Search This Blog

Tuesday, June 20, 2023

Alien hand syndrome

From Wikipedia, the free encyclopedia
https://en.wikipedia.org/wiki/Alien_hand_syndrome

Alien hand syndrome
Other namesAHS; alien limb syndrome; ALS; Dr. Strangelove syndrome
SpecialtyPsychiatry, Neurology

Alien hand syndrome (AHS) or Dr. Strangelove syndrome is a category of conditions in which a person experiences their limbs acting seemingly on their own, without conscious control over the actions. There are a variety of clinical conditions that fall under this category, which most commonly affects the left hand. There are many similar terms for the various forms of the condition, but they are often used inappropriately. The affected person may sometimes reach for objects and manipulate them without wanting to do so, even to the point of having to use the controllable hand to restrain the alien hand. Under normal circumstances however, given that intent and action can be assumed to be deeply mutually entangled, the occurrence of alien hand syndrome can be usefully conceptualized as a phenomenon reflecting a functional "disentanglement" between thought and action.

Alien hand syndrome is best documented in cases where a person has had the two hemispheres of their brain surgically separated, a procedure sometimes used to relieve the symptoms of extreme cases of epilepsy and epileptic psychosis, e.g., temporal lobe epilepsy. It also occurs in some cases after brain surgery, stroke, infection, tumor, aneurysm, migraine and specific degenerative brain conditions such as Alzheimer's disease, corticobasal degeneration and Creutzfeldt–Jakob disease. Other areas of the brain that are associated with alien hand syndrome are the frontal, occipital, and parietal lobes. Signs and symptoms.

"Alien behavior" can be distinguished from reflexive behavior in that the former is flexibly purposive while the latter is obligatory. Sometimes the affected person will not be aware of what the alien hand is doing until it is brought to his or her attention, or until the hand does something that draws their attention to its behavior. There is a clear distinction between the behaviors of the two hands in which the affected hand is viewed as "wayward" and sometimes "disobedient" and generally out of the realm of their own voluntary control, while the unaffected hand is under normal volitional control. At times, particularly in patients who have sustained damage to the corpus callosum that connects the two cerebral hemispheres (see also split-brain), the hands appear to be acting in opposition to each other.

A related syndrome described by the French neurologist François Lhermitte involves the release through disinhibition of a tendency to compulsively utilize objects that present themselves in the surrounding environment around the patient. The behavior of the patient is, in a sense, obligatorily linked to the "affordances" (using terminology introduced by the American ecological psychologist, James J. Gibson) presented by objects that are located within the immediate peri-personal environment.

This condition is known as utilization behavior. It is most often associated with extensive bilateral frontal lobe damage and might actually be thought of as "bilateral" alien hand syndrome in which the patient is compulsively directed by external environmental contingencies (such as the presence of a hairbrush on the table in front of them elicits the act of brushing the hair) and has no capacity to "hold back" and inhibit pre-potent motor programs that are obligatorily linked to the presence of specific external objects in the peri-personal space of the patient. When the frontal lobe damage is bilateral and generally more extensive, the patient completely loses the ability to act in a self-directed manner and becomes totally dependent upon the surrounding environmental indicators to guide their behavior in a general social context, a condition referred to as "environmental dependency syndrome".

In order to deal with the alien hand, some patients engage in personification of the affected hand. Usually these names are negative in nature, from mild such as "cheeky" to malicious "monster from the moon". For example, Rachelle Doody and Jankovic described a patient who named her alien hand "baby Joseph". When the hand engaged in playful, troublesome activities such as pinching her nipples (akin to biting while nursing), she would experience amusement and would instruct baby Joseph to "stop being naughty". Furthermore, Bogen suggested that certain personality characteristics, such as a flamboyant personality, contribute to frequent personification of the affected hand.

Neuroimaging and pathological research shows that the frontal lobe (in the frontal variant) and corpus callosum (in the callosal variant) are the most common anatomical lesions responsible for the alien hand syndrome. These areas are closely linked in terms of motor planning and its final pathways.

The callosal variant includes advanced willed motor acts by the non-dominant hand, where patients frequently exhibit "intermanual conflict" in which one hand acts at cross-purposes with the other "good hand". For example, one patient was observed putting a cigarette into her mouth with her intact, "controlled" hand (her right, dominant hand), following which her left hand rose, grasped the cigarette, pulled it out of her mouth, and toss it away before it could be lit by the right hand. The patient then surmised that "I guess 'he' doesn't want me to smoke that cigarette." Another patient was observed to be buttoning up her blouse with her controlled dominant hand while the alien non-dominant hand, at the same time, was unbuttoning her blouse. The frontal variant most often affects the dominant hand, but can affect either hand depending on the lateralization of the damage to medial frontal cortex, and includes grasp reflex, impulsive groping toward objects or/and tonic grasping (in other words, difficulty in releasing grip).

In most cases, classic alien-hand signs derive from damage to the medial frontal cortex, accompanying damage to the corpus callosum. In these patients, the main cause of damage is unilateral or bilateral infarction of cortex in the territory supplied by the anterior cerebral artery or associated arteries. Oxygenated blood is supplied by the anterior cerebral artery to most medial portions of the frontal lobes and to the anterior two-thirds of the corpus callosum, and infarction may consequently result in damage to multiple adjacent locations in the brain in the supplied territory. As the medial frontal lobe damage is often linked to lesions of the corpus callosum, frontal variant cases may also present with callosal form signs. Cases of damage restricted to the callosum however, tend not to show frontal alien-hand signs.

Cause

The common emerging factor in alien hand syndrome is that the primary motor cortex controlling hand movement is isolated from premotor cortex influences but remains generally intact in its ability to execute movements of the hand.

A 2009 fMRI study looking at the temporal sequence of activation of components of a cortical network associated with voluntary movement in normal individuals demonstrated "an anterior-to-posterior temporal gradient of activity from supplemental motor area through premotor and motor cortices to the posterior parietal cortex". Therefore, with normal voluntary movement, the emergent sense of agency appears to be associated with an orderly sequence of activation that develops initially in the anteromedial frontal cortex in the vicinity of the supplementary motor complex on the medial surface of the frontal aspect of the hemisphere (including the supplementary motor area) prior to activation of the primary motor cortex in the pre-central gyrus on the lateral aspect of the hemisphere, when the hand movement is being generated. Activation of the primary motor cortex, presumed to be directly involved in the execution of the action via projections into the corticospinal component of the pyramidal tracts, is then followed by activation of the posterior parietal cortex, possibly related to the receipt of recurrent or re-afferent somatosensory feedback generated from the periphery by the movement which would normally interact with the efference copy transmitted from primary motor cortex to permit the movement to be recognized as self-generated rather than imposed by an external force. That is, the efference copy allows the recurrent afferent somatosensory flow from the periphery associated with the self-generated movement to be recognized as re-afference as distinct from ex-afference. Failure of this mechanism may lead to a failure to distinguish between self-generated and externally generated movement of the limb. This anomalous situation in which re-afference from a self-generated movement is mistakenly registered as ex-afference due to a failure to generate and successfully transmit an efference copy to sensory cortex, could readily lead to the interpretation that what is in actuality a self-generated movement has been produced by an external force as a result of the failure to develop a sense of agency in association with emergence of the self-generated movement (see below for a more detailed discussion).

A 2007 fMRI study examining the difference in functional brain activation patterns associated with alien as compared to non-alien "volitional" movement in a patient with alien hand syndrome found that alien movement involved anomalous isolated activation of the primary motor cortex in the damaged hemisphere contralateral to the alien hand, while non-alien movement involved the normal process of activation described in the preceding paragraph in which primary motor cortex in the intact hemisphere activates in concert with frontal premotor cortex and posterior parietal cortex presumably involved in a normal cortical network generating premotor influences on the primary motor cortex along with immediate post-motor re-afferent activation of the posterior parietal cortex.

Combining these two fMRI studies, one could hypothesize that the alien behavior that is unaccompanied by a sense of agency emerges due to autonomous activity in the primary motor cortex acting independently of premotor cortex pre-activating influences that would normally be associated with the emergence of a sense of agency linked to the execution of the action.

