Search This Blog

Monday, April 26, 2021

Virulence

From Wikipedia, the free encyclopedia
https://en.wikipedia.org/wiki/Virulence

Virulence is a pathogen's or microorganism's ability to cause damage to a host.

In most contexts, especially in animal systems, virulence refers to the degree of damage caused by a microbe to its host. The pathogenicity of an organism—its ability to cause disease—is determined by its virulence factors. In the specific context of gene for gene systems, often in plants, virulence refers to a pathogen's ability to infect a resistant host.

The noun virulence derives from the adjective virulent, meaning disease severity. The word virulent derives from the Latin word virulentus, meaning "a poisoned wound" or "full of poison."

From an ecological standpoint, virulence is the loss of fitness induced by a parasite upon its host. Virulence can be understood in terms of proximate causes—those specific traits of the pathogen that help make the host ill—and ultimate causes—the evolutionary pressures that lead to virulent traits occurring in a pathogen strain.

Virulent bacteria

The ability of bacteria to cause disease is described in terms of the number of infecting bacteria, the route of entry into the body, the effects of host defense mechanisms, and intrinsic characteristics of the bacteria called virulence factors. Many virulence factors are so-called effector proteins that are injected into the host cells by specialized secretion apparati, such as the type three secretion system. Host-mediated pathogenesis is often important because the host can respond aggressively to infection with the result that host defense mechanisms do damage to host tissues while the infection is being countered (e.g., cytokine storm).

The virulence factors of bacteria are typically proteins or other molecules that are synthesized by enzymes. These proteins are coded for by genes in chromosomal DNA, bacteriophage DNA or plasmids. Certain bacteria employ mobile genetic elements and horizontal gene transfer. Therefore, strategies to combat certain bacterial infections by targeting these specific virulence factors and mobile genetic elements have been proposed. Bacteria use quorum sensing to synchronise release of the molecules. These are all proximate causes of morbidity in the host.

Methods by which bacteria cause disease

Invasion
  • Adhesion. Many bacteria must first bind to host cell surfaces. Many bacterial and host molecules that are involved in the adhesion of bacteria to host cells have been identified. Often, the host cell surface receptors for bacteria are essential proteins for other functions. Due to the presence of mucus lining and of anti-microbial substances around some host cells, it is difficult for certain pathogens to establish direct contact-adhesion.
  • Colonization. Some virulent bacteria produce special proteins that allow them to colonize parts of the host body. Helicobacter pylori is able to survive in the acidic environment of the human stomach by producing the enzyme urease. Colonization of the stomach lining by this bacterium can lead to gastric ulcers and cancer. The virulence of various strains of Helicobacter pylori tends to correlate with the level of production of urease.
  • Invasion. Some virulent bacteria produce proteins that either disrupt host cell membranes or stimulate their own endocytosis or macropinocytosis into host cells. These virulence factors allow the bacteria to enter host cells and facilitate entry into the body across epithelial tissue layers at the body surface.
  • Immune response inhibitors. Many bacteria produce virulence factors that inhibit the host's immune system defenses. For example, a common bacterial strategy is to produce proteins that bind host antibodies. The polysaccharide capsule of Streptococcus pneumoniae inhibits phagocytosis of the bacterium by host immune cells.
  • Toxins. Many virulence factors are proteins made by bacteria that poison host cells and cause tissue damage. For example, there are many food poisoning toxins produced by bacteria that can contaminate human foods. Some of these can remain in "spoiled" food even after cooking and cause illness when the contaminated food is consumed. Other bacterial toxins are chemically altered and inactivated by the heat of cooking.

Virulent viruses

Virus virulence factors allow it to replicate, modify host defenses, and spread within the host, and they are toxic to the host.

They determine whether infection occurs and how severe the resulting viral disease symptoms are. Viruses often require receptor proteins on host cells to which they specifically bind. Typically, these host cell proteins are endocytosed and the bound virus then enters the host cell. Virulent viruses such as HIV, which causes AIDS, have mechanisms for evading host defenses. HIV infects T-helper cells, which leads to a reduction of the adaptive immune response of the host and eventually leads to an immunocompromised state. Death results from opportunistic infections secondary to disruption of the immune system caused by AIDS. Some viral virulence factors confer ability to replicate during the defensive inflammation responses of the host such as during virus-induced fever. Many viruses can exist inside a host for long periods during which little damage is done. Extremely virulent strains can eventually evolve by mutation and natural selection within the virus population inside a host. The term "neurovirulent" is used for viruses such as rabies and herpes simplex which can invade the nervous system and cause disease there.

Extensively studied model organisms of virulent viruses include virus T4 and other T-even bacteriophages which infect Escherichia coli and a number of related bacteria.

The lytic life cycle of virulent bacteriophages is contrasted by the temperate lifecycle of temperate bacteriophages.

Evolution

According to evolutionary medicine, optimal virulence increases with horizontal transmission (between non-relatives) and decreases with vertical transmission (from parent to child). This is because the fitness of the host is bound to the fitness in vertical transmission but is not so bound in horizontal transmission

 

Yersinia pestis

From Wikipedia, the free encyclopedia
 
Yersinia pestis
Yersinia pestis.jpg
A scanning electron micrograph depicting a mass of Yersinia pestis bacteria in the foregut of an infected flea
Scientific classification edit
Domain: Bacteria
Phylum: Proteobacteria
Class: Gammaproteobacteria
Order: Enterobacterales
Family: Yersiniaceae
Genus: Yersinia
Species:
Y. pestis
Binomial name
Yersinia pestis
(Lehmann & Neumann, 1896)
van Loghem, 1944
Synonyms
  • Bacillus
  • Bacille de la peste
    Yersin, 1894
  • Bacterium pestis
    Lehmann & Neumann, 1896
  • Pasteurella pestis
    (Lehmann & Neumann, 1896) The Netherlands, 1920

Yersinia pestis (formerly Pasteurella pestis) is a gram-negative, non-motile, rod-shaped, coccobacillus bacterium, without spores. It is a facultative anaerobic organism that can infect humans via the Oriental rat flea (Xenopsylla cheopis). It causes the disease plague, which takes three main forms: pneumonic, septicemic, and bubonic. There may be evidence suggesting Y. pestis originated in Europe in the Cucuteni–Trypillia culture and not in Asia as is more commonly believed.

Y. pestis was discovered in 1894 by Alexandre Yersin, a Swiss/French physician and bacteriologist from the Pasteur Institute, during an epidemic of the plague in Hong Kong. Yersin was a member of the Pasteur school of thought. Kitasato Shibasaburō, a Japanese bacteriologist who practised Koch's methodology, was also engaged at the time in finding the causative agent of the plague. However, Yersin actually linked plague with Y. pestis. Formerly named Pasteurella pestis, the organism was renamed Yersinia pestis in 1944.

Every year, thousands of cases of the plague are still reported to the World Health Organization, although with proper antibiotic treatment, the prognosis for victims is now much better. A five- to six-fold increase in cases occurred in Asia during the time of the Vietnam War, possibly due to the disruption of ecosystems and closer proximity between people and animals. The plague is now commonly found in sub-Saharan Africa and Madagascar, areas that now account for over 95% of reported cases. The plague also has a detrimental effect on nonhuman mammals; in the United States, these include the black-tailed prairie dog and the endangered black-footed ferret.

General characteristics

Y. pestis is a nonmotile, stick-shaped, facultative anaerobic bacterium with bipolar staining (giving it a safety pin appearance) that produces an antiphagocytic slime layer. Similar to other Yersinia species, it tests negative for urease, lactose fermentation, and indole. Its closest relative is the gastrointestinal pathogen Yersinia pseudotuberculosis, and more distantly Yersinia enterocolitica.

Genome

A complete genomic sequence is available for two of the three subspecies of Y. pestis: strain KIM (of biovar Y. p. medievalis), and strain CO92 (of biovar Y. p. orientalis, obtained from a clinical isolate in the United States). As of 2006, the genomic sequence of a strain of biovar Antiqua has been recently completed. Similar to the other pathogenic strains, signs exist of loss of function mutations. The chromosome of strain KIM is 4,600,755 base pairs long; the chromosome of strain CO92 is 4,653,728 base pairs long. Like Y. pseudotuberculosis and Y. enterocolitica, Y. pestis is host to the plasmid pCD1. It also hosts two other plasmids, pPCP1 (also called pPla or pPst) and pMT1 (also called pFra) that are not carried by the other Yersinia species. pFra codes for a phospholipase D that is important for the ability of Y. pestis to be transmitted by fleas. pPla codes for a protease, Pla, that activates plasmin in human hosts and is a very important virulence factor for pneumonic plague. Together, these plasmids, and a pathogenicity island called HPI, encode several proteins that cause the pathogenesis, for which Y. pestis is famous. Among other things, these virulence factors are required for bacterial adhesion and injection of proteins into the host cell, invasion of bacteria in the host cell (via a type-III secretion system), and acquisition and binding of iron harvested from red blood cells (by siderophores). Y. pestis is thought to be descended from Y. pseudotuberculosis, differing only in the presence of specific virulence plasmids.

A comprehensive and comparative proteomics analysis of Y. pestis strain KIM was performed in 2006. The analysis focused on the transition to a growth condition mimicking growth in host cells.

Small noncoding RNA

Numerous bacterial small noncoding RNAs have been identified to play regulatory functions. Some can regulate the virulence genes. Some 63 novel putative sRNAs were identified through deep sequencing of the Y. pestis sRNA-ome. Among them was Yersinia-specific (also present in Y. pseudotuberculosis and Y. enterocolitica) Ysr141 (Yersinia small RNA 141). Ysr141 sRNA was shown to regulate the synthesis of the type III secretion system (T3SS) effector protein YopJ. The Yop-Ysc T3SS is a critical component of virulence for Yersinia species. Many novel sRNAs were identified from Y. pestis grown in vitro and in the infected lungs of mice suggesting they play role in bacterial physiology or pathogenesis. Among them sR035 predicted to pair with SD region and transcription initiation site of a thermo-sensitive regulator ymoA, and sR084 predicted to pair with fur, ferric uptake regulator.

Pathogenesis and immunity

Oriental rat flea (Xenopsylla cheopis) infected with the Y. pestis bacterium, which appears as a dark mass in the gut: The foregut (proventriculus) of this flea is blocked by a Y. pestis biofilm; when the flea attempts to feed on an uninfected host, Y. pestis is regurgitated into the wound, causing infection.

In the urban and sylvatic (forest) cycles of Y. pestis, most of the spreading occurs between rodents and fleas. In the sylvatic cycle, the rodent is wild, but in the urban cycle, the rodent is primarily the brown rat (Rattus norvegicus). In addition, Y. pestis can spread from the urban environment and back. Transmission to humans is usually through the bite of infected fleas. If the disease has progressed to the pneumonic form, humans can spread the bacterium to others by coughing, vomiting, and possibly sneezing.

In reservoir hosts

Several species of rodents serve as the main reservoir for Y. pestis in the environment. In the steppes, the natural reservoir is believed to be principally the marmot. In the western United States, several species of rodents are thought to maintain Y. pestis. However, the expected disease dynamics have not been found in any rodent. Several species of rodents are known to have a variable resistance, which could lead to an asymptomatic carrier status. Evidence indicates fleas from other mammals have a role in human plague outbreaks.

The lack of knowledge of the dynamics of plague in mammal species is also true among susceptible rodents such as the black-tailed prairie dog (Cynomys ludovicianus), in which plague can cause colony collapse, resulting in a massive effect on prairie food webs. However, the transmission dynamics within prairie dogs do not follow the dynamics of blocked fleas; carcasses, unblocked fleas, or another vector could possibly be important, instead.

In other regions of the world, the reservoir of the infection is not clearly identified, which complicates prevention and early-warning programs. One such example was seen in a 2003 outbreak in Algeria.

Vector

The transmission of Y. pestis by fleas is well characterized. Initial acquisition of Y. pestis by the vector occurs during feeding on an infected animal. Several proteins then contribute to the maintenance of the bacteria in the flea digestive tract, among them the hemin storage system and Yersinia murine toxin (Ymt). Although Ymt is highly toxic to rodents and was once thought to be produced to ensure reinfection of new hosts, it is important for the survival of Y. pestis in fleas.

The hemin storage system plays an important role in the transmission of Y. pestis back to a mammalian host. While in the insect vector, proteins encoded by hemin storage system genetic loci induce biofilm formation in the proventriculus, a valve connecting the midgut to the esophagus. The presence of this biofilm seems likely to be required for stable infection of the flea. Aggregation in the biofilm inhibits feeding, as a mass of clotted blood and bacteria forms (referred to as "Bacot's block" after entomologist A.W. Bacot, the first to describe this phenomenon). Transmission of Y. pestis occurs during the futile attempts of the flea to feed. Ingested blood is pumped into the esophagus, where it dislodges bacteria lodged in the proventriculus, which is regurgitated back into the host circulatory system.

In humans and other susceptible hosts

Pathogenesis due to Y. pestis infection of mammalian hosts is due to several factors, including an ability of these bacteria to suppress and avoid normal immune system responses such as phagocytosis and antibody production. Flea bites allow for the bacteria to pass the skin barrier. Y. pestis expresses a plasmin activator that is an important virulence factor for pneumonic plague and that might degrade on blood clots to facilitate systematic invasion. Many of the bacteria's virulence factors are antiphagocytic in nature. Two important antiphagocytic antigens, named F1 (fraction 1) and V or LcrV, are both important for virulence. These antigens are produced by the bacterium at normal human body temperature. Furthermore, Y. pestis survives and produces F1 and V antigens while it is residing within white blood cells such as monocytes, but not in neutrophils. Natural or induced immunity is achieved by the production of specific opsonic antibodies against F1 and V antigens; antibodies against F1 and V induce phagocytosis by neutrophils.

In addition, the type-III secretion system (T3SS) allows Y. pestis to inject proteins into macrophages and other immune cells. These T3SS-injected proteins, called Yersinia outer proteins (Yops), include Yop B/D, which form pores in the host cell membrane and have been linked to cytolysis. The YopO, YopH, YopM, YopT, YopJ, and YopE are injected into the cytoplasm of host cells by T3SS into the pore created in part by YopB and YopD. The injected Yops limit phagocytosis and cell signaling pathways important in the innate immune system, as discussed below. In addition, some Y. pestis strains are capable of interfering with immune signaling (e.g., by preventing the release of some cytokines).

Y. pestis proliferates inside lymph nodes, where it is able to avoid destruction by cells of the immune system such as macrophages. The ability of Y. pestis to inhibit phagocytosis allows it to grow in lymph nodes and cause lymphadenopathy. YopH is a protein tyrosine phosphatase that contributes to the ability of Y. pestis to evade immune system cells. In macrophages, YopH has been shown to dephosphorylate p130Cas, Fyb (Fyn binding protein) SKAP-HOM and Pyk, a tyrosine kinase homologous to FAK. YopH also binds the p85 subunit of phosphoinositide 3-kinase, the Gab1, the Gab2 adapter proteins, and the Vav guanine nucleotide exchange factor.

YopE functions as a GTPase-activating protein for members of the Rho family of GTPases such as RAC1. YopT is a cysteine protease that inhibits RhoA by removing the isoprenyl group, which is important for localizing the protein to the cell membrane. YopE and YopT has been proposed to function to limit YopB/D-induced cytolysis. This might limit the function of YopB/D to create the pores used for Yop insertion into host cells and prevent YopB/D-induced rupture of host cells and release of cell contents that would attract and stimulate immune system responses.

YopJ is an acetyltransferase that binds to a conserved α-helix of MAPK kinases. YopJ acetylates MAPK kinases at serines and threonines that are normally phosphorylated during activation of the MAP kinase cascade. YopJ is activated in eukaryotic cells by interaction with target cell phytic acid (IP6). This disruption of host cell protein kinase activity causes apoptosis of macrophages, and this is proposed to be important for the establishment of infection and for evasion of the host immune response. YopO is a protein kinase also known as Yersinia protein kinase A (YpkA). YopO is a potent inducer of human macrophage apoptosis.

It has also been suggested that a bacteriophage – Ypφ – may have been responsible for increasing the virulence of this organism.

Depending on which form of the plague with which the individual becomes infected, the plague develops a different illness; however, the plague overall affects the host cell's ability to communicate with the immune system, hindering the body to bring phagocytic cells to the area of infection.

Y. pestis is a versatile killer. In addition to rodents and humans, it is known to have killed camels, chickens, and pigs. Domestic dogs and cats are susceptible to plague, as well, but cats are more likely to develop illness when infected. In either, the symptoms are similar to those experienced by humans, and can be deadly to the animal. People can be exposed by coming into contact with an infected animal (dead or alive), or inhaling infectious droplets that a sick dog or cat has coughed into the air.

Immunity

A formalin-inactivated vaccine was in the past available in the United States for adults at high risk of contracting the plague until removal from the market by the Food and Drug Administration. It was of limited effectiveness and could cause severe inflammation. Experiments with genetic engineering of a vaccine based on F1 and V antigens are underway and show promise. However, bacteria lacking antigen F1 are still virulent, and the V antigens are sufficiently variable such that vaccines composed of these antigens may not be fully protective. The United States Army Medical Research Institute of Infectious Diseases has found that an experimental F1/V antigen-based vaccine protects crab-eating macaques, but fails to protect African green monkey species. A systematic review by the Cochrane Collaboration found no studies of sufficient quality to make any statement on the efficacy of the vaccine.

Isolation and identification

Y. pestis isolated by Ricardo Jorge [pt] during the 1899 Porto plague outbreak

In 1894, two bacteriologists, Alexandre Yersin of Switzerland and Kitasato Shibasaburō of Japan, independently isolated in Hong Kong the bacterium responsible for the 1894 Hong Kong plague. Though both investigators reported their findings, a series of confusing and contradictory statements by Kitasato eventually led to the acceptance of Yersin as the primary discoverer of the organism. Yersin named it Pasteurella pestis in honor of the Pasteur Institute, where he worked. In 1967, it was moved to a new genus and renamed Yersinia pestis in his honor. Yersin also noted that rats were affected by plague not only during plague epidemics, but also often preceding such epidemics in humans and that plague was regarded by many locals as a disease of rats; villagers in China and India asserted that when large numbers of rats were found dead, plague outbreaks soon followed.

In 1898, French scientist Paul-Louis Simond (who had also come to China to battle the Third Pandemic) discovered the rat–flea vector that drives the disease. He had noted that persons who became ill did not have to be in close contact with each other to acquire the disease. In Yunnan, China, inhabitants would flee from their homes as soon as they saw dead rats, and on the island of Formosa (Taiwan), residents considered the handling of dead rats heightened the risks of developing plague. These observations led him to suspect that the flea might be an intermediary factor in the transmission of plague, since people acquired plague only if they were in contact with rats that had died less than 24 hours before. In a now classic experiment, Simond demonstrated how a healthy rat died of the plague after infected fleas had jumped to it from a rat that had recently died of the plague. The outbreak spread to Chinatown, San Francisco, from 1900 to 1904 and then to Oakland and the East Bay from 1907 to 1909. It has been present in the rodents of western North America ever since, as fear of the consequences of the outbreak on trade caused authorities to hide the dead of the Chinatown residents long enough for the disease to be passed to widespread species of native rodents in outlying areas.

Ancient DNA evidence

In 2018, the emergence and spread of the pathogen during the Neolithic decline (as far back as 6,000 years ago) was published. A site in Sweden was the source of the DNA evidence and trade networks were proposed as the likely avenue of spread rather than migrations of populations.

DNA evidence published in 2015 indicates Y. pestis infected humans 5,000 years ago in Bronze Age Eurasia, but genetic changes that made it highly virulent did not occur until about 4,000 years ago. The highly virulent version capable of transmission by fleas through rodents, humans, and other mammals was found in two individuals associated with the Srubnaya culture from the Samara region in Russia from around 3,800 years ago and an Iron Age individual from Kapan, Armenia from around 2,900 years ago. This indicates that at least two lineages of Y. pestis were circulating during the Bronze Age in Eurasia. The Y. pestis bacterium has a relatively large number of nonfunctioning genes and three "ungainly" plasmids, suggesting an origin less than 20,000 years ago.

Three main strains are recognised: Y. p. antiqua, which caused a plague pandemic in the sixth century; Y. p. medievalis, which caused the Black Death and subsequent epidemics during the second pandemic wave; and Y. p. orientalis, which is responsible for current plague outbreaks.

Recent events

In 2008, the plague was commonly found in sub-Saharan Africa and Madagascar, areas that accounted for over 95% of the reported cases.

In September 2009, the death of Malcolm Casadaban, a molecular genetics professor at the University of Chicago, was linked to his work on a weakened laboratory strain of Y. pestis. Hemochromatosis was hypothesised to be a predisposing factor in Casadaban's death from this attenuated strain used for research.

In 2010, researchers in Germany definitely established, using PCR evidence from samples obtained from Black Death victims, that Y. pestis was the cause of the medieval Black Death.

In 2011, the first genome of Y. pestis isolated from Black Death victims was published, and concluded that this medieval strain was ancestral to most modern forms of Y. pestis.

In 2015, Cell published results from a study of ancient graves. Plasmids of Y. pestis were detected in archaeological samples of the teeth of seven Bronze Age individuals, in the Afanasievo culture in Siberia, the Corded Ware culture in Estonia, the Sintashta culture in Russia, the Unetice culture in Poland, and the Andronovo culture in Siberia.

On September 8, 2016, the Y. pestis bacterium was identified from DNA in teeth found at a Crossrail building site in London. The human remains were found to be victims of the Great Plague of London, which lasted from 1665 to 1666.

On January 15, 2018, researchers at the University of Oslo and the University of Ferrara suggested that humans and their parasites were the biggest carriers of the plague.

On November 3, 2019, two cases of pneumonic plague were diagnosed at a hospital in Beijing's Chaoyang district, prompting fears of an outbreak. Doctors diagnosed a middle-aged man with fever, who had complained of difficulty breathing for some ten days, accompanied by his wife with similar symptoms. Police quarantined the emergency room at the hospital and controls were placed on Chinese news aggregators. On the 18th, a third case was reported in a 55-year-old male from Xilingol League, one of the twelve Mongolic autonomous regions in Northern China. The patient received treatment and 28 symptomless contacts were placed in quarantine.

In July 2020, officials increased precautions after a case of bubonic plague was confirmed in Bayannur, a city in China's Inner Mongolia autonomous region. The patient was quarantined and treated. According to China's Global Times, a second suspected case was also investigated, and a level 3 alert was issued, in effect until the end of the year. It forbade hunting and eating of animals that could carry plague and called on the public to report suspected cases.

Doxycycline

From Wikipedia, the free encyclopedia
 
Doxycycline
Doxycycline structure.svg
Doxycycline 3D ball.png
Clinical data
Pronunciation/ˌdɒksɪˈskln/
DOKS-i-SY-kleen
Trade namesDoryx, Doxyhexal, Doxylin among others
AHFS/Drugs.comMonograph
MedlinePlusa682063
License data
Pregnancy
category
  • AU: D
Routes of
administration
By mouth, IV
ATC code
Legal status
Legal status
  • AU: S4 (Prescription only)
  • UK: POM (Prescription only)
  • US: ℞-only
Pharmacokinetic data
Bioavailability~100%
Protein binding80–90%
MetabolismNegligible
Elimination half-life10–22 hours
ExcretionMainly faeces, 40% urine
Identifiers

CAS Number
PubChem CID
DrugBank
ChemSpider
UNII
KEGG
ChEBI
ChEMBL
CompTox Dashboard (EPA)
ECHA InfoCard100.008.429 Edit this at Wikidata
Chemical and physical data
FormulaC22H24N2O8
Molar mass444.440 g·mol−1
3D model (JSmol)



Doxycycline is a broad-spectrum tetracycline-class antibiotic used in the treatment of infections caused by bacteria and certain parasites. It is used to treat bacterial pneumonia, acne, chlamydia infections, Lyme disease, cholera, typhus, and syphilis. It is also used to prevent malaria and in combination with quinine, to treat malaria. Doxycycline may be taken by mouth or by injection into a vein.

Common side effects include diarrhea, nausea, vomiting, and an increased risk of sunburn. Use after the first trimester of pregnancy or in young children may result in permanent discoloration of the teeth. Its use during breastfeeding is probably safe. Doxycycline is a broad-spectrum antibiotic, of the tetracycline class. Use of any antibiotic has been shown to increase a person's risk of multiple sclerosis, with a relative risk that depends on the class of antibiotic; tetracyclines increase a person's risk of MS by an average of 33%. Like other agents of the tetracycline class, it either slows or kills bacteria by inhibiting protein production. It kills malaria by targeting a plastid organelle, the apicoplast.

Doxycycline was patented in 1957 and came into commercial use in 1967. It is on the World Health Organization's List of Essential Medicines. Doxycycline is available as a generic medicine. In 2018, it was the 80th most commonly prescribed medication in the United States, with more than 10 million prescriptions. It is available in India under the brand name DOXY-1- LDR.

Medical use

Generic 100 mg doxycycline capsules
 
Doxycycline package

In addition to the general indications for all members of the tetracycline antibiotics group, doxycycline is frequently used to treat Lyme disease, chronic prostatitis, sinusitis, pelvic inflammatory disease, acne, rosacea, and rickettsial infections.

In Canada, in 2004, doxycycline was considered a first-line treatment for chlamydia and non-gonococcal urethritis and with cefixime for uncomplicated gonorrhea.

Antibacterial

Moraxella catarrhalis, Brucella melitensis, Chlamydia pneumoniae, and Mycoplasma pneumoniae are generally susceptible to doxycycline, while some Haemophilus spp., Mycoplasma hominis, and Pseudomonas aeruginosa have developed resistance to varying degrees.

It is used in the treatment and prophylaxis of anthrax and Leptospirosis. It is also effective against Yersinia pestis (the infectious agent of bubonic plague), and is prescribed for the treatment of Lyme disease, ehrlichiosis, and Rocky Mountain spotted fever.

Doxycycline is indicated for treatment of:

  • Rocky Mountain spotted fever, typhus fever and the typhus group, Q fever, rickettsialpox, and tick fevers caused by Rickettsia
  • Respiratory tract infections caused by Mycoplasma pneumoniae
  • Lymphogranuloma venereum, trachoma, inclusion conjunctivitis, and uncomplicated urethral, endocervical, or rectal infections in adults caused by Chlamydia trachomatis
  • Psittacosis
  • Nongonococcal urethritis caused by Ureaplasma urealyticum
  • Relapsing fever due to Borrelia recurrentis
  • Chancroid caused by Haemophilus ducreyi
  • Plague due to Yersinia pestis
  • Tularemia
  • Cholera
  • Campylobacter fetus infections
  • Brucellosis caused by Brucella species (in conjunction with streptomycin)
  • Bartonellosis
  • Granuloma inguinale (Klebsiella species)
  • Lyme disease

When bacteriologic testing indicates appropriate susceptibility to the drug, doxycycline may be used to treat these infections caused by Gram-negative bacteria:

Some Gram-positive bacteria have developed resistance to doxycycline. Up to 44% of Streptococcus pyogenes and up to 74% of S. faecalis specimens have developed resistance to the tetracycline group of antibiotics. Up to 57% of P. acnes strains developed resistance to doxycycline. When bacteriologic testing indicates appropriate susceptibility to the drug, doxycycline may be used to treat these infections caused by Gram-positive bacteria:

When penicillin is contraindicated, doxycycline can be used to treat:

  • Syphilis caused by Treponema pallidum
  • Yaws caused by Treponema pertenue
  • Listeriosis due to Listeria monocytogenes
  • Vincent's infection caused by Fusobacterium fusiforme
  • Actinomycosis caused by Actinomyces israelii
  • Infections caused by Clostridium species

Doxycycline may also be used as adjunctive therapy for severe acne.

The first-line treatment for brucellosis is a combination of doxycycline and streptomycin and the second-line is a combination of doxycycline and rifampicin (rifampin).

Antimalarial

Doxycycline is active against the erythrocytic stages of Plasmodium falciparum but not against the gametocytes of Plasmodium falciparum. It is used to prevent malaria. It is not recommended alone for initial treatment of malaria, even when the parasite is doxycycline-sensitive, because the antimalarial effect of doxycycline is delayed.

The World Health Organization (WHO) guidelines state that the combination of doxycycline with either artesunate or quinine may be used for the treatment of uncomplicated malaria due to Plasmodium falciparum or following intravenous treatment of severe malaria.

Antihelminthic

Doxycycline kills the symbiotic Wolbachia bacteria in the reproductive tracts of parasitic filarial nematodes, making the nematodes sterile, and thus reducing transmission of diseases such as onchocerciasis and elephantiasis. Field trials in 2005 showed an eight-week course of doxycycline almost completely eliminates the release of microfilariae.

Spectrum of susceptibility

Doxycycline has been used successfully to treat sexually transmitted, respiratory, and ophthalmic infections. Representative pathogenic genera include Chlamydia, Streptococcus, Ureaplasma, Mycoplasma, and others. The following represents MIC susceptibility data for a few medically significant microorganisms.

  • Chlamydia psittaci: 0.03 μg/mL
  • Mycoplasma pneumoniae: 0.016 μg/mL — 2 μg/mL
  • Streptococcus pneumoniae: 0.06 μg/mL — 32 μg/mL

Sclerotherapy

Doxycycline is also used for sclerotherapy in slow-flow vascular malformations, namely venous and lymphatic malformations, as well as post-operative lymphoceles.

Others

Subantimicrobial-dose doxycycline (SDD) is widely used as an adjunctive treatment to scaling and root planing for periodontitis. Significant differences were observed for all investigated clinical parameters of periodontitis in favour of the scaling and root planing + SDD group where SDD dosage regimens is 20 mg twice daily for 3 months in a meta analysis published in 2011.

Contraindications

Pregnancy and lactation

Doxycycline is categorized by the FDA as a class D drug in pregnancy. Doxycycline crosses into breastmilk. Other tetracycline antibiotics are contraindicated in pregnancy and up to eight years of age, due to the potential for disