crystalline silicon as a solar cell material (abundance, non-toxicity, high efficiency, long-term stability) with the cost savings of using a thin-film approach.

Another interesting aspect of thin-film solar cells is the possibility to deposit the cells on all kind of materials, including flexible substrates (PET for example), which opens a new dimension for new applications.

Metamorphic multijunction solar cell

As of December 2014, the world record for solar cell efficiency at 46% was achieved by using multi-junction concentrator solar cells, developed from collaboration efforts of Soitec, CEA-Leti, France together with Fraunhofer ISE, Germany.

The National Renewable Energy Laboratory (NREL) won one of R&D Magazine's R&D 100 Awards for its Metamorphic Multijunction photovoltaic cell, an ultra-light and flexible cell that converts solar energy with record efficiency.

The ultra-light, highly efficient solar cell was developed at NREL and is being commercialized by Emcore Corp. of Albuquerque, N.M., in partnership with the Air Force Research Laboratories Space Vehicles Directorate at Kirtland Air Force Base in Albuquerque.

It represents a new class of solar cells with clear advantages in performance, engineering design, operation and cost. For decades, conventional cells have featured wafers of semiconducting materials with similar crystalline structure. Their performance and cost effectiveness is constrained by growing the cells in an upright configuration. Meanwhile, the cells are rigid, heavy and thick with a bottom layer made of germanium.

In the new method, the cell is grown upside down. These layers use high-energy materials with extremely high quality crystals, especially in the upper layers of the cell where most of the power is produced. Not all of the layers follow the lattice pattern of even atomic spacing. Instead, the cell includes a full range of atomic spacing, which allows for greater absorption and use of sunlight. The thick, rigid germanium layer is removed, reducing the cell's cost and 94% of its weight. By turning the conventional approach to cells on its head, the result is an ultra-light and flexible cell that also converts solar energy with record efficiency (40.8% under 326 suns concentration).

Polymer processing

The invention of conductive polymers (for which Alan Heeger, Alan G. MacDiarmid and Hideki Shirakawa were awarded a Nobel prize) may lead to the development of much cheaper cells that are based on inexpensive plastics. However, organic solar cells generally suffer from degradation upon exposure to UV light, and hence have lifetimes which are far too short to be viable. The bonds in the polymers, are always susceptible to breaking up when radiated with shorter wavelengths. Additionally, the conjugated double bond systems in the polymers which carry the charge, react more readily with light and oxygen. So most conductive polymers, being highly unsaturated and reactive, are highly sensitive to atmospheric moisture and oxidation, making commercial applications difficult.

Nanoparticle processing

Experimental non-silicon solar panels can be made of quantum heterostructures, e.g. carbon nanotubes or quantum dots, embedded in conductive polymers or mesoporous metal oxides. In addition, thin films of many of these materials on conventional silicon solar cells can increase the optical coupling efficiency into the silicon cell, thus boosting the overall efficiency. By varying the size of the quantum dots, the cells can be tuned to absorb different wavelengths. Although the research is still in its infancy, quantum dot modified photovoltaics may be able to achieve up to 42% energy conversion efficiency due to multiple exciton generation (MEG).

MIT researchers have found a way of using a virus to improve solar cell efficiency by a third.

Transparent conductors

Many new solar cells use transparent thin films that are also conductors of electrical charge. The dominant conductive thin films used in research now are transparent conductive oxides (abbreviated "TCO"), and include fluorine-doped tin oxide (SnO2:F, or "FTO"), doped zinc oxide (e.g.: ZnO:Al), and indium tin oxide (abbreviated "ITO"). These conductive films are also used in the LCD industry for flat panel displays. The dual function of a TCO allows light to pass through a substrate window to the active light-absorbing material beneath, and also serves as an ohmic contact to transport photogenerated charge carriers away from that light-absorbing material. The present TCO materials are effective for research, but perhaps are not yet optimized for large-scale photovoltaic production. They require very special deposition conditions at high vacuum, they can sometimes suffer from poor mechanical strength, and most have poor transmittance in the infrared portion of the spectrum (e.g.: ITO thin films can also be used as infrared filters in airplane windows). These factors make large-scale manufacturing more costly.

A relatively new area has emerged using carbon nanotube networks as a transparent conductor for organic solar cells. Nanotube networks are flexible and can be deposited on surfaces a variety of ways. With some treatment, nanotube films can be highly transparent in the infrared, possibly enabling efficient low-bandgap solar cells. Nanotube networks are p-type conductors, whereas traditional transparent conductors are exclusively n-type. The availability of a p-type transparent conductor could lead to new cell designs that simplify manufacturing and improve efficiency.

Silicon wafer-based solar cells

Despite the numerous attempts at making better solar cells by using new and exotic materials, the reality is that the photovoltaics market is still dominated by silicon wafer-based solar cells (first-generation solar cells). This means that most solar cell manufacturers are currently equipped to produce this type of solar cells. Consequently, a large body of research is being done all over the world to manufacture silicon wafer-based solar cells at lower cost and to increase the conversion efficiencies without an exorbitant increase in production cost. The ultimate goal for both wafer-based and alternative photovoltaic concepts is to produce solar electricity at a cost comparable to currently market-dominant coal, natural gas, and nuclear power in order to make it the leading primary energy source. To achieve this it may be necessary to reduce the cost of installed solar systems from currently about US$1.80 (for bulk Si technologies) to about US$0.50 per Watt peak power. Since a major part of the final cost of a traditional bulk silicon module is related to the high cost of solar grade polysilicon feedstock (about US$0.4/Watt peak) there exists substantial drive to make Si solar cells thinner (material savings) or to make solar cells from cheaper upgraded metallurgical silicon (so called "dirty Si").

IBM has a semiconductor wafer reclamation process that uses a specialized pattern removal technique to repurpose scrap semiconductor wafers to a form used to manufacture silicon-based solar panels. The new process was recently awarded the “2007 Most Valuable Pollution Prevention Award” from The National Pollution Prevention Roundtable (NPPR).

Infrared solar cells

Researchers at Idaho National Laboratory, along with partners at Lightwave Power Inc. in Cambridge, MA and Patrick Pinhero of the University of Missouri, have devised an inexpensive way to produce plastic sheets containing billions of nanoantennas that collect heat energy generated by the sun and other sources, which garnered two 2007 Nano50 awards. The company ceased operations in 2010. While methods to convert the energy into usable electricity still need to be developed, the sheets could one day be manufactured as lightweight "skins" that power everything from hybrid cars to computers and mobile phones with higher efficiency than traditional solar cells. The nanoantennas target mid-infrared rays, which the Earth continuously radiates as heat after absorbing energy from the sun during the day; also double-sided nanoantenna sheets can harvest energy from different parts of the Sun's spectrum. In contrast, traditional solar cells can only use visible light, rendering them idle after dark.

UV solar cells

Japan's National Institute of Advanced Industrial Science and Technology (AIST) has succeeded in developing a transparent solar cell that uses ultraviolet (UV) light to generate electricity but allows visible light to pass through it. Most conventional solar cells use visible and infrared light to generate electricity. Used to replace conventional window glass, the installation surface area could be large, leading to potential uses that take advantage of the combined functions of power generation, lighting and temperature control.

This transparent, UV-absorbing system was achieved by using an organic-inorganic heterostructure made of the p-type semiconducting polymer PEDOT:PSS film deposited on a Nb-doped strontium titanate substrate. PEDOT:PSS is easily fabricated into thin films due to its stability in air and its solubility in water. These solar cells are only activated in the UV region and result in a relatively high quantum yield of 16% electron/photon. Future work in this technology involves replacing the strontium titanate substrate with a strontium titanate film deposited on a glass substrate in order to achieve a low-cost, large-area manufacture.

Since then, other methods have been discovered to include the UV wavelengths in solar cell power generation. Some companies report using nano-phosphors as a transparent coating to turn UV light into visible light. Others have reported extending the absorption range of single-junction photovoltaic cells by doping a wide band gap transparent semiconductor such as GaN with a transition metal such as manganese.

Flexible solar cell research

Flexible solar cell research is a research-level technology, an example of which was created at the Massachusetts Institute of Technology in which solar cells are manufactured by depositing photovoltaic material on flexible substrates, such as ordinary paper, using chemical vapor deposition technology. The technology for manufacturing solar cells on paper was developed by a group of researchers from the Massachusetts Institute of Technology with support from the National Science Foundation and the Eni-MIT Alliance Solar Frontiers Program.

3D solar cells

Three-dimensional solar cells that capture nearly all of the light that strikes them and could boost the efficiency of photovoltaic systems while reducing their size, weight and mechanical complexity are under development. The new 3D solar cells, created at the Georgia Tech Research Institute, capture photons from sunlight using an array of miniature “tower” structures that resemble high-rise buildings in a city street grid. Solar3D, Inc. plans to commercialize such 3D cells, but its technology is currently patent-pending.

Luminescent solar concentrator

Luminescent solar concentrators convert sunlight or other sources of light into preferred frequencies; they concentrate the output for conversion into desirable forms of power, such as electricity. They rely on luminescence, typically fluorescence, in media such as liquids, glasses, or plastics treated with a suitable coating or dopant. The structures are configured to direct the output from a large input area onto a small converter, where the concentrated energy generates photoelectricity. The objective is to collect light over a large area at low cost; luminescent concentrator panels can be made cheaply from materials such as glasses or plastics, while photovoltaic cells are high-precision, high-technology devices, and accordingly expensive to construct in large sizes.

Research is in progress at universities such as Radboud University Nijmegen and Delft University of Technology. For example, at Massachusetts Institute of Technology researchers have developed approaches for conversion of windows into sunlight concentrators for generation of electricity. They paint a mixture of dyes onto a pane of glass or plastic. The dyes absorb sunlight and re-emit it as fluorescence within the glass, where it is confined by internal reflection, emerging at the edges of the glass, where it encounters solar cells optimized for conversion of such concentrated sunlight. The concentration factor is about 40, and the optical design yields a solar concentrator that unlike lens-based concentrators, need not be directed accurately at the sun, and can produce output even from diffuse light. Covalent Solar is working on commercialization of the process.

Metamaterials

Metamaterials are heterogeneous materials employing the juxtaposition of many microscopic elements, giving rise to properties not seen in ordinary solids. Using these, it may become possible to fashion solar cells that are excellent absorbers over a narrow range of wavelengths. High absorption in the microwave regime has been demonstrated, but not yet in the 300-1100-nm wavelength regime.

Photovoltaic thermal hybrid

Some systems combine photovoltaic with thermal solar, with the advantage that the thermal solar part carries heat away and cools the photovoltaic cells. Keeping temperature down lowers the resistance and improves the cell efficiency.

Penta-based photovoltaics

Pentacene-based photovoltaics are claimed to improve the energy-efficiency ratio to up to 95%, effectively doubling the efficience of today's most efficient techniques.

Intermediate band

Intermediate band photovoltaics in solar cell research provides methods for exceeding the Shockley–Queisser limit on the efficiency of a cell. It introduces an intermediate band (IB) energy level in between the valence and conduction bands. Theoretically, introducing an IB allows two photons with energy less than the bandgap to excite an electron from the valence band to the conduction band. This increases the induced photocurrent and thereby efficiency. 

Luque and Marti first derived a theoretical limit for an IB device with one midgap energy level using detailed balance. They assumed no carriers were collected at the IB and that the device was under full concentration. They found the maximum efficiency to be 63.2%, for a bandgap of 1.95eV with the IB 0.71eV from either the valence or conduction band. Under one sun illumination the limiting efficiency is 47%. 

Environmental impact of the energy industry

World consumption of primary energy by energy type.
 
Energy consumption per capita per country (2001). Red hues indicate increase, green hues decrease of consumption during the 1990s.

The environmental impact of the energy industry is significant, as energy and natural resource consumption are closely related. Producing, transporting, or consuming energy all have an environmental impact. Energy has been harnessed by human beings for millennia. Initially it was with the use of fire for light, heat, cooking and for safety, and its use can be traced back at least 1.9 million years. In recent years there has been a trend towards the increased commercialization of various renewable energy sources.

Rapidly advancing technologies can potentially achieve a transition of energy generation, water and waste management, and food production towards better environmental and energy usage practices using methods of systems ecology and industrial ecology.

Issues

Climate change

Global average surface temperature datasets from various scientific organizations show the progress and extent of global warming.
 
The warming influence (called radiative forcing) of long-lived greenhouse gases has nearly doubled in 40 years, with carbon dioxide and methane being the dominant drivers of global warming.

The scientific consensus on global warming and climate change is that it is caused by anthropogenic greenhouse gas emissions, the majority of which comes from burning fossil fuels with deforestation and some agricultural practices being also major contributors. A 2013 study showed that two thirds of the industrial greenhouse gas emissions are due to the fossil-fuel (and cement) production of just ninety companies around the world (between 1751 and 2010, with half emitted since 1986).

Although there is a highly publicized denial of climate change, the vast majority of scientists working in climatology accept that it is due to human activity. The IPCC report Climate Change 2007: Climate Change Impacts, Adaptation and Vulnerability predicts that climate change will cause shortages of food and water and increased risk of flooding that will affect billions of people, particularly those living in poverty.

One measurement of greenhouse gas related and other Externality comparisons between energy sources can be found in the ExternE project by the Paul Scherrer Institut and the University of Stuttgart which was funded by the European Commission. According to that study, hydroelectric electricity produces the lowest CO2 emissions, wind produces the second-lowest, nuclear energy produces the third-lowest and solar photovoltaic produces the fourth-lowest.

Similarly, the same research study (ExternE, Externalities of Energy), undertaken from 1995 to 2005 found that the cost of producing electricity from coal or oil would double over its present value, and the cost of electricity production from gas would increase by 30% if external costs such as damage to the environment and to human health, from the airborne particulate matter, nitrogen oxides, chromium VI and arsenic emissions produced by these sources, were taken into account. It was estimated in the study that these external, downstream, fossil fuel costs amount up to 1–2% of the EU's entire Gross Domestic Product (GDP), and this was before the external cost of global warming from these sources was even included. The study also found that the environmental and health costs of nuclear power, per unit of energy delivered, was €0.0019/kWh, which was found to be lower than that of many renewable sources including that caused by biomass and photovoltaic solar panels, and was thirty times lower than coal at €0.06/kWh, or 6 cents/kWh, with the energy sources of the lowest external environmental and health costs associated with it being wind power at €0.0009/kWh.

Biofuel use

Biofuel is defined as solid, liquid or gaseous fuel obtained from relatively recently lifeless or living biological material and is different from fossil fuels, which are derived from long-dead biological material. Various plants and plant-derived materials are used for biofuel manufacturing.

Bio-diesel

High use of bio-diesel leads to land use changes including deforestation.

Firewood

Unsustainable firewood harvesting can lead to loss of biodiversity and erosion due to loss of forest cover. An example of this is a 40-year study done by the University of Leeds of African forests, which account for a third of the world's total tropical forest which demonstrates that Africa is a significant carbon sink. A climate change expert, Lee White states that "To get an idea of the value of the sink, the removal of nearly 5 billion tonnes of carbon dioxide from the atmosphere by intact tropical forests is at issue.

According to the U.N. the African continent is losing forest twice as fast as the rest of the world. "Once upon a time, Africa boasted seven million square kilometers of forest but a third of that has been lost, most of it to charcoal."

Fossil fuel use

Global fossil carbon emission by fuel type, 1800–2007 AD.

The three fossil fuel types are coal, petroleum and natural gas. It was estimated by the Energy Information Administration that in 2006 primary sources of energy consisted of petroleum 36.8%, coal 26.6%, natural gas 22.9%, amounting to an 86% share for fossil fuels in primary energy production in the world.

In 2013 the burning of fossil fuels produced around 32 billion tonnes (32 gigatonnes) of carbon dioxide and additional air pollution. This caused negative externalities of $4.9 trillion due to global warming and health problems (> 150 $/ton carbon dioxide). Carbon dioxide is one of the greenhouse gases that enhances radiative forcing and contributes to global warming, causing the average surface temperature of the Earth to rise in response, which climate scientists agree will cause major adverse effects.

Coal

The environmental impact of coal mining and burning is diverse. Legislation passed by the U.S. Congress in 1990 required the United States Environmental Protection Agency (EPA) to issue a plan to alleviate toxic pollution from coal-fired power plants. After delay and litigation, the EPA now has a court-imposed deadline of March 16, 2011, to issue its report.

Petroleum

A beach after an oil spill.

The environmental impact of petroleum is often negative because it is toxic to almost all forms of life. The possibility of climate change exists. Petroleum, commonly referred to as oil, is closely linked to virtually all aspects of present society, especially for transportation and heating for both homes and for commercial activities.

Gas

Natural gas is often described as the cleanest fossil fuel, producing less carbon dioxide per joule delivered than either coal or oil, and far fewer pollutants than other fossil fuels. However, in absolute terms, it does contribute substantially to global carbon emissions, and this contribution is projected to grow. According to the IPCC Fourth Assessment Report, in 2004 natural gas produced about 5,300 Mt/yr of CO2 emissions, while coal and oil produced 10,600 and 10,200 respectively (Figure 4.4); but by 2030, according to an updated version of the SRES B2 emissions scenario, natural gas would be the source of 11,000 Mt/yr, with coal and oil now 8,400 and 17,200 respectively.

In addition, natural gas itself is a greenhouse gas far more potent than carbon dioxide when released into the atmosphere but is released in smaller amounts.

Electricity generation

The environmental impact of electricity generation is significant because modern society uses large amounts of electrical power. This power is normally generated at power plants that convert some other kind of energy into electrical power. Each such system has advantages and disadvantages, but many of them pose environmental concerns.

Reservoirs

The environmental impact of reservoirs is coming under ever increasing scrutiny as the world demand for water and energy increases and the number and size of reservoirs increases. Dams and the reservoirs can be used to supply drinking water, generate hydroelectric power, increasing the water supply for irrigation, provide recreational opportunities and for flood control. However, adverse environmental and sociological impacts have also been identified during and after many reservoir constructions. Whether reservoir projects are ultimately beneficial or detrimental—to both the environment and surrounding human populations— has been debated since the 1960s and probably long before that. In 1960 the construction of Llyn Celyn and the flooding of Capel Celyn provoked political uproar which continues to this day. More recently, the construction of Three Gorges Dam and other similar projects throughout Asia, Africa and Latin America have generated considerable environmental and political debate.

Nuclear power

Nuclear power activities involving the environment; mining, enrichment, generation and geological disposal.

The environmental impact of nuclear power results from the nuclear fuel cycle, operation, and the effects of nuclear accidents.

The routine health risks and greenhouse gas emissions from nuclear fission power are significantly smaller than those associated with coal, oil and gas. However, there is a "catastrophic risk" potential if containment fails, which in nuclear reactors can be brought about by over-heated fuels melting and releasing large quantities of fission products into the environment. The most long-lived radioactive wastes, including spent nuclear fuel, must be contained and isolated from humans and the environment for hundreds of thousands of years. The public is sensitive to these risks and there has been considerable public opposition to nuclear power. Despite this potential for disaster, normal fossil fuel related pollution is still considerably more harmful than any previous nuclear disaster.

The 1979 Three Mile Island accident and 1986 Chernobyl disaster, along with high construction costs, ended the rapid growth of global nuclear power capacity. A further disastrous release of radioactive materials followed the 2011 Japanese tsunami which damaged the Fukushima I Nuclear Power Plant, resulting in hydrogen gas explosions and partial meltdowns classified as a Level 7 event. The large-scale release of radioactivity resulted in people being evacuated from a 20 km exclusion zone set up around the power plant, similar to the 30 km radius Chernobyl Exclusion Zone still in effect.

Wind power

Livestock grazing near a wind turbine.

The environmental impact of wind power when compared to the environmental impacts of fossil fuels, is relatively minor. According to the IPCC, in assessments of the life-cycle global warming potential of energy sources, wind turbines have a median value of between 12 and 11 (gCO
2
eq/kWh) depending, respectively, on if offshore or onshore turbines are being assessed. Compared with other low carbon power sources, wind turbines have some of the lowest global warming potential per unit of electrical energy generated.

While a wind farm may cover a large area of land, many land uses such as agriculture are compatible with it, as only small areas of turbine foundations and infrastructure are made unavailable for use.

There are reports of bird and bat mortality at wind turbines as there are around other artificial structures. The scale of the ecological impact may or may not be significant, depending on specific circumstances. Prevention and mitigation of wildlife fatalities, and protection of peat bogs, affect the siting and operation of wind turbines.

There are anecdotal reports of negative health effects from noise on people who live very close to wind turbines. Peer-reviewed research has generally not supported these claims.

Aesthetic aspects of wind turbines and resulting changes of the visual landscape are significant. Conflicts arise especially in scenic and heritage protected landscapes.

Solar power

Geothermal power

Mitigation

Energy conservation

Energy conservation refers to efforts made to reduce energy consumption. Energy conservation can be achieved through increased efficient energy use, in conjunction with decreased energy consumption and/or reduced consumption from conventional energy sources.

Energy conservation can result in increased financial capital, environmental quality, national security, personal security, and human comfort. Individuals and organizations that are direct consumers of energy choose to conserve energy to reduce energy costs and promote economic security. Industrial and commercial users can increase energy use efficiency to maximize profit.

The increase of global energy use can also be slowed by tackling human population growth, by using non-coercive measures such as better provision of family planning services and by empowering (educating) women in developing countries.

Energy policy

Energy policy is the manner in which a given entity (often governmental) has decided to address issues of energy development including energy production, distribution and consumption. The attributes of energy policy may include legislation, international treaties, incentives to investment, guidelines for energy conservation, taxation and other public policy techniques.

Inequality (mathematics)

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Inequality...