As noted above, these ideas can also be linked to the concept of efference copy and re-afference, where efference copy is a signal postulated to be directed from premotor cortex (activated normally in the process associated with emergence of an internally generated movement) over to somatosensory cortex of the parietal region, in advance of the arrival of the "re-afferent" input generated from the moving limb, that is, the afferent return from the moving limb associated with the self-generated movement produced. It is generally thought that a movement is recognized as internally generated when the efference copy signal effectively "cancels out" the re-afference. The afferent return from the limb is effectively correlated with the efference copy signal so that the re-afference can be recognized as such and distinguished from "ex-afference", which would be afferent return from the limb produced by an externally imposed force. When the efference copy is no longer normally generated, then the afferent return from the limb associated with the self-generated movement is mis-perceived as externally produced "ex-afference" since it is no longer correlated with or canceled out by the efference copy. As a result, the development of the sense that a movement is not internally generated even though it actually is (i.e. the failure of the sense of agency to emerge in conjunction with the movement), could indicate a failure of the generation of the efference copy signal associated with the normal premotor process through which the movement is prepared for execution.

Since there is no disturbance of the sense of ownership of the limb in this situation, and there is no apparent physical explanation for how the owned limb could be moving in a purposive manner without an associated sense of agency, a cognitive dissonance is created which may be resolved through the assumption that the goal-directed limb movement is being directed by an "alien" unidentifiable external force with the capacity for directing goal-directed actions of one's own limb.

Disconnection

It is theorized that alien hand syndrome results when disconnection occurs between different parts of the brain that are engaged in different aspects of the control of bodily movement. As a result, different regions of the brain are able to command bodily movements, but cannot generate a conscious feeling of self-control over these movements. As a result, the sense of agency that is normally associated with voluntary movement is impaired or lost. There is a dissociation between the process associated with the actual execution of the physical movements of the limb and the process that produces an internal sense of voluntary control over the movements, with this latter process thus normally creating the internal conscious sensation that the movements are being internally initiated, controlled and produced by an active self.

Recent studies have examined the neural correlates of emergence of the sense of agency under normal circumstances. This appears to involve consistent congruence between what is being produced through efferent outflow to the musculature of the body, and what is being sensed as the presumed product in the periphery of this efferent command signal. In alien hand syndrome, the neural mechanisms involved in establishing that this congruence has occurred may be impaired. This may involve an abnormality in the brain mechanism that differentiates between "re-afference" (the return of kinesthetic sensation from the self-generated "active" limb movement) and "ex-afference" (kinesthetic sensation generated from an externally produced 'passive' limb movement in which an active self does not participate). This brain mechanism is proposed to involve the production of a parallel "efference copy" signal that is sent directly to the somatic sensory regions and is transformed into a "corollary discharge", an expected afferent signal from the periphery that would result from the performance driven by the issued efferent signal. The correlation of the corollary discharge signal with the actual afferent signal returned from the periphery can then be used to determine if, in fact, the intended action occurred as expected. When the sensed result of the action is congruent with the predicted result, then the action can be labelled as self-generated and associated with an emergent sense of agency.

If, however, the neural mechanisms involved in establishing this sensorimotor linkage associated with self-generated action are faulty, it would be expected that the sense of agency with action would not develop as discussed in the previous section.

Loss of inhibitions

One theory posed to explain these phenomena proposes that the brain has separable neural "premotor" or "agency" systems for managing the process of transforming intentions into overt action. An anteromedial frontal premotor system is engaged in the process of directing exploratory actions based on "internal" drive by releasing or reducing inhibitory control over such actions.

A 2011 paper reporting on neuronal unit recording in the medial frontal cortex in human subjects showed a clear pre-activation of neurons identified in this area up to several hundred milliseconds prior to the onset of an overt self-generated finger movement and the authors were able to develop a computational model whereby volition emerges once a change in internally generated firing rate of neuronal assemblies in this part of the brain crossed a threshold. Damage to this anteromedial premotor system produces disinhibition and release of such exploratory and object acquisition actions which then occur autonomously. A posterolateral temporo-parieto-occipital premotor system has a similar inhibitory control over actions that withdraw from environmental stimuli as well as the ability to excite actions that are contingent upon and driven by external stimulation, as distinct from internal drive. These two intrahemispheric systems, each of which activates an opposing cortical "tropism", interact through mutual inhibition that maintains a dynamic balance between approaching toward (in other words, with "intent-to-capture" in which contact with and grasping onto the attended object is sought) versus withdrawing from (that is, with "intent-to-escape" in which distancing from the attended object is sought) environmental stimuli in the behavior of the contralateral limbs. Together, these two intrahemispheric agency systems form an integrated trans-hemispheric agency system.

When the anteromedial frontal "escape" system is damaged, involuntary but purposive movements of an exploratory reach-and-grasp nature – what Denny-Brown referred to as a positive cortical tropism – are released in the contralateral limb. This is referred to as a positive cortical tropism because eliciting sensory stimuli, such as would result from tactile contact on the volar aspect of the fingers and palm of the hand, are linked to the activation of movement that increases or enhances the eliciting stimulation through a positive feedback connection (see discussion above in section entitled "Parietal and Occipital Lobes").

When the posterolateral parieto-occipital "approach" system is damaged, involuntary purposive movements of a release-and-retract nature, such as levitation and instinctive avoidance – what Denny-Brown referred to as a negative cortical tropism – are released in the contralateral limb. This is referred to as a negative cortical tropism because eliciting sensory stimuli, such as would result from tactile contact on the volar aspect of the fingers and palm of the hand, are linked to the activation of movement that reduces or eliminates the eliciting stimulation through a negative feedback connection (see discussion above in section entitled "Parietal and Occipital Lobes").

Each intrahemispheric agency system has the potential capability of acting autonomously in its control over the contralateral limb although unitary integrative control of the two hands is maintained through interhemispheric communication between these systems via the projections traversing the corpus callosum at the cortical level and other interhemispheric commissures linking the two hemispheres at the subcortical level.

Disconnection of hemispheres due to injury

One major difference between the two hemispheres is the direct connection between the agency system of the dominant hemisphere and the encoding system based primarily in the dominant hemisphere that links action to its production and through to its interpretation with language and language-encoded thought. The overarching unitary conscious agent that emerges in the intact brain is based primarily in the dominant hemisphere and is closely connected to the organization of language capacity. It is proposed that while relational action in the form of embodied inter-subjective behavior precedes linguistic capacity during infant development, a process ensues through the course of development through which linguistic constructs are linked to action elements in order to produce a language-based encoding of action-oriented knowledge.

When there is a major disconnection between the two hemispheres resulting from callosal injury, the language-linked dominant hemisphere agent which maintains its primary control over the dominant limb loses, to some degree, its direct and linked control over the separate "agent" based in the nondominant hemisphere, and the nondominant limb, which had been previously responsive and "obedient" to the dominant conscious agent. The possibility of purposeful action occurring outside of the realm of influence of the conscious dominant agent can occur and the basic assumption that both hands are controlled through and subject to the dominant agent is proven incorrect. The sense of agency that would normally arise from movement of the nondominant limb now no longer develops, or, at least, is no longer accessible to consciousness. A new explanatory narrative for understanding the situation in which the now inaccessible nondominant hemisphere based agent is capable of activating the nondominant limb is necessitated.

Under such circumstances, the two separated agents can control simultaneous actions in the two limbs that are directed at opposing purposes although the dominant hand remains linked to the dominant consciously accessible language-linked agent and is viewed as continuing to be under "conscious control" and obedient to conscious will and intent as accessible through thought, while the nondominant hand, directed by an essentially non-verbal agent whose intent can only be inferred by the dominant agent after the fact, is no longer "tied in" and subject to the dominant agent and is thus identified by the conscious language-based dominant agent as having a separate and inaccessible alien agency and associated existence. This theory would explain the emergence of alien behavior in the nondominant limb and intermanual conflict between the two limbs in the presence of damage to the corpus callosum.

The distinct anteromedial, frontal, and posterolateral temporo-parieto-occipital variants of the alien hand syndrome would be explained by selective injury to either the frontal or the posterior components of the agency systems within a particular hemisphere, with the relevant and specific form of alien behavior developing in the limb contralateral to the damaged hemisphere.

Diagnosis

Corpus callosum

Damage to the corpus callosum can give rise to "purposeful" actions in the person's non-dominant hand (an individual who is left-hemisphere-dominant will experience the left hand becoming alien, and the right hand will turn alien in the person with right-hemisphere dominance).

In "the callosal variant", the patient's hand counteracts voluntary actions performed by the other, "good" hand. Two phenomena that are often found in patients with callosal alien hand are agonistic dyspraxia and diagonistic dyspraxia.

Agonistic dyspraxia involves compulsive automatic execution of motor commands by one hand when the patient is asked to perform movements with the other hand. For example, when a patient with callosal damage was instructed to pull a chair forward, the affected hand would decisively and impulsively push the chair backwards. Agonistic dyspraxia can thus be viewed as an involuntary competitive interaction between the two hands directed toward completion of a desired act in which the affected hand competes with the unaffected hand to complete a purposive act originally intended to be performed by the unaffected hand.

Diagonistic dyspraxia, on the other hand, involves a conflict between the desired act in which the unaffected hand has been engaged and the interfering action of the affected hand which works to oppose the purpose of the desired act intended to be performed by the unaffected hand. For instance, when Akelaitis's patients underwent surgery to the corpus callosum to reduce epileptic seizures, one patient's left alien hand would frequently interfere with the right hand. For instance, while trying to turn over to the next page with the right hand, his left hand would try to close the book.

In another case of callosal alien hand, the patient did not have intermanual conflict between the hands but rather from a symptom characterized by involuntary mirror movements of the affected hand. When the patient was asked to perform movements with one hand, the other hand would involuntarily perform a mirror image movement which continued even when the involuntary movement was brought to the attention of the patient, and the patient was asked to restrain the mirrored movement. The patient had a ruptured aneurysm near the anterior cerebral artery, which resulted in the right hand being mirrored by the left hand. The patient described the left hand as frequently interfering and taking over anything the patient tried to do with the right hand. For instance, when trying to grasp a glass of water with the right hand with a right side approach, the left hand would involuntary reach out and grasp hold of the glass through a left side approach.

More recently, Geschwind et al. described the case of a woman with severe coronary heart disease.[31] One week after undergoing coronary artery bypass grafting, she noticed that her left hand started to "live a life of its own". It would unbutton her gown, try to choke her while asleep and would automatically fight with the right hand to answer the phone. She had to physically restrain the affected hand with the right hand to prevent injury, a behavior which has been termed "self-restriction". The left hand also showed signs of severe ideomotor apraxia. It was able to mimic actions but only with the help of mirror movements executed by the right hand (enabling synkinesis). Using magnetic resonance imaging (MRI), Geschwind et al. found damage to the posterior half of the callosal body, sparing the anterior half and the splenium extending slightly into the white matter underlying the right cingulate cortex.

Park et al. also described two cases of infarction as the origin of alien hand symptoms. Both individuals had had infarction of the anterior cerebral artery (ACA). One individual, a 72-year-old male, had difficulty controlling his hands, as they often moved involuntarily, despite his trying to stabilize them. Furthermore, he often could not let go of objects after grasping them with his palms. The other individual, a 47-year-old female with an ACA in a different location of the artery, complained that her left hand would move on its own and she could not control its movements. Her left hand could also sense when her right hand was holding an object and would involuntarily, forcibly take the object out of her right hand.

Frontal lobe

Unilateral injury to the medial aspect of the brain's frontal lobe can trigger reaching, grasping and other purposeful movements in the contralateral hand. With anteromedial frontal lobe injuries, these movements are often exploratory reaching movements in which external objects are frequently grasped and utilized functionally, without the simultaneous perception on the part of the patient that they are "in control" of these movements. Once an object has been acquired and is maintained in the grasp of this "frontal variant" form of alien hand, the patient often has difficulty with voluntarily releasing the object from grasp and can sometimes be seen to be peeling the fingers of the hand back off the grasped object using the opposite controlled hand to enable the release of the grasped object (also referred to as tonic grasping or the "instinctive grasp reaction"). Some (for example, the neurologist Derek Denny-Brown) have referred to this behavior as "magnetic apraxia"

Goldberg and Bloom described a woman with a large cerebral infarction of the medial surface of the left frontal lobe in the territory of the left anterior cerebral artery which left her with the frontal variant of the alien hand involving the right hand. There were no signs of callosal disconnection nor was there evidence of any callosal damage. The patient displayed frequent grasp reflexes; her right hand would reach out and grab objects without releasing them. In regards to tonic grasping, the more the patient tried to let go of the object, the more the grip of the object tightened. With focused effort the patient was able to let go of the object, but if distracted, the behaviour would re-commence. The patient could also forcibly release the grasped object by peeling her fingers away from contact with the object using the intact left hand. Additionally, the hand would scratch at the patient's leg to the extent that an orthotic device was required to prevent injury. Another patient reported not only tonic grasping towards objects nearby, but the alien hand would take hold of the patient's penis and engage in public masturbation.

Parietal and occipital lobes

A distinct "posterior variant" form of alien hand syndrome is associated with damage to the posterolateral parietal lobe and/or occipital lobe of the brain. The movements in this situation tend to be more likely to withdraw the palmar surface of the hand away from sustained environmental contact rather than reaching out to grasp onto objects to produce palmar tactile stimulation, as is most often seen in the frontal form of the condition. In the frontal variant, tactile contact on the ventral surface of the palm and fingers facilitates finger flexion and grasp of the object through a positive feedback loop (i.e. the stimulus generates movement that reinforces, strengthens and sustains the triggering stimulation).

In contrast, in the posterior variant, tactile contact on the ventral surface of the palm and fingers is actively avoided through facilitation of extension of the fingers and withdrawal of the palm in a negative feedback loop (i.e. the stimulus, and even anticipation of stimulation of the palmar surface of the hand, generates movement of the palm and fingers that reduces and effectively counteracts and eliminates the triggering stimulation, or, in the case of anticipated palmar contact, decreases the likelihood of such contact). Alien movements in the posterior variant of the syndrome also tend to be less coordinated and show a coarse ataxic motion during active movement that is generally not observed in the frontal form of the condition. This is generally thought to be due to an optic form of ataxia since it is facilitated by the visual presence of an object with visual attention directed toward the object. The apparent instability could be due to an unstable interaction between the tactile avoidance tendency biasing toward withdrawal from the object, and the visually based acquisition bias tendency pushing toward an approach to the object.

The alien limb in the posterior variant of the syndrome may be seen to "levitate" upward into the air withdrawing away from contact surfaces through the activation of anti-gravity musculature. Alien hand movement in the posterior variant may show a typical posture, sometimes referred to as a "parietal hand" or the "instinctive avoidance reaction" (a term introduced by neurologist Derek Denny-Brown as an inverse form of the "magnetic apraxia" seen in the frontal variant, as noted above), in which the digits move into a highly extended position with active extension of the interphalangeal joints of the digits and hyper-extension of the metacarpophalangeal joints, and the palmar surface of the hand is actively pulled back away from approaching objects or up and away from supporting surfaces. The "alien" movements, however, remain purposeful and goal-directed, a point which clearly differentiates these movements from other disorganized non-purposeful forms of involuntary limb movement (e.g. athetosis, chorea, or myoclonus).

Similarities between frontal and posterior variants

In both the frontal and the posterior variants of the alien hand syndrome, the patient's reactions to the limb's apparent capability to perform goal-directed actions independent of conscious volition is similar. In both of these variants of alien hand syndrome, the alien hand emerges in the hand contralateral to the damaged hemisphere.

Treatment

There is no cure for the alien hand syndrome. However, the symptoms can be reduced and managed to some degree by keeping the alien hand occupied and involved in a task, for example by giving it an object to hold in its grasp. Specific learned tasks can restore voluntary control of the hand to a significant degree. One patient with the "frontal" form of alien hand who would reach out to grasp onto different objects (e.g., door handles) as he was walking was given a cane to hold in the alien hand while walking, even though he really did not need a cane for its usual purpose. With the cane firmly in the grasp of the alien hand, it would generally not release the grasp and drop the cane in order to reach out to grasp onto a different object. Other techniques proven to be effective include; wedging the hand between the legs or slapping it; warm water application and visual or tactile contact. Additionally, Wu et al. found that an irritating alarm activated by biofeedback reduced the time the alien hand held an object.

In the presence of unilateral damage to a single cerebral hemisphere, there is generally a gradual reduction in the frequency of alien behaviors observed over time and a gradual restoration of voluntary control over the affected hand. Actually, when AHS originates from focal injury of acute onset, recovery usually occurs within a year. One theory is that neuroplasticity in the bihemispheric and subcortical brain systems involved in voluntary movement production can serve to re-establish the connection between the executive production process and the internal self-generation and registration process. Exactly how this may occur is not well understood, but a process of gradual recovery from alien hand syndrome when the damage is confined to a single cerebral hemisphere has been reported. In some instances, patients may resort to constraining the wayward, undesirable and sometimes embarrassing actions of the impaired hand by voluntarily grasping onto the forearm of the impaired hand using the intact hand. This observed behavior has been termed "self-restriction" or "self-grasping".

In another approach, the patient is trained to perform a specific task, such as moving the alien hand to contact a specific object or a highly salient environmental target, which is a movement that the patient can learn to generate voluntarily through focused training in order to effectively override the alien behavior. It is possible that some of this training produces a re-organization of premotor systems within the damaged hemisphere, or, alternatively, that ipsilateral control of the limb from the intact hemisphere may be expanded.

Another method involves simultaneously "muffling" the action of the alien hand and limiting the sensory feedback coming back to the hand from environmental contact by placing it in a restrictive "cloak" such as a specialized soft foam hand orthosis or, alternatively, an everyday oven mitt. Other patients have reported using an orthotic device to restrict perseverative grasping or restraining the alien hand by securing it to the bed pole. Of course, this can limit the degree to which the hand can participate in addressing functional goals for the patient and may be considered to be an unjustifiable restraint.

Theoretically, this approach could slow down the process through which voluntary control of the hand is restored if the neuroplasticity that underlies recovery involves the recurrent exercise of voluntary will to control the actions of the hand in a functional context and the associated experiential reinforcement through successful willful suppression of the alien behaviour.

History

The first known case described in the medical literature appeared in a detailed case report published in German in 1908 by the preeminent German neuro-psychiatrist, Kurt Goldstein. In this paper, Goldstein described a right-handed woman who had had a stroke affecting her left side from which she had partially recovered by the time she was seen. However, her left arm seemed as though it belonged to another person and performed actions that appeared to occur independent of her will.

The patient complained of a feeling of "strangeness" in relationship to the goal-directed movements of the left hand and insisted that "someone else" was moving the left hand, and that she was not moving it herself. When the left hand grasped an object, she could not voluntarily release it. The senses of touch and proprioception of the left side were impaired. The left hand would make spontaneous movements, such as wiping the face or rubbing the eyes, but these were relatively infrequent. With significant effort, she was able to move her left arm in response to spoken command, but conscious movements were slower or less precise than similar involuntary motions.

Goldstein developed a "doctrine of motor apraxia" in which he discussed the generation of voluntary action and proposed a brain structure for temporal and spatial cognition, will and other higher cognitive processes. Goldstein maintained that a structure conceptually organizing both the body and external space was necessary for object perception as well as for voluntary action on external objects.

In his classic papers reviewing the wide variety of disconnection syndromes associated with focal brain pathology, Norman Geschwind commented that Kurt Goldstein "was perhaps the first to stress the non-unity of the personality in patients with callosal section, and its possible psychiatric effects".

In popular culture

  • In Stanley Kubrick's 1964 film Dr. Strangelove, the eponymous character, played by Peter Sellers, apparently has alien hand syndrome, as he can't stop himself from doing the Nazi salute. "Dr. Strangelove syndrome" was suggested as the official name for AHS. This was not approved, though it is sometimes used as an alternative name.
  • In the 1999 movie Idle Hands the main character of the movie has his left hand possessed by the devil and cannot control it, though the title is a reference to "Idle hands are the Devil's playground," the fact that the hand literally has a mind of its own is highly similar.
  • In the medical drama TV series House episode "Both Sides Now", a patient has alien hand syndrome.
  • An episode of Dark Matters: Twisted But True – a documentary TV series on Discovery Science – described alien hand syndrome and traced its history. The 2017 Indian Tamil dark comedy film Peechankai is about a person with AHS.
  • In Season 2 of the TV series Scream Queens, Dr. Brock Holt appears to have alien hand syndrome.

Psychophysics

From Wikipedia, the free encyclopedia

Psychophysics quantitatively investigates the relationship between physical stimuli and the sensations and perceptions they produce. Psychophysics has been described as "the scientific study of the relation between stimulus and sensation" or, more completely, as "the analysis of perceptual processes by studying the effect on a subject's experience or behaviour of systematically varying the properties of a stimulus along one or more physical dimensions".

Psychophysics also refers to a general class of methods that can be applied to study a perceptual system. Modern applications rely heavily on threshold measurement, ideal observer analysis, and signal detection theory.

Psychophysics has widespread and important practical applications. For example, in the study of digital signal processing, psychophysics has informed the development of models and methods of lossy compression. These models explain why humans perceive very little loss of signal quality when audio and video signals are formatted using lossy compression.

History

Many of the classical techniques and theories of psychophysics were formulated in 1860 when Gustav Theodor Fechner in Leipzig published Elemente der Psychophysik (Elements of Psychophysics). He coined the term "psychophysics", describing research intended to relate physical stimuli to the contents of consciousness such as sensations (Empfindungen). As a physicist and philosopher, Fechner aimed at developing a method that relates matter to the mind, connecting the publicly observable world and a person's privately experienced impression of it. His ideas were inspired by experimental results on the sense of touch and light obtained in the early 1830s by the German physiologist Ernst Heinrich Weber in Leipzig, most notably those on the minimum discernible difference in intensity of stimuli of moderate strength (just noticeable difference; jnd) which Weber had shown to be a constant fraction of the reference intensity, and which Fechner referred to as Weber's law. From this, Fechner derived his well-known logarithmic scale, now known as Fechner scale. Weber's and Fechner's work formed one of the bases of psychology as a science, with Wilhelm Wundt founding the first laboratory for psychological research in Leipzig (Institut für experimentelle Psychologie). Fechner's work systematised the introspectionist approach (psychology as the science of consciousness), that had to contend with the Behaviorist approach in which even verbal responses are as physical as the stimuli.

Fechner's work was studied and extended by Charles S. Peirce, who was aided by his student Joseph Jastrow, who soon became a distinguished experimental psychologist in his own right. Peirce and Jastrow largely confirmed Fechner's empirical findings, but not all. In particular, a classic experiment of Peirce and Jastrow rejected Fechner's estimation of a threshold of perception of weights. In their experiment, Peirce and Jastrow in fact invented randomized experiments: They randomly assigned volunteers to a blinded, repeated-measures design to evaluate their ability to discriminate weights. On the basis of their results they argued that the underlying functions were continuous, and that there is no threshold below which a difference in physical magnitude would be undetected. Peirce's experiment inspired other researchers in psychology and education, which developed a research tradition of randomized experiments in laboratories and specialized textbooks in the 1900s.

The Peirce–Jastrow experiments were conducted as part of Peirce's application of his pragmaticism program to human perception; other studies considered the perception of light, etc. Jastrow wrote the following summary: "Mr. Peirce’s courses in logic gave me my first real experience of intellectual muscle. Though I promptly took to the laboratory of psychology when that was established by Stanley Hall, it was Peirce who gave me my first training in the handling of a psychological problem, and at the same time stimulated my self-esteem by entrusting me, then fairly innocent of any laboratory habits, with a real bit of research. He borrowed the apparatus for me, which I took to my room, installed at my window, and with which, when conditions of illumination were right, I took the observations. The results were published over our joint names in the Proceedings of the National Academy of Sciences. The demonstration that traces of sensory effect too slight to make any registry in consciousness could none the less influence judgment, may itself have been a persistent motive that induced me years later to undertake a book on The Subconscious." This work clearly distinguishes observable cognitive performance from the expression of consciousness.

Modern approaches to sensory perception, such as research on vision, hearing, or touch, measure what the perceiver's judgment extracts from the stimulus, often putting aside the question what sensations are being experienced. One leading method is based on signal detection theory, developed for cases of very weak stimuli. However, the subjectivist approach persists among those in the tradition of Stanley Smith Stevens (1906–1973). Stevens revived the idea of a power law suggested by 19th century researchers, in contrast with Fechner's log-linear function (cf. Stevens' power law). He also advocated the assignment of numbers in ratio to the strengths of stimuli, called magnitude estimation. Stevens added techniques such as magnitude production and cross-modality matching. He opposed the assignment of stimulus strengths to points on a line that are labeled in order of strength. Nevertheless, that sort of response has remained popular in applied psychophysics. Such multiple-category layouts are often misnamed Likert scaling after the question items used by Likert to create multi-item psychometric scales, e.g., seven phrases from "strongly agree" through "strongly disagree".

Omar Khaleefa has argued that the medieval scientist Alhazen should be considered the founder of psychophysics. Although al-Haytham made many subjective reports regarding vision, there is no evidence that he used quantitative psychophysical techniques and such claims have been rebuffed.

Thresholds

Psychophysicists usually employ experimental stimuli that can be objectively measured, such as pure tones varying in intensity, or lights varying in luminance. All the senses have been studied: vision, hearing, touch (including skin and enteric perception), taste, smell and the sense of time. Regardless of the sensory domain, there are three main areas of investigation: absolute thresholds, discrimination thresholds and scaling.

A threshold (or limen) is the point of intensity at which the participant can just detect the presence of a stimulus (absolute threshold) or the presence of a difference between two stimuli (difference threshold). Stimuli with intensities below the threshold are considered not detectable (hence: sub-liminal). Stimuli at values close enough to a threshold will often be detectable some proportion of occasions; therefore, a threshold is considered to be the point at which a stimulus, or change in a stimulus, is detected some proportion p of occasions.

Detection

An absolute threshold is the level of intensity of a stimulus at which the subject is able to detect the presence of the stimulus some proportion of the time (a p level of 50% is often used). An example of an absolute threshold is the number of hairs on the back of one's hand that must be touched before it can be felt – a participant may be unable to feel a single hair being touched, but may be able to feel two or three as this exceeds the threshold. Absolute threshold is also often referred to as detection threshold. Several different methods are used for measuring absolute thresholds (as with discrimination thresholds; see below).

Discrimination

A difference threshold (or just-noticeable difference, JND) is the magnitude of the smallest difference between two stimuli of differing intensities that the participant is able to detect some proportion of the time (the percentage depending on the kind of task). To test this threshold, several different methods are used. The subject may be asked to adjust one stimulus until it is perceived as the same as the other (method of adjustment), may be asked to describe the direction and magnitude of the difference between two stimuli, or may be asked to decide whether intensities in a pair of stimuli are the same or not (forced choice). The just-noticeable difference (JND) is not a fixed quantity; rather, it depends on how intense the stimuli being measured are and the particular sense being measured. Weber's Law states that the just-noticeable difference of a stimulus is a constant proportion despite variation in intensity.

In discrimination experiments, the experimenter seeks to determine at what point the difference between two stimuli, such as two weights or two sounds, is detectable. The subject is presented with one stimulus, for example a weight, and is asked to say whether another weight is heavier or lighter (in some experiments, the subject may also say the two weights are the same). At the point of subjective equality (PSE), the subject perceives the two weights to be the same. The just-noticeable difference, or difference limen (DL), is the magnitude of the difference in stimuli that the subject notices some proportion p of the time (50% is usually used for p in the comparison task). In addition, a two-alternative forced choice (2-afc) paradigm can be used to assess the point at which performance reduces to chance on a discrimination between two alternatives (p will then typically be 75% since p=50% corresponds to chance in the 2-afc task).

Absolute and difference thresholds are sometimes considered similar in principle because there is always background noise interfering with our ability to detect stimuli.

Experimentation

In psychophysics, experiments seek to determine whether the subject can detect a stimulus, identify it, differentiate between it and another stimulus, or describe the magnitude or nature of this difference. Software for psychophysical experimentation is overviewed by Strasburger.

Classical psychophysical methods

Psychophysical experiments have traditionally used three methods for testing subjects' perception in stimulus detection and difference detection experiments: the method of limits, the method of constant stimuli and the method of adjustment.

Method of limits

In the ascending method of limits, some property of the stimulus starts out at a level so low that the stimulus could not be detected, then this level is gradually increased until the participant reports that they are aware of it. For example, if the experiment is testing the minimum amplitude of sound that can be detected, the sound begins too quietly to be perceived, and is made gradually louder. In the descending method of limits, this is reversed. In each case, the threshold is considered to be the level of the stimulus property at which the stimuli are just detected.

In experiments, the ascending and descending methods are used alternately and the thresholds are averaged. A possible disadvantage of these methods is that the subject may become accustomed to reporting that they perceive a stimulus and may continue reporting the same way even beyond the threshold (the error of habituation). Conversely, the subject may also anticipate that the stimulus is about to become detectable or undetectable and may make a premature judgment (the error of anticipation).

To avoid these potential pitfalls, Georg von Békésy introduced the staircase procedure in 1960 in his study of auditory perception. In this method, the sound starts out audible and gets quieter after each of the subject's responses, until the subject does not report hearing it. At that point, the sound is made louder at each step, until the subject reports hearing it, at which point it is made quieter in steps again. This way the experimenter is able to "zero in" on the threshold.

Method of constant stimuli

Instead of being presented in ascending or descending order, in the method of constant stimuli the levels of a certain property of the stimulus are not related from one trial to the next, but presented randomly. This prevents the subject from being able to predict the level of the next stimulus, and therefore reduces errors of habituation and expectation. For 'absolute thresholds' again the subject reports whether they are able to detect the stimulus. For 'difference thresholds' there has to be a constant comparison stimulus with each of the varied levels. Friedrich Hegelmaier described the method of constant stimuli in an 1852 paper. This method allows for full sampling of the psychometric function, but can result in a lot of trials when several conditions are interleaved.

Method of adjustment

In the method of adjustment, the subject is asked to control the level of the stimulus and to alter it until it is just barely detectable against the background noise, or is the same as the level of another stimulus. The adjustment is repeated many times. This is also called the method of average error. In this method, the observers themselves control the magnitude of the variable stimulus, beginning with a level that is distinctly greater or lesser than a standard one and vary it until they are satisfied by the subjective equality of the two. The difference between the variable stimuli and the standard one is recorded after each adjustment, and the error is tabulated for a considerable series. At the end, the mean is calculated giving the average error which can be taken as a measure of sensitivity.

Adaptive psychophysical methods

The classic methods of experimentation are often argued to be inefficient. This is because, in advance of testing, the psychometric threshold is usually unknown and most of the data are collected at points on the psychometric function that provide little information about the parameter of interest, usually the threshold. Adaptive staircase procedures (or the classical method of adjustment) can be used such that the points sampled are clustered around the psychometric threshold. Data points can also be spread in a slightly wider range, if the psychometric function's slope is also of interest. Adaptive methods can thus be optimized for estimating the threshold only, or both threshold and slope. Adaptive methods are classified into staircase procedures (see below) and Bayesian, or maximum-likelihood, methods. Staircase methods rely on the previous response only, and are easier to implement. Bayesian methods take the whole set of previous stimulus-response pairs into account and are generally more robust against lapses in attention. Practical examples are found here.

Staircase procedures

Diagram showing a specific staircase procedure: Transformed Up/Down Method (1 up/ 2 down rule). Until the first reversal (which is neglected) the simple up/down rule and a larger step size is used.

Staircases usually begin with a high intensity stimulus, which is easy to detect. The intensity is then reduced until the observer makes a mistake, at which point the staircase 'reverses' and intensity is increased until the observer responds correctly, triggering another reversal. The values for the last of these 'reversals' are then averaged. There are many different types of staircase procedures, using different decision and termination rules. Step-size, up/down rules and the spread of the underlying psychometric function dictate where on the psychometric function they converge. Threshold values obtained from staircases can fluctuate wildly, so care must be taken in their design. Many different staircase algorithms have been modeled and some practical recommendations suggested by Garcia-Perez.

One of the more common staircase designs (with fixed-step sizes) is the 1-up-N-down staircase. If the participant makes the correct response N times in a row, the stimulus intensity is reduced by one step size. If the participant makes an incorrect response the stimulus intensity is increased by the one size. A threshold is estimated from the mean midpoint of all runs. This estimate approaches, asymptotically, the correct threshold.

Bayesian and maximum-likelihood procedures

Bayesian and maximum-likelihood (ML) adaptive procedures behave, from the observer's perspective, similar to the staircase procedures. The choice of the next intensity level works differently, however: After each observer response, from the set of this and all previous stimulus/response pairs the likelihood is calculated of where the threshold lies. The point of maximum likelihood is then chosen as the best estimate for the threshold, and the next stimulus is presented at that level (since a decision at that level will add the most information). In a Bayesian procedure, a prior likelihood is further included in the calculation. Compared to staircase procedures, Bayesian and ML procedures are more time-consuming to implement but are considered to be more robust. Well-known procedures of this kind are Quest, ML-PEST, and Kontsevich & Tyler's method.

Magnitude estimation

In the prototypical case, people are asked to assign numbers in proportion to the magnitude of the stimulus. This psychometric function of the geometric means of their numbers is often a power law with stable, replicable exponent. Although contexts can change the law & exponent, that change too is stable and replicable. Instead of numbers, other sensory or cognitive dimensions can be used to match a stimulus and the method then becomes "magnitude production" or "cross-modality matching". The exponents of those dimensions found in numerical magnitude estimation predict the exponents found in magnitude production. Magnitude estimation generally finds lower exponents for the psychophysical function than multiple-category responses, because of the restricted range of the categorical anchors, such as those used by Likert as items in attitude scales.

Physiological psychology

From Wikipedia, the free encyclopedia

Physiological psychology is a subdivision of behavioral neuroscience (biological psychology) that studies the neural mechanisms of perception and behavior through direct manipulation of the brains of nonhuman animal subjects in controlled experiments. This field of psychology takes an empirical and practical approach when studying the brain and human behavior. Most scientists in this field believe that the mind is a phenomenon that stems from the nervous system. By studying and gaining knowledge about the mechanisms of the nervous system, physiological psychologists can uncover many truths about human behavior. Unlike other subdivisions within biological psychology, the main focus of psychological research is the development of theories that describe brain-behavior relationships.

Physiological psychology studies many topics relating to the body's response to a behavior or activity in an organism. It concerns the brain cells, structures, components, and chemical interactions that are involved in order to produce actions. Psychologists in this field usually focus their attention to topics such as sleep, emotion, ingestion, senses, reproductive behavior, learning/memory, communication, psychopharmacology, and neurological disorders. The basis for these studies all surround themselves around the notion of how the nervous system intertwines with other systems in the body to create a specific behavior.

Nervous system

The nervous system can be described as a control system that interconnects the other body systems. It consists of the brain, spinal cord, and other nerve tissues throughout the body. The system's primary function is to react to internal and external stimuli in the human body. It uses electrical and chemical signals to send out responses to different parts of the body, and it is made up of nerve cells called neurons. Through the system, messages are transmitted to body tissues such as a muscle. There are two major subdivisions in the nervous system known as the central and peripheral nervous system. The central nervous system is composed of the brain and spinal cord. The brain is the control center of the body and contains millions of neural connections. This organ is responsible for sending and receiving messages from the body and its environment. Each part of the brain is specialized for different aspects of the human being. For example, the temporal lobe has a major role in vision and audition, whereas the frontal lobe is significant for motor function and problem solving. The spinal cord is attached to the brain and serves as the main connector of nerves and the brain. The nerve tissue that lies outside of the central nervous system is collectively known as the peripheral nervous system. This system can be further divided into the autonomic and somatic nervous system. The autonomic system can be referred to as the involuntary component that regulates bodily organs and mechanisms, such as digestion and respiration. The somatic system is responsible for relaying messages back and forth from the brain to various parts of the body, whether it is taking in sensory stimuli and sending it to the brain or sending messages from the brain in order for muscles to contract and relax.

Emotion

Emotion constitutes a major influence for determining human behaviors. It is thought that emotions are predictable and are rooted in different areas in our brains, depending on what emotion it evokes. An emotional response can be divided into three major categories including behavioral, autonomic, and hormonal.

  • The behavioral component is explained by the muscular movements that accompany the emotion. For example, if a person is experiencing fear, a possible behavioral mechanism would be to run away from the fear factor.
  • The autonomic aspect of an emotion provides the ability to react to the emotion. This would be the fight-or-flight response that the body automatically receives from the brain signals.
  • Lastly, hormones released facilitate the autonomic response. For example, the autonomic response, which has sent out the fight-or-flight response, would be aided by the release of such chemicals like epinephrine and norepinephrine, both secreted by the adrenal gland, in order to further increase blood flow to aid in muscular rejuvenation of oxygen and nutrients.

Emotion activates several areas of the brain inside the limbic system and varies per emotion:

  • Fear: the amygdala is the main component for acquisition, storage, and expression of fear.
    • Lesions on the central amygdaloid can lead to disruptions in the behavioral and autonomic emotional responses of fear.
  • Anger/aggression: the hypothalamus and amygdala work together to send inhibitory/excitatory impulses to the periaqueductal gray which then carries out usually defensive behaviors.
  • Happiness: the ventral tegmental area works closely with the prefrontal cortex to produce emotions of happiness as they lie upon the same dopamine pathways.

Several hormones are secreted in response to emotions and vary from general emotional tuning to specific hormones released from certain emotions alone:

  • Emotions are seen as a positive feedback cycle in the brain. Oxytocin acts to over-sensitize the limbic system to emotional responses leading to even larger emotional responses. Under the response to emotions, even more oxytocin is secreted therefore increasing the response further. In addition to the general effects oxytocin has on the limbic system, it provides a more specific purpose as well in the body. It acts as an anxiety suppressant mainly found in stressful and social situations. It provides a calming effect to the body during these high stress situations. Oxytocin is also seen as a strong hormone in maternal attachment and aggression found in new mothers. This hormone also plays a slight part in the female desire to pair and mate.
  • Another hormone found in the direct response from emotion is adrenocorticotropic hormone (ACTH) secreted in response to fearful stimuli. ACTH is secreted by the posterior pituitary in response to fear and plays a role in the facilitation or inhibition of behaviors and actions to follow. In most cases, a high ACTH secretion will lead to the inhibition of actions that would produce the same fearful response that just occurred.
  • Happiness is primarily controlled by the levels of dopamine and serotonin in the body. Both are monoamine neurotransmitters that act on different sites in the body. Serotonin acts on receptors in the gastrointestinal tract while dopamine acts on receptors in the brain, while both performing similar functions. Dopamine is known to be the primary hormone acting on the brain's reward system, while this has recently begun to be a point of debate in the research community. Serotonin has less known on how it carries out its function in reducing depression, but only that it works. Specific-serotonin reuptake inhibitors (SSRI) are the type of drug given to patients with depression in which the serotonin is left in the synapse to continue to be absorbed in the body.

Sleep

Sleep is a behavior that is provoked by the body initiating the feeling of sleepiness in order for people to rest for usually several hours at a time. During sleep, there is a reduction of awareness, responsiveness, and movement. On average, an adult human sleeps between seven and eight hours per night. There is a minute percentage that sleeps less than five to six hours, which is also a symptom of sleep deprivation, and an even smaller percentage of people who sleep more than ten hours a day. Oversleeping has been shown to have a correlation with higher mortality. There are no benefits to oversleeping and it can result in sleep inertia, which is the feeling of drowsiness for a period of time after waking. There are two phases of sleep: rapid eye movement (REM) and Non-REM sleep (NREM).

REM sleep is the less restful stage in which you dream and experience muscle movements or twitches. Also during this stage in sleep, a person's heart rate and breathing are typically irregular. Non-REM sleep, also sometimes referred to as slow-wave sleep, is associated with deep sleep. The body's blood pressure, heart rate, and breathing are generally significantly decreased compared to an alert state. Dreaming can occur in this state; however a person is not able to remember them due to how deep in sleep they are and the inability for consolidation to occur in memory. REM cycles typically occur in 90 minute intervals and increase in length as the amount of sleep in one session progresses. In a typical night's rest, a person will have about four to six cycles of REM and Non-REM sleep.

Sleep is important for the body in order to restore itself from the depletion of energy during wakefulness and allows for recovery since cell division occurs the fastest during the Non-REM cycle. Sleep is also important for maintaining the functioning of the immune system, as well as helping with the consolidation of information previously learned and experienced into the memory. If sleep deprived, recall of information is typically decreased. Dreams that occur during sleep have been shown to increase mental creativity and problem solving skills.

As the period of time since the last Non-REM cycle has occurred increases, the body's drive towards sleep also increases. Physical and environmental factors can have a great influence over the body's drive towards sleep. Mental stimulation, pain and discomfort, higher/lower than normal environmental temperatures, exercise, light exposure, noise, hunger, and overeating all result in an increase in wakefulness. On the contrary, sexual activity and some foods such as carbohydrates and dairy products promote sleep.

Careers in the field

In the past, physiological psychologists received a good portion of their training in psychology departments of major universities. Currently, physiological psychologists are also being trained in behavioral neuroscience or biological psychology programs that are affiliated with psychology departments, or in interdisciplinary neuroscience programs. Most physiological psychologists receive PhDs in neuroscience or a related subject and either teach and carry out research at colleges or universities, are employed for research for government laboratories or other private organizations, or are hired by pharmaceutical companies to study the effects that various drugs have on an individual's behavior.

Cognitive neuroscience

From Wikipedia, the free encyclopedia
https://en.wikipedia.org/wiki/Cognitive_neuroscience

Cognitive neuroscience is the scientific field that is concerned with the study of the biological processes and aspects that underlie cognition, with a specific focus on the neural connections in the brain which are involved in mental processes. It addresses the questions of how cognitive activities are affected or controlled by neural circuits in the brain. Cognitive neuroscience is a branch of both neuroscience and psychology, overlapping with disciplines such as behavioral neuroscience, cognitive psychology, physiological psychology and affective neuroscience. Cognitive neuroscience relies upon theories in cognitive science coupled with evidence from neurobiology, and computational modeling.

Parts of the brain play an important role in this field. Neurons play the most vital role, since the main point is to establish an understanding of cognition from a neural perspective, along with the different lobes of the cerebral cortex.

Methods employed in cognitive neuroscience include experimental procedures from psychophysics and cognitive psychology, functional neuroimaging, electrophysiology, cognitive genomics, and behavioral genetics.

Studies of patients with cognitive deficits due to brain lesions constitute an important aspect of cognitive neuroscience. The damages in lesioned brains provide a comparable starting point on regards to healthy and fully functioning brains. These damages change the neural circuits in the brain and cause it to malfunction during basic cognitive processes, such as memory or learning. People have learning disabilities and such damage, can be compared with how the healthy neural circuits are functioning, and possibly draw conclusions about the basis of the affected cognitive processes. Some examples of learning disabilities in the brain include places in Wernicke's area, the left side of the temporal lobe, and Brocca's area close to the frontal lobe.

Also, cognitive abilities based on brain development are studied and examined under the subfield of developmental cognitive neuroscience. This shows brain development over time, analyzing differences and concocting possible reasons for those differences.

Theoretical approaches include computational neuroscience and cognitive psychology.

Historical origins

Timeline of development of field of cognitive neuroscience
Timeline showing major developments in science that led to the emergence of the field cognitive neuroscience.

Cognitive neuroscience is an interdisciplinary area of study that has emerged from neuroscience and psychology. There are several stages in these disciplines that have changed the way researchers approached their investigations and that led to the field becoming fully established.

Although the task of cognitive neuroscience is to describe the neural mechanisms associated with the mind, historically it has progressed by investigating how a certain area of the brain supports a given mental faculty. However, early efforts to subdivide the brain proved to be problematic. The phrenologist movement failed to supply a scientific basis for its theories and has since been rejected. The aggregate field view, meaning that all areas of the brain participated in all behavior, was also rejected as a result of brain mapping, which began with Hitzig and Fritsch's experiments and eventually developed through methods such as positron emission tomography (PET) and functional magnetic resonance imaging (fMRI). Gestalt theory, neuropsychology, and the cognitive revolution were major turning points in the creation of cognitive neuroscience as a field, bringing together ideas and techniques that enabled researchers to make more links between behavior and its neural substrates.

Origins in philosophy

Philosophers have always been interested in the mind: "the idea that explaining a phenomenon involves understanding the mechanism responsible for it has deep roots in the History of Philosophy from atomic theories in 5th century B.C. to its rebirth in the 17th and 18th century in the works of Galileo, Descartes, and Boyle. Among others, it's Descartes' idea that machines humans build could work as models of scientific explanation." For example, Aristotle thought the brain was the body's cooling system and the capacity for intelligence was located in the heart. It has been suggested that the first person to believe otherwise was the Roman physician Galen in the second century AD, who declared that the brain was the source of mental activity, although this has also been accredited to Alcmaeon. However, Galen believed that personality and emotion were not generated by the brain, but rather by other organs. Andreas Vesalius, an anatomist and physician, was the first to believe that the brain and the nervous system are the center of the mind and emotion. Psychology, a major contributing field to cognitive neuroscience, emerged from philosophical reasoning about the mind.

19th century

Phrenology

A page from the American Phrenological Journal
 

One of the predecessors to cognitive neuroscience was phrenology, a pseudoscientific approach that claimed that behavior could be determined by the shape of the scalp. In the early 19th century, Franz Joseph Gall and J. G. Spurzheim believed that the human brain was localized into approximately 35 different sections. In his book, The Anatomy and Physiology of the Nervous System in General, and of the Brain in Particular, Gall claimed that a larger bump in one of these areas meant that that area of the brain was used more frequently by that person. This theory gained significant public attention, leading to the publication of phrenology journals and the creation of phrenometers, which measured the bumps on a human subject's head. While phrenology remained a fixture at fairs and carnivals, it did not enjoy wide acceptance within the scientific community. The major criticism of phrenology is that researchers were not able to test theories empirically.

Localizationist view

The localizationist view was concerned with mental abilities being localized to specific areas of the brain rather than on what the characteristics of the abilities were and how to measure them. Studies performed in Europe, such as those of John Hughlings Jackson, supported this view. Jackson studied patients with brain damage, particularly those with epilepsy. He discovered that the epileptic patients often made the same clonic and tonic movements of muscle during their seizures, leading Jackson to believe that they must be caused by activity in the same place in the brain every time. Jackson proposed that specific functions were localized to specific areas of the brain, which was critical to future understanding of the brain lobes.

Aggregate field view

According to the aggregate field view, all areas of the brain participate in every mental function.

Pierre Flourens, a French experimental psychologist, challenged the localizationist view by using animal experiments. He discovered that removing the cerebellum (brain) in rabbits and pigeons affected their sense of muscular coordination, and that all cognitive functions were disrupted in pigeons when the cerebral hemispheres were removed. From this he concluded that the cerebral cortex, cerebellum, and brainstem functioned together as a whole. His approach has been criticised on the basis that the tests were not sensitive enough to notice selective deficits had they been present.

Emergence of neuropsychology

Perhaps the first serious attempts to localize mental functions to specific locations in the brain was by Broca and Wernicke. This was mostly achieved by studying the effects of injuries to different parts of the brain on psychological functions. In 1861, French neurologist Paul Broca came across a man with a disability who was able to understand the language but unable to speak. The man could only produce the sound "tan". It was later discovered that the man had damage to an area of his left frontal lobe now known as Broca's area. Carl Wernicke, a German neurologist, found a patient who could speak fluently but non-sensibly. The patient had been the victim of a stroke, and could not understand spoken or written language. This patient had a lesion in the area where the left parietal and temporal lobes meet, now known as Wernicke's area. These cases, which suggested that lesions caused specific behavioral changes, strongly supported the localizationist view. Additionally, Aphasia is a learning disorder which was also discovered by Paul Broca. According to, Johns Hopkins School of Medicine, Aphasia is a language disorder caused by damage in a specific area of the brain that controls language expression and comprehension. This can often lead to the person speaking words with no sense known as "word salad" 

Mapping the brain

In 1870, German physicians Eduard Hitzig and Gustav Fritsch published their findings of the behavior of animals. Hitzig and Fritsch ran an electric current through the cerebral cortex of a dog, causing different muscles to contract depending on which areas of the brain were electrically stimulated. This led to the proposition that individual functions are localized to specific areas of the brain rather than the cerebrum as a whole, as the aggregate field view suggests. Brodmann was also an important figure in brain mapping; his experiments based on Franz Nissl's tissue staining techniques divided the brain into fifty-two areas.

20th century

Cognitive revolution

At the start of the 20th century, attitudes in America were characterized by pragmatism, which led to a preference for behaviorism as the primary approach in psychology. J.B. Watson was a key figure with his stimulus-response approach. By conducting experiments on animals he was aiming to be able to predict and control behavior. Behaviorism eventually failed because it could not provide realistic psychology of human action and thought – it focused primarily on stimulus-response associations at the expense of explaining phenomena like thought and imagination. This led to what is often termed as the "cognitive revolution".

Neuron doctrine

In the early 20th century, Santiago Ramón y Cajal and Camillo Golgi began working on the structure of the neuron. Golgi developed a silver staining method that could entirely stain several cells in a particular area, leading him to believe that neurons were directly connected with each other in one cytoplasm. Cajal challenged this view after staining areas of the brain that had less myelin and discovering that neurons were discrete cells. Cajal also discovered that cells transmit electrical signals down the neuron in one direction only. Both Golgi and Cajal were awarded a Nobel Prize in Physiology or Medicine in 1906 for this work on the neuron doctrine.

Mid-late 20th century

Several findings in the 20th century continued to advance the field, such as the discovery of ocular dominance columns, recording of single nerve cells in animals, and coordination of eye and head movements. Experimental psychology was also significant in the foundation of cognitive neuroscience. Some particularly important results were the demonstration that some tasks are accomplished via discrete processing stages, the study of attention, and the notion that behavioural data do not provide enough information by themselves to explain mental processes. As a result, some experimental psychologists began to investigate neural bases of behaviour. Wilder Penfield created maps of primary sensory and motor areas of the brain by stimulating the cortices of patients during surgery. The work of Sperry and Gazzaniga on split brain patients in the 1950s was also instrumental in the progress of the field. The term cognitive neuroscience itself was coined by Gazzaniga and cognitive psychologist George Armitage Miller while sharing a taxi in 1976.

Brain mapping

New brain mapping technology, particularly fMRI and PET, allowed researchers to investigate experimental strategies of cognitive psychology by observing brain function. Although this is often thought of as a new method (most of the technology is relatively recent), the underlying principle goes back as far as 1878 when blood flow was first associated with brain function. Angelo Mosso, an Italian psychologist of the 19th century, had monitored the pulsations of the adult brain through neurosurgically created bony defects in the skulls of patients. He noted that when the subjects engaged in tasks such as mathematical calculations the pulsations of the brain increased locally. Such observations led Mosso to conclude that blood flow of the brain followed function.

Emergence of a new discipline

Birth of cognitive science

On September 11, 1956, a large-scale meeting of cognitivists took place at the Massachusetts Institute of Technology. George A. Miller presented his "The Magical Number Seven, Plus or Minus Two" paper while Noam Chomsky and Newell & Simon presented their findings on computer science. Ulric Neisser commented on many of the findings at this meeting in his 1967 book Cognitive Psychology. The term "psychology" had been waning in the 1950s and 1960s, causing the field to be referred to as "cognitive science". Behaviorists such as Miller began to focus on the representation of language rather than general behavior. David Marr concluded that one should understand any cognitive process at three levels of analysis. These levels include computational, algorithmic/representational, and physical levels of analysis.

Combining neuroscience and cognitive science

Before the 1980s, interaction between neuroscience and cognitive science was scarce. Cognitive neuroscience began to integrate the newly laid theoretical ground in cognitive science, that emerged between the 1950s and 1960s, with approaches in experimental psychology, neuropsychology and neuroscience. (Neuroscience was not established as a unified discipline until 1971). In the very late 20th century new technologies evolved that are now the mainstay of the methodology of cognitive neuroscience, including TMS (1985) and fMRI (1991). Earlier methods used in cognitive neuroscience include EEG (human EEG 1920) and MEG (1968). Occasionally cognitive neuroscientists utilize other brain imaging methods such as PET and SPECT. An upcoming technique in neuroscience is NIRS which uses light absorption to calculate changes in oxy- and deoxyhemoglobin in cortical areas. In some animals Single-unit recording can be used. Other methods include microneurography, facial EMG, and eye tracking. Integrative neuroscience attempts to consolidate data in databases, and form unified descriptive models from various fields and scales: biology, psychology, anatomy, and clinical practice.

ARTMAP overview
 

Adaptive resonance theory (ART) is a cognitive neuroscience theory developed by Gail Carpenter and Stephen Grossberg in the late 1970s on aspects of how the brain processes information. It describes a number of neural network models which use supervised and unsupervised learning methods, and address problems such as pattern recognition and prediction.

In 2014, Stanislas Dehaene, Giacomo Rizzolatti and Trevor Robbins, were awarded the Brain Prize "for their pioneering research on higher brain mechanisms underpinning such complex human functions as literacy, numeracy, motivated behaviour and social cognition, and for their efforts to understand cognitive and behavioural disorders". Brenda Milner, Marcus Raichle and John O'Keefe received the Kavli Prize in Neuroscience "for the discovery of specialized brain networks for memory and cognition" and O'Keefe shared the Nobel Prize in Physiology or Medicine in the same year with May-Britt Moser and Edvard Moser "for their discoveries of cells that constitute a positioning system in the brain".

In 2017, Wolfram Schultz, Peter Dayan and Ray Dolan were awarded the Brain Prize "for their multidisciplinary analysis of brain mechanisms that link learning to reward, which has far-reaching implications for the understanding of human behaviour, including disorders of decision-making in conditions such as gambling, drug addiction, compulsive behaviour and schizophrenia".,

Recent trends

Recently the focus of research had expanded from the localization of brain area(s) for specific functions in the adult brain using a single technology. Studies have been diverging in several different directions: exploring the interactions between different brain areas, using multiple technologies and approaches to understand brain functions, and using computational approaches. Advances in non-invasive functional neuroimaging and associated data analysis methods have also made it possible to use highly naturalistic stimuli and tasks such as feature films depicting social interactions in cognitive neuroscience studies.

Another very recent trend in cognitive neuroscience is the use of optogenetics to explore circuit function and its behavioral consequences.

Topics

Methods

Experimental methods include:

Second-order logic

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Second-order_logic ...