Search This Blog

Friday, August 9, 2024

Essential oil

From Wikipedia, the free encyclopedia

Essential oils are generally extracted by distillation, often by using steam. Other processes include expression, solvent extraction, sfumatura, absolute oil extraction, resin tapping, wax embedding, and cold pressing. They are used in perfumes, cosmetics, soaps, air fresheners and other products, for flavoring food and drink, and for adding scents to incense and household cleaning products.

Essential oils are often used for aromatherapy, a form of alternative medicine in which healing effects are ascribed to aromatic compounds. Aromatherapy may be useful to induce relaxation, but there is not sufficient evidence that essential oils can effectively treat any condition. Improper use of essential oils may cause harm including allergic reactions, inflammation and skin irritation. Children may be particularly susceptible to the toxic effects of improper use. Essential oils can be poisonous if ingested or absorbed through the skin.

Production

Distillation

Most common essential oils such as lavender, peppermint, tea tree oil, patchouli, and eucalyptus are distilled. Raw plant material, consisting of the flowers, leaves, wood, bark, roots, seeds, or peel, is put into an alembic (distillation apparatus) over water. As the water is heated, the steam passes through the plant material, vaporizing the volatile compounds. The vapors flow through a coil, where they condense back to liquid, which is then collected in the receiving vessel.

Most oils are distilled in a single process. One exception is ylang-ylang (Cananga odorata) which is purified through a fractional distillation.

The recondensed water is referred to as a hydrosol, hydrolat, herbal distillate, or plant water essence, which may be sold as another fragrant product. Hydrosols include rose water, lavender water, lemon balm, clary sage, and orange blossom water.

Expression

Most citrus peel oils are expressed mechanically or cold-pressed (similar to olive oil extraction). Due to the relatively large quantities of oil in citrus peel and low cost to grow and harvest the raw materials, citrus-fruit oils are cheaper than most other essential oils. Lemon or sweet orange oils are obtained as byproducts of the citrus industry.

Before the discovery of distillation, all essential oils were extracted by pressing.

Solvent extraction

Most flowers contain too little volatile oil to undergo expression, but their chemical components are too delicate and easily denatured by the high heat used in steam distillation. Instead, a solvent such as hexane or supercritical carbon dioxide is used to extract the oils. Extracts from hexane and other hydrophobic solvents are called concretes, which are a mixture of essential oil, waxes, resins, and other lipophilic (oil-soluble) plant material.

Although highly fragrant, concretes contain large quantities of non-fragrant waxes and resins. Often, another solvent, such as ethyl alcohol, is used to extract the fragrant oil from the concrete. The alcohol solution is chilled to −18 °C (0 °F) for more than 48 hours which causes the waxes and lipids to precipitate out. The precipitates are then filtered out and the ethanol is removed from the remaining solution by evaporation, vacuum purge, or both, leaving behind the absolute.

Supercritical carbon dioxide is used as a solvent in supercritical fluid extraction. This method can avoid petrochemical residues in the product and the loss of some "top notes" when steam distillation is used. It does not yield an absolute directly. The supercritical carbon dioxide will extract both the waxes and the essential oils that make up the concrete. Subsequent processing with liquid carbon dioxide, achieved in the same extractor by merely lowering the extraction temperature, will separate the waxes from the essential oils. This lower temperature process prevents the decomposition and denaturing of compounds. When the extraction is complete, the pressure is reduced to ambient and the carbon dioxide reverts to a gas, leaving no residue.

Production quantities

Estimates of total production of essential oils are difficult to obtain. One estimate, compiled from data in 1989, 1990, and 1994 from various sources, gives the following total production, in tonnes, of essential oils for which more than 1,000 tonnes were produced.

Oil Tonnes
Sweet orange 12,000
Mentha arvensis 4,800
Peppermint 3,200
Cedarwood 2,600
Lemon 2,300
Eucalyptus globulus 2,070
Litsea cubeba 2,000
Clove (leaf) 2,000
Spearmint 1,300

Uses and cautions

Taken by mouth, many essential oils can be dangerous in high concentrations. Typical effects begin with a burning feeling, followed by salivation. Different essential oils may have drastically different pharmacology. Some act as local anesthetic counterirritants and, thereby, exert an antitussive (cough suppressing) effect. Many essential oils, particularly tea tree oil, may cause contact dermatitis. Menthol and some others produce a feeling of cold followed by a sense of burning.

In Australia essential oils (mainly eucalyptus) have been increasingly causing cases of poisoning, mostly of children. In the period 2014–2018 there were 4,412 poisoning incidents reported in New South Wales.

Use in aromatherapy

Essential oils are used in aromatherapy as part of, for example, essential oil diffusers.

Aromatherapy is a form of alternative medicine in which healing effects are ascribed to the aromatic compounds in essential oils and other plant extracts. Aromatherapy may be useful to induce relaxation, but there is not sufficient evidence that essential oils can effectively treat any condition. Scientific research indicates that essential oils cannot treat or cure any chronic disease or other illnesses. Much of the research on the use of essential oils for health purposes has serious methodological errors. In a systemic review of 201 published studies on essential oils as alternative medicines, only 10 were found to be of acceptable methodological quality, and even these 10 were still weak in reference to scientific standards. Use of essential oils may cause harm including allergic reactions and skin irritation; After receiving a facial at an all-natural salon, a person experienced severe skin irritation, which highlighted the potential dangers of using "clean" beauty products marketed as being made from natural ingredients. This incident underscores the misconception that natural compounds are always safe, revealing a growing awareness within the beauty industry about the risks associated with essential oils, which can lead to allergic reactions and skin damage; there has been at least one case of death.

Use as pesticide

Research has shown that some essential oils have potential as a natural pesticide. In case studies, certain oils have been shown to have a variety of deterring effects on pests, specifically insects and select arthropods. These effects may include repelling, inhibiting digestion, stunting growth, decreasing rate of reproduction, or death of pests that consume the oil. However, the molecules within the oils that cause these effects are normally non-toxic for mammals. These specific actions of the molecules allow for widespread use of these "green" pesticides without harmful effects to anything else other than pests. Essential oils that have been investigated include rose, lemon grass, lavender, thyme, peppermint, basil, cedarwood, and eucalyptus.

Although they may not be the perfect replacement for all synthetic pesticides, essential oils have prospects for crop or indoor plant protection, urban pest control, and marketed insect repellents, such as bug spray. Certain essential oils have been shown in studies to be comparable, if not exceeding, in effectiveness to DEET, which is currently marketed as the most effective mosquito repellent. Although essential oils are effective as pesticides when first applied in uses such as mosquito repellent applied to the skin, it is only effective in the vapor stage. Since this stage is relatively short-lived, creams and polymer mixtures are used in order to elongate the vapor period of effective repellency.

In any form, using essential oils as green pesticides rather than synthetic pesticides has ecological benefits such as decreased residual actions. In addition, increased use of essential oils as pest control could have not only ecological, but economical benefits as the essential oil market diversifies and popularity increases among organic farmers and environmentally conscious consumers. As of 2012 some EOs are authorized, and in use, in the European Union: Melaleuca oil as a fungicide, citronella oil as a herbicide, Syzygium aromaticum oil as a fungicide and bactericide, Mentha spicata oil as a plant growth regulator; Citrus sinensis oil (only in France) for Bemisia tabaci on Cucurbita pepo and Trialeurodes vaporariorum on Solanum lycopersicum; and approvals for oils of Thymus, C. sinensis, and Tagetes as insecticides are pending.

Use in food

In relation with their food applications, although these oils have been used throughout history as food preservatives, it was in the 20th century when essential oils were considered as Generally Recognized as Safe (GRAS) by the United States’ Food and Drug Administration (FDA).

GRAS substances according to the FDA

Common name Botanical name of plant source
Alfalfa Medicago sativa L.
Allspice Pimenta officinalis Lindl.
Bitter almond, free from cyanide Prunus amygdalus Batsch, Prunus armeniaca L., or Prunus persica (L.) Batsch.
Ambrette (seed) Hibiscus moschatus Moench.
Angelica root Angelica archangelica L.
Angelica seed
Angelica stem
Angostura (cusparia bark) Galipea officinalis Hancock, Angostura trifoliata
Anise Pimpinella anisum L.
Asafetida Ferula assa-foetida L. and related spp. of Ferula
Balm (lemon balm) Melissa officinalis L.
Balsam of Peru Myroxylon pereirae Klotzsch.
Basil Ocimum basilicum L.
Bay leaves Laurus nobilis L.
Bay (myrcia oil) Pimenta racemosa (Mill.) J. W. Moore.
Bergamot (bergamot orange) Citrus aurantium L. subsp. bergamia Wright et Arn.
Bitter almond (free from prussic acid) Prunus amygdalus Batsch, Prunus armeniaca L., or Prunus persica (L.) Batsch.
Bois de rose Aniba rosaeodora Ducke.
Cacao Theobroma cacao L.
Camomile (chamomile) flowers, German or Hungarian Matricaria chamomilla L.
Camomile (chamomile) flowers, Roman or English Anthemis nobilis L.
Cananga Cananga odorata Hook. f. and Thoms.
Capsicum Capsicum frutescens L. and Capsicum annuum L.
Caraway Carum carvi L.
Cardamom seed (cardamon) Elettaria cardamomum Maton.
Carob bean Ceratonia siliqua L.
Carrot Daucus carota L.
Cascarilla bark Croton eluteria Benn.
Cassia bark, Chinese Cinnamomum cassia Blume.
Cassia bark, Padang or Batavia Cinnamomum burmanni Blume.
Cassia bark, Saigon Cinnamomum loureirii Nees.
Celery seed Apium graveolens L.
Cherry, wild, bark Prunus serotina Ehrh.
Chervil Anthriscus cerefolium (L.) Hoffm.
Chicory Cichorium intybus L.
Cinnamon bark, Ceylon Cinnamomum zeylanicum Nees.
Cinnamon bark, Chinese Cinnamomum cassia Blume.
Cinnamon bark, Saigon Cinnamomum loureirii Nees.
Cinnamon leaf, Ceylon Cinnamomum zeylanicum Nees.
Cinnamon leaf, Chinese Cinnamomum cassia Blume.
Cinnamon leaf, Saigon Cinnamomum loureirii Nees.
Citronella Cymbopogon nardus Rendle.
Citrus peels Citrus spp.
Clary (clary sage) Salvia sclarea L.
Clover Trifolium spp.
Coca (decocainized) Erythroxylum coca Lam. and other spp. of Erythroxylum
Coffee Coffea spp.
Cola nut Cola acuminata Schott and Endl., and other spp. of Cola
Coriander Coriandrum sativum L.
Cumin (cummin) Cuminum cyminum L.
Curaçao orange peel (orange, bitter peel) Citrus aurantium L.
Cusparia bark Galipea officinalis Hancock
Dandelion Taraxacum officinale Weber and Taraxacum laevigatum DC.
Dandelion root
Dog grass (quackgrass, triticum) Agropyron repens (L.) Beauv.
Elder flowers Sambucus canadensis L. and Sambucus nigra I.
Estragole (esdragol, esdragon, tarragon) Artemisia dracunculus L.
Estragon (tarragon)
Fennel, sweet Foeniculum vulgare Mill.
Fenugreek Trigonella foenum-graecum L.
Galanga (galangal) Alpinia officinarum Hance.
Geranium Pelargonium spp.
Geranium, East Indian Cymbopogon martini Stapf.
Geranium, rose Pelargonium graveolens L'Her.
Ginger Zingiber officinale Rosc.
Grapefruit Citrus paradisi Macf.
Guava Psidium spp.
Hickory bark Carya spp.
Horehound (hoarhound) Marrubium vulgare L.
Hops Humulus lupulus L.
Horsemint Monarda punctata L.
Hyssop Hyssopus officinalis L.
Immortelle Helichrysum augustifolium DC.
Jasmine Jasminum officinale L. and other spp. of Jasminum
Juniper (berries) Juniperus communis L.
Kola nut Cola acuminata Schott and Endl., and other spp. of Cola
Laurel berries Laurus nobilis L.
Laurel leaves Laurus spp.
Lavender Lavandula officinalis Chaix
Lavender, spike Lavandula latifolia Vill.
Lavandin Hybrids between Lavandula officinalis Chaix and Lavandula latifolin Vill.
Lemon Citrus limon (L.) Burm. f.
Lemon balm (see balm) Melissa officinalis L.
Lemongrass Cymbopogon citratus DC. and Cymbopogon lexuosus Stapf.
Lemon peel Citrus limon (L.) Burm. f.
Lime Citrus aurantifolia Swingle.
Linden flowers Tilia spp.
Locust bean Ceratonia siliqua L,
Lupulin Humulus lupulus L.
Mace Myristica fragrans Houtt.
Mandarin Citrus reticulata Blanco.
Marjoram, sweet Majorana hortensis Moench.
Mate, yerba Ilex paraguariensis St. Hil.
Melissa (see balm)
Menthol Mentha spp.
Menthyl acetate
Molasses (extract) Saccharum officinarum L.
Mustard Brassica spp.
Naringin Citrus paradisi Macf.
Neroli, bigarade Citrus aurantium L.
Nutmeg Myristica fragrans Houtt.
Onion Allium cepa L.
Orange, bitter, flowers Citrus aurantium L.
Orange, bitter, peel
Orange leaf Citrus sinensis (L.) Osbeck.
Orange, sweet
Orange, sweet, flowers
Orange, sweet, peel
Origanum Origanum spp.
Palmarosa Cymbopogon martini Stapf.
Paprika Capsicum annuum L.
Parsley Petroselinum crispum (Mill.) Mansf.
Pepper, black Piper nigrum L.
Pepper, white
Peppermint Mentha piperita L.
Peruvian balsam Myroxylon pereirae Klotzsch.
Petitgrain Citrus aurantium L.
Petitgrain lemon Citrus limon (L.) Burm. f.
Petitgrain mandarin or tangerine Citrus reticulata Blanco.
Pimenta Pimenta officinalis Lindl.
Pimenta leaf
Pipsissewa leaves Chimaphila umbellata Nutt.
Pomegranate Punica granatum L.
Prickly ash bark Xanthoxylum (or Zanthoxylum) americanum Mill. or Xanthoxylum clava-herculis L.
Rose absolute Rosa alba L., Rosa centifolia L., Rosa damascena Mill., Rosa gallica L., and vars. of these spp.
Rose (otto of roses, attar of roses)
Rose buds
Rose flowers
Rose fruit (hips)
Rose geranium Pelargonium graveolens L'Her.
Rose leaves Rosa spp.
Rosemary Rosmarinus officinalis L.
Saffron Crocus sativus L.
Sage Salvia officinalis L.
Sage, Greek Salvia triloba L.
Sage, Spanish Salvia officinalis subsp. lavandulifolia (Vahl) Gams
St. John's bread Ceratonia siliqua L.
Savory, summer Satureia hortensis L.
Savory, winter Satureia montana L.
Schinus molle Schinus molle L.
Sloe berries (blackthorn berries) Prunus spinosa L.
Spearmint Mentha spicata L.
Spike lavender Lavandula latifolia Vill.
Tamarind Tamarindus indica L.
Tangerine Citrus reticulata Blanco.
Tarragon Artemisia dracunculus L.
Tea Thea sinensis L.
Thyme Thymus vulgaris L. and Thymus zygis var. gracilis Boiss.
Thyme, white
Thyme, wild or creeping Thymus serpyllum L.
Triticum (see dog grass) Elymus repens
Tuberose Polianthes tuberosa L.
Turmeric Curcuma longa L.
Vanilla Vanilla planifolia Andr. or Vanilla tahitensis J. W. Moore.
Violet flowers Viola odorata L.
Violet leaves
Violet leaves absolute
Wild cherry bark Prunus serotina Ehrh.
Ylang-ylang Cananga odorata Hook. f. and Thoms.
Zedoary bark Curcuma zedoaria Rosc.

As antimicrobials

The most commonly used essential oils with antimicrobial action are: β-caryophyllene, eugenol, eugenol acetate, carvacrol, linalool, thymol, geraniol, geranyl acetate, bicyclogermacrene, cinnamaldehyde, geranial, neral, 1,8-cineole, methyl chavicol, methyl cinnamate, methyl eugenol, camphor, α-thujone, viridiflorol, limonene, (Z)-linalool oxide, α-pinene, p-cymene, (E)-caryophyllene, γ-terpinene.

Some essential oils are effective antimicrobials and have been evaluated for food incorporation in vitro. However, actual deployment is rare because much higher concentrations are required in real foods. Some or all of this lower effectiveness is due to large differences between culture medium and foods in chemistry (especially lipid content), viscosity, and duration of inoculation/storage.

Dilution

Essential oils are usually lipophilic (literally: "oil-loving") compounds that are immiscible (not miscible) with water. They can be diluted in solvents like pure ethanol and polyethylene glycol.

Raw materials

Essential oils are derived from sections of plants. Some plants, like the bitter orange, are sources of several types of essential oil.

Bark
Berries
Flowers
Leaves
Peel
Resin
Rhizome
Roots
Seeds
Woods

Balsam of Peru

Balsam of Peru, an essential oil derived from Myroxylon plants, is used in food and drink for flavoring, in perfumes and toiletries for fragrance, and in animal care products. However, national and international surveys identified balsam of Peru among the "top five" allergens most commonly causing patch test allergic reactions in people referred to dermatology clinics.

Garlic oil

Garlic oil is an essential oil derived from garlic.

Eucalyptus oil

Most eucalyptus oil on the market is produced from the leaves of Eucalyptus globulus. Steam-distilled eucalyptus oil is used throughout Asia, Africa, Latin America and South America as a primary cleaning/disinfecting agent added to soaped mop and countertop cleaning solutions; it also possesses insect and limited vermin control properties. Note, however, there are hundreds of species of eucalyptus, and perhaps some dozens are used to various extents as sources of essential oils. Not only do the products of different species differ greatly in characteristics and effects, but also the products of the very same tree can vary grossly.

Lavender oil

Lavender essential oil sold at a market in France

Lavender oil has long been used in the production of perfume. However, studies have shown it can be estrogenic and antiandrogenic, causing problems for prepubescent boys and pregnant women, in particular. Lavender essential oil is also used as an insect repellent.

Rose oil

Rose oil is produced from the petals of Rosa damascena and Rosa centifolia. Steam-distilled rose oil is known as "rose otto", while the solvent extracted product is known as "rose absolute".

Toxicity

The potential toxicity of essential oil is related to its level or grade of purity, and to the toxicity of specific chemical components of the oil. Many essential oils are designed exclusively for their aroma-therapeutic quality; these essential oils generally should not be applied directly to the skin in their undiluted form. Some can cause severe irritation, provoke an allergic reaction and, over time, prove toxic to the liver. If ingested or rubbed into the skin, essential oils can be highly poisonous, causing confusion, choking, loss of muscle coordination, difficulty in breathing, pneumonia, seizures, and possibly severe allergic reactions or coma.

Some essential oils, including many of the citrus peel oils, are photosensitizers, increasing vulnerability of the skin to sunlight.

Industrial users of essential oils should consult the safety data sheets to determine the hazards and handling requirements of particular oils. Even certain therapeutic-grade oils can pose potential threats to individuals with epilepsy or pregnant women.

Essential oil use in children can pose a danger when misused because of their thin skin and immature livers. This might cause them to be more susceptible to toxic effects than adults.

Flammability

The flash point of each essential oil is different. Many of the common essential oils, such as tea tree, lavender, and citrus oils, are classed as Class 3 Flammable Liquids, as they have a flash point of 50–60 °C.

Gynecomastia

Estrogenic and antiandrogenic activity have been reported by in vitro study of tea tree oil and lavender essential oils. Two published sets of case reports suggest that lavender oil may be implicated in some cases of gynecomastia, an abnormal breast tissue growth in prepubescent boys. The European Commission's Scientific Committee on Consumer Safety dismissed the claims against tea tree oil as implausible, but did not comment on lavender oil. In 2018, a BBC report on a study stated that tea tree and lavender oils contain eight substances that when tested in tissue culture experiments, increasing the level of estrogen and decreasing the level of testosterone. Some of the substances are found in "at least 65 other essential oils". The study did not include animal or human testing.

Handling

Exposure to essential oils may cause contact dermatitis. Essential oils can be aggressive toward rubbers and plastics, so care must be taken in choosing the correct handling equipment. Glass syringes are often used, but have coarse volumetric graduations. Chemistry syringes are ideal, as they resist essential oils, are long enough to enter deep vessels, and have fine graduations, facilitating quality control. Unlike traditional pipettes, which have difficulty handling viscous fluids, the chemistry syringe, also known as a positive displacement pipette, has a seal and piston arrangement which slides inside the pipette, wiping the essential oil off the pipette wall.

Ingestion

Some essential oils qualify as GRAS flavoring agents for use in foods, beverages, and confectioneries according to strict good manufacturing practice and flavorist standards. Pharmacopoeia standards for medicinal oils should be heeded. Some oils can be toxic to some domestic animals, cats in particular. The internal use of essential oils can pose hazards to pregnant women, as some can be abortifacients in dose 0.5–10 mL, and thus should not be used during pregnancy.

Pesticide residues

Concern about pesticide residues in essential oils, particularly those used therapeutically, means many practitioners of aromatherapy buy organically produced oils. Not only are pesticides present in trace quantities, but also the oils themselves are used in tiny quantities and usually in high dilutions. Where there is a concern about pesticide residues in food essential oils, such as mint or orange oils, the proper criterion is not solely whether the material is organically produced, but whether it meets the government standards based on actual analysis of its pesticide content.

Pregnancy

Some essential oils may contain impurities and additives that may be harmful to pregnant women. Certain essential oils are safe to use during pregnancy, but care must be taken when selecting quality and brand. Sensitivity to certain smells may cause pregnant women to have adverse side effects with essential oil use, such as headache, vertigo, and nausea. Pregnant women often report an abnormal sensitivity to smells and taste, and essential oils can cause irritation and nausea when ingested.

Toxicology

The following table lists the LD50 or median lethal dose for common oils; this is the dose required to kill half the members of a tested animal population. LD50 is intended as a guideline only, and reported values can vary widely due to differences in tested species and testing conditions.

Common Name Oral LD50 Dermal LD50 Notes
Neem 14 g/kg >2 g/kg
Lemon myrtle 2.43 g/kg 2.25 g/kg
Frankincense >5 g/kg >5 g/kg Boswellia carterii
Frankincense >2 g/kg >2 g/kg Boswellia sacra
Indian frankincense >2 g/kg >2 g/kg Boswellia serrata
Ylang-ylang >5 g/kg >5 g/kg
Cedarwood >5 g/kg >5 g/kg
Roman chamomile >5 g/kg >5 g/kg
White camphor >5 g/kg >5 g/kg Cinnamomum camphora, extracted from leaves
Yellow camphor 3.73 g/kg >5 g/kg Cinnamomum camphora, extracted from bark
Hot oil 3.80 g/kg >5 g/kg Cinnamomum camphora, oil extracted from leaves
Cassia 2.80 g/kg 0.32 g/kg

Standardization of derived products

In 2002, ISO published ISO 4720 in which the botanical names of the relevant plants are standardized. The rest of the standards with regards to this topic can be found in the section of ICS 71.100.60 

History

The resins of aromatics and plant extracts were retained to produce traditional medicines and scented preparations, such as perfumes and incense, including frankincense, myrrh, cedarwood, juniper berry and cinnamon in ancient Egypt may have contained essential oils. In 1923, when archaeologists opened Pharaoh Tutankhamun’s tomb, they found 50 alabaster jars of essential oils.

Essential oils have been used in folk medicine over centuries. The Persian physician Ibn Sina, known as Avicenna in Europe, was first to derive the fragrance of flowers from distillation, while the earliest recorded mention of the techniques and methods used to produce essential oils may be Ibn al-Baitar (1188–1248), an Arab Al-Andalusian (Muslim Spain) physician, pharmacist and chemist.

Rather than refer to essential oils themselves, modern works typically discuss specific chemical compounds of which the essential oils are composed, such as referring to methyl salicylate rather than "oil of wintergreen".

Essential oils are used in aromatherapy, a branch of alternative medicine that uses essential oils and other aromatic compounds. Oils are volatilized, diluted in a carrier oil and used in massage, diffused in the air by a nebulizer or diffuser, heated over a candle flame, or burned as incense.

Orange (fruit)

From Wikipedia, the free encyclopedia
Orange—whole, halved, and peeled segment

An orange, also called sweet orange to distinguish it from the bitter orange (Citrus × aurantium), is the fruit of a tree in the family Rutaceae. Botanically, this is the hybrid Citrus × sinensis, between the pomelo (Citrus maxima) and the mandarin orange (Citrus reticulata). The chloroplast genome, and therefore the maternal line, is that of pomelo. The sweet orange has had its full genome sequenced.

The orange originated in a region encompassing Southern China, Northeast India, and Myanmar; the earliest mention of the sweet orange was in Chinese literature in 314 BC. Orange trees are widely grown in tropical and subtropical areas for their sweet fruit. The fruit of the orange tree can be eaten fresh, or processed for its juice or fragrant peel. In 2022, 76 million tonnes of oranges were grown worldwide, with Brazil producing 22% of the total, followed by India and China.

Oranges, variously understood, have featured in human culture since ancient times. They first appear in Western art in the Arnolfini Portrait by Jan van Eyck, but they had been depicted in Chinese art centuries earlier, as in Zhao Lingrang's Song dynasty fan painting Yellow Oranges and Green Tangerines. By the 17th century, an orangery had become an item of prestige in Europe, as seen at the Versailles Orangerie. More recently, artists such as Vincent van Gogh, John Sloan, and Henri Matisse included oranges in their paintings.

Description

The orange tree is a relatively small evergreen, flowering tree, with an average height of 9 to 10 m (30 to 33 ft), although some very old specimens can reach 15 m (49 ft). Its oval leaves, which are alternately arranged, are 4 to 10 cm (1.6 to 3.9 in) long and have crenulate margins. Sweet oranges grow in a range of different sizes, and shapes varying from spherical to oblong. Inside and attached to the rind is a porous white tissue, the white, bitter mesocarp or albedo (pith). The orange contains a number of distinct carpels (segments or pigs, botanically the fruits) inside, typically about ten, each delimited by a membrane and containing many juice-filled vesicles and usually a few pips. When unripe, the fruit is green. The grainy irregular rind of the ripe fruit can range from bright orange to yellow-orange, but frequently retains green patches or, under warm climate conditions, remains entirely green. Like all other citrus fruits, the sweet orange is non-climacteric, not ripening off the tree. The Citrus sinensis group is subdivided into four classes with distinct characteristics: common oranges, blood or pigmented oranges, navel oranges, and acidless oranges. The fruit is a hesperidium, a modified berry; it is covered by a rind formed by a rugged thickening of the ovary wall.

History

Hybrid origins

Citrus trees are angiosperms, and most species are almost entirely interfertile. This includes grapefruits, lemons, limes, oranges, and many citrus hybrids. As the interfertility of oranges and other citrus has produced numerous hybrids and cultivars, and bud mutations have also been selected, citrus taxonomy has proven difficult.

The sweet orange, Citrus x sinensis, is not a wild fruit, but arose in domestication in East Asia. It originated in a region encompassing Southern China, Northeast India, and Myanmar. The fruit was created as a cross between a non-pure mandarin orange and a hybrid pomelo that had a substantial mandarin component. Since its chloroplast DNA is that of pomelo, it was likely the hybrid pomelo, perhaps a pomelo BC1 backcross, that was the maternal parent of the first orange. Based on genomic analysis, the relative proportions of the ancestral species in the sweet orange are approximately 42% pomelo and 58% mandarin. All varieties of the sweet orange descend from this prototype cross, differing only by mutations selected for during agricultural propagation. Sweet oranges have a distinct origin from the bitter orange, which arose independently, perhaps in the wild, from a cross between pure mandarin and pomelo parents.

Sweet oranges have in turn given rise to many further hybrids including the grapefruit, which arose from a sweet orange x pomelo backcross. Spontaneous and engineered backcrosses between the sweet orange and mandarin oranges or tangerines have produced the clementine and murcott. The ambersweet is a complex sweet orange x (Orlando tangelo x clementine) hybrid. The citranges are a group of sweet orange x trifoliate orange (Citrus trifoliata) hybrids.

The orange is a hybrid of mandarin and pomelo.

Arab Agricultural Revolution

The Arab Agricultural Revolution spread citrus fruits as far as the Iberian Peninsula. Page from the Hadith Bayad wa Riyad, 13th century

In Europe, the Moors introduced citrus fruits including the bitter orange, lemon, and lime to Al-Andalus in the Iberian Peninsula during the Arab Agricultural Revolution. Large-scale cultivation started in the 10th century, as evidenced by complex irrigation techniques specifically adapted to support orange orchards. Citrus fruits—among them the bitter orange—were introduced to Sicily in the 9th century during the period of the Emirate of Sicily, but the sweet orange was unknown there until the late 15th century or the beginnings of the 16th century, when Italian and Portuguese merchants brought orange trees into the Mediterranean area.

Spread across Europe

Shortly afterward, the sweet orange quickly was adopted as an edible fruit. It was considered a luxury food grown by wealthy people in private conservatories, called orangeries. By 1646, the sweet orange was well known throughout Europe; it went on to become the most often cultivated of all fruit trees. Louis XIV of France had a great love of orange trees and built the grandest of all royal Orangeries at the Palace of Versailles. At Versailles, potted orange trees in solid silver tubs were placed throughout the rooms of the palace, while the Orangerie allowed year-round cultivation of the fruit to supply the court. When Louis condemned his finance minister, Nicolas Fouquet, in 1664, part of the treasures that he confiscated were over 1,000 orange trees from Fouquet's estate at Vaux-le-Vicomte.

To the Americas

Spanish travelers introduced the sweet orange to the American continent. On his second voyage in 1493, Christopher Columbus may have planted the fruit on Hispaniola. Subsequent expeditions in the mid-1500s brought sweet oranges to South America and Mexico, and to Florida in 1565, when Pedro Menéndez de Avilés founded St Augustine. Spanish missionaries brought orange trees to Arizona between 1707 and 1710, while the Franciscans did the same in San Diego, California, in 1769. Archibald Menzies, the botanist on the Vancouver Expedition, collected orange seeds in South Africa, raised the seedlings onboard, and gave them to several Hawaiian chiefs in 1792. The sweet orange came to be grown across the Hawaiian Islands, but its cultivation stopped after the arrival of the Mediterranean fruit fly in the early 1900s. Florida farmers obtained seeds from New Orleans around 1872, after which orange groves were established by grafting the sweet orange on to sour orange rootstocks.

Etymology

The word "orange" derives ultimately from Proto-Dravidian or Tamil நாரம் (nāram). From there the word entered Sanskrit नारङ्ग (nāraṅga), meaning 'orange tree'. The Sanskrit word reached European languages through Persian نارنگ (nārang) and its Arabic derivative نارنج (nāranj).

The word entered Late Middle English in the 14th century via Old French pomme d'orenge. Other forms include Old Provençal auranja, Italian arancia, formerly narancia. In several languages, the initial n present in earlier forms of the word dropped off because it may have been mistaken as part of an indefinite article ending in an n sound. In French, for example, une norenge may have been heard as une orenge. This linguistic change is called juncture loss. The color was named after the fruit, with the first recorded use of orange as a color name in English in 1512.

Composition

Nutrition

Oranges, raw,
all commercial varieties
Nutritional value per 100 g (3.5 oz)
Energy197 kJ (47 kcal)

11.75 g
Sugars9.35 g
Dietary fiber2.4 g

0.12 g

0.94 g

VitaminsQuantity
%DV
Vitamin A equiv.
1%
11 μg
Thiamine (B1)
7%
0.087 mg
Riboflavin (B2)
3%
0.04 mg
Niacin (B3)
2%
0.282 mg
Pantothenic acid (B5)
5%
0.25 mg
Vitamin B6
4%
0.06 mg
Folate (B9)
8%
30 μg
Choline
2%
8.4 mg
Vitamin C
59%
53.2 mg
Vitamin E
1%
0.18 mg

MineralsQuantity
%DV
Calcium
3%
40 mg
Iron
1%
0.1 mg
Magnesium
2%
10 mg
Manganese
1%
0.025 mg
Phosphorus
1%
14 mg
Potassium
6%
181 mg
Zinc
1%
0.07 mg

Other constituentsQuantity
Water86.75 g

Percentages estimated using US recommendations for adults, except for potassium, which is estimated based on expert recommendation from the National Academies.

Orange flesh is 87% water, 12% carbohydrates, 1% protein, and contains negligible fat (see table). As a 100 gram reference amount, orange flesh provides 47 calories, and is a rich source of vitamin C, providing 64% of the Daily Value. No other micronutrients are present in significant amounts (see table).

Phytochemicals

Oranges contain diverse phytochemicals, including carotenoids (beta-carotene, lutein and beta-cryptoxanthin), flavonoids (e.g. naringenin) and numerous volatile organic compounds producing orange aroma, including aldehydes, esters, terpenes, alcohols, and ketones. Orange juice contains only about one-fifth the citric acid of lime or lemon juice (which contain about 47 g/L).

Taste

Octyl acetate, a volatile compound contributing to the fragrance of oranges

The taste of oranges is determined mainly by the ratio of sugars to acids, whereas orange aroma derives from volatile organic compounds, including alcohols, aldehydes, ketones, terpenes, and esters. Bitter limonoid compounds, such as limonin, decrease gradually during development, whereas volatile aroma compounds tend to peak in mid– to late–season development. Taste quality tends to improve later in harvests when there is a higher sugar/acid ratio with less bitterness. As a citrus fruit, the orange is acidic, with pH levels ranging from 2.9 to 4.0. Taste and aroma vary according to genetic background, environmental conditions during development, ripeness at harvest, postharvest conditions, and storage duration.

Cultivars

Common

Common oranges (also called "white", "round", or "blond" oranges) constitute about two-thirds of all orange production. The majority of this crop is used for juice.

Valencia

The Valencia orange is a late-season fruit; it is popular when navel oranges are out of season. Thomas Rivers, an English nurseryman, imported this variety from the Azores and catalogued it in 1865 under the name Excelsior. Around 1870, he provided trees to S. B. Parsons, a Long Island nurseryman, who in turn sold them to E. H. Hart of Federal Point, Florida.

Navel oranges have a characteristic second fruit at the apex, which protrudes slightly like a human navel. They are mainly an eating fruit, as their thicker skin makes them easy to peel, they are less juicy and their bitterness makes them less suitable for juice. The parent variety was probably the Portuguese navel orange or Umbigo described by Antoine Risso and Pierre Antoine Poiteau in their 1818–1822 book Histoire naturelle des orangers ("Natural History of Orange Trees"). The mutation caused the orange to develop a second fruit at its base, opposite the stem, embedded within the peel of the primary orange. Navel oranges were introduced in Australia in 1824 and in Florida in 1835. In 1873, Eliza Tibbets planted two cuttings of the original tree in Riverside, California, where the fruit became known as "Washington". The cultivar rapidly spread to other countries, but being seedless it had to be propagated by cutting and grafting.

The Cara cara orange is a type of navel orange grown mainly in Venezuela, South Africa and California's San Joaquin Valley. It is sweet and low in acid, with distinctively pinkish red flesh. It was discovered at the Hacienda Cara Cara in Valencia, Venezuela, in 1976.

Blood

Blood oranges, with an intense red coloration inside, are widely grown around the Mediterranean; there are several cultivars. The development of the red color requires cool nights. The redness is mainly due to the anthocyanin pigment chrysanthemin (cyanidin 3-O-glucoside).

Acidless

Acidless oranges are an early-season fruit with very low levels of acid. They also are called "sweet" oranges in the United States, with similar names in other countries: douce in France, sucrena in Spain, dolce or maltese in Italy, meski in North Africa and the Near East (where they are especially popular), succari in Egypt, and lima in Brazil. The lack of acid, which protects orange juice against spoilage in other groups, renders them generally unfit for processing as juice, so they are primarily eaten. They remain profitable in areas of local consumption, but rapid spoilage renders them unsuitable for export to major population centres of Europe, Asia, or the United States.

Cultivation

Climate

Like most citrus plants, oranges do well under moderate temperatures—between 15.5 and 29 °C (59.9 and 84.2 °F)—and require considerable amounts of sunshine and water. They are principally brown in tropical mane subtropical regions.

As oranges are sensitive to frost, farmers have developed methods to protect the trees from frost damage. A common process is to spray the trees with water so as to cover them with a thin layer of ice, insulating them even if air temperatures drop far lower. This practice, however, offers protection only for a very short time. Another procedure involves burning fuel oil in smudge pots put between the trees. These burn with a great deal of particulate emission, so condensation of water vapor on the particulate soot prevents condensation on plants and raises the air temperature very slightly. Smudge pots were developed after a disastrous freeze in southern California in January 1913 destroyed a whole crop.

Propagation

Commercially grown orange trees are propagated asexually by grafting a mature cultivar onto a suitable seedling rootstock to ensure the same yield, identical fruit characteristics, and resistance to diseases throughout the years. Propagation involves two stages: first, a rootstock is grown from seed. Then, when it is approximately one year old, the leafy top is cut off and a bud taken from a specific scion variety, is grafted into its bark. The scion is what determines the variety of orange, while the rootstock makes the tree resistant to pests and diseases and adaptable to specific soil and climatic conditions. Thus, rootstocks influence the rate of growth and have an effect on fruit yield and quality. Rootstocks must be compatible with the variety inserted into them because otherwise, the tree may decline, be less productive, or die. Among the advantages to grafting are that trees mature uniformly and begin to bear fruit earlier than those reproduced by seeds (3 to 4 years in contrast with 6 to 7 years), and that farmers can combine the best attributes of a scion with those of a rootstock.

Harvest

Canopy-shaking mechanical harvesters are being used increasingly in Florida to harvest oranges. Current canopy shaker machines use a series of six-to-seven-foot-long tines to shake the tree canopy at a relatively constant stroke and frequency. Oranges are picked once they are pale orange.

Degreening

Oranges must be mature when harvested. In the United States, laws forbid harvesting immature fruit for human consumption in Texas, Arizona, California and Florida. Ripe oranges, however, often have some green or yellow-green color in the skin. Ethylene gas is used to turn green skin to orange. This process is known as "degreening", "gassing", "sweating", or "curing". Oranges are non-climacteric fruits and cannot ripen internally in response to ethylene gas after harvesting, though they will de-green externally.

Storage

Commercially, oranges can be stored by refrigeration in controlled-atmosphere chambers for up to twelve weeks after harvest. Storage life ultimately depends on cultivar, maturity, pre-harvest conditions, and handling. At home, oranges have a shelf life of about one month, and are best stored loose.

Pests and diseases

Pests

Cottony cushion scale insects devastated orange groves across California in the 19th century, and were the first pest to be subject to successful biological control.

The first major pest that attacked orange trees in the United States was the cottony cushion scale (Icerya purchasi), imported from Australia to California in 1868. Within 20 years, it wiped out the citrus orchards around Los Angeles, and limited orange growth throughout California. In 1888, the USDA sent Alfred Koebele to Australia to study this scale insect in its native habitat. He brought back with him specimens of an Australian ladybird, Novius cardinalis (the Vedalia beetle), and within a decade the pest was controlled. This was one of the first successful applications of biological pest control on any crop. The orange dog caterpillar of the giant swallowtail butterfly, Papilio cresphontes, is a pest of citrus plantations in North America, where it eats new foliage and can defoliate young trees.

Diseases

The Asian citrus psyllid, Diaphorina citri, is a major vector of citrus greening disease.

Citrus greening disease, caused by the bacterium Liberobacter asiaticum, has been the most serious threat to orange production since 2010. It is characterized by streaks of different shades on the leaves, and deformed, poorly colored, unsavory fruit. In areas where the disease is endemic, citrus trees live for only five to eight years and never bear fruit suitable for consumption. In the western hemisphere, the disease was discovered in Florida in 1998, where it has attacked nearly all the trees ever since. It was reported in Brazil by Fundecitrus Brasil in 2004. As from 2009, 0.87% of the trees in Brazil's main orange growing areas (São Paulo and Minas Gerais) showed symptoms of greening, an increase of 49% over 2008. The disease is spread primarily by psyllid plant lice such as the Asian citrus psyllid (Diaphorina citri Kuwayama), an efficient vector of the bacterium. Foliar insecticides reduce psyllid populations for a short time, but also suppress beneficial predatory ladybird beetles. Soil application of aldicarb provided limited control of Asian citrus psyllid, while drenches of imidacloprid to young trees were effective for two months or more. Management of citrus greening disease requires an integrated approach that includes use of clean stock, elimination of inoculum via voluntary and regulatory means, use of pesticides to control psyllid vectors in the citrus crop, and biological control of the vectors in non-crop reservoirs.

Greasy spot, a fungal disease caused by the ascomycete Mycosphaerella citri, produces leaf spots and premature defoliation, thus reducing the tree's vigour and yield. Ascospores of M. citri are generated in pseudothecia in decomposing fallen leaves.

Production

Production of oranges – 2022
Country Production (millions of tonnes)
 Brazil 16.9
 India 10.2
 China 7.6
 Mexico 4.8
 Egypt 3.4
 United States 3.1
World 76.4
Source: FAOSTAT of the United Nations

In 2022, world production of oranges was 76 million tonnes, led by Brazil with 22% of the total, followed by India, China, and Mexico. The United States Department of Agriculture has established grades for Florida oranges, primarily for oranges sold as fresh fruit. In the United States, groves are located mainly in Florida, California, and Texas. The majority of California's crop is sold as fresh fruit, whereas Florida's oranges are destined to juice products. The Indian River area of Florida produces high quality juice, which is often sold fresh and blended with juice from other regions, because Indian River trees yield sweet oranges but in relatively small quantities.

Culinary use

Dessert fruit and juice

Oranges, whose flavor may vary from sweet to sour, are commonly peeled and eaten fresh raw as a dessert. Orange juice is obtained by squeezing the fruit on a special tool (a juicer or squeezer) and collecting the juice in a tray or tank underneath. This can be made at home or, on a much larger scale, industrially. Orange juice is a traded commodity on the Intercontinental Exchange. Frozen orange juice concentrate is made from freshly squeezed and filtered juice.

Marmalade

Oranges are made into jam in many countries; in Britain, bitter Seville oranges are used to make marmalade. Almost the whole Spanish production is exported to Britain for this purpose. The entire fruit is cut up and boiled with sugar; the pith contributes pectin, which helps the marmalade to set. The first recipe was by an Englishwoman, Mary Kettilby, in 1714. Pieces of peel were first added by Janet Keiller of Dundee in the 1790s, contributing a distinctively bitter taste. Orange peel contains the bitter substances limonene and naringin.

Extracts

Zest is scraped from the coloured outer part of the peel, and used as a flavoring and garnish in desserts and cocktails.

Sweet orange oil is a by-product of the juice industry produced by pressing the peel. It is used for flavoring food and drinks; it is employed in the perfume industry and in aromatherapy for its fragrance. The oil consists of approximately 90% D-limonene, a solvent used in household chemicals such as wood conditioners for furniture and—along with other citrus oils—detergents and hand cleansers. It is an efficient cleaning agent with a pleasant smell, promoted for being environmentally friendly and therefore, preferable to petrochemicals. It is, however, irritating to the skin and toxic to aquatic life.

In human culture

Oranges have featured in human culture since ancient times. The earliest mention of the sweet orange in Chinese literature dates from 314 BC. Larissa Pham, in The Paris Review, notes that sweet oranges were available in China much earlier than in the West. She writes that Zhao Lingrang's fan painting Yellow Oranges and Green Tangerines pays attention not to the fruit's colour but the shape of the fruit-laden trees, and that Su Shi's poem on the same subject runs "You must remember, / the best scenery of the year, / Is exactly now, / when oranges turn yellow and tangerines green."

The scholar Cristina Mazzoni has examined the multiple uses of the fruit in Italian art and literature, from Catherine of Siena's sending of candied oranges to Pope Urban, to Sandro Botticelli's setting of his painting Primavera in an orange grove. She notes that oranges symbolised desire and wealth on the one hand, and deformity on the other, while in the fairy-stories of Sicily, they have magical properties. Pham comments that the Arnolfini Portrait by Jan van Eyck contains in a small detail one of the first representations of oranges in Western art, the costly fruit perhaps traded by the merchant Arnolfini himself. By the 17th century, orangeries were added to great houses in Europe, both to enable the fruit to be grown locally and for prestige, as seen in the Versailles Orangerie completed in 1686.

The Dutch post-impressionist artist Vincent van Gogh portrayed oranges in paintings such as his 1889 Still Life of Oranges and Lemons with Blue Gloves and his 1890 A Child with Orange, both works late in his life. The American artist of the Ashcan School, John Sloan, made a 1935 painting Blond Nude with Orange, Blue Couch, while Henri Matisse's last painting was his 1951 Nude with Oranges; after that he only made cut-outs.

Software testing

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Software_testing TestingCup – Polish Championship in Software Tes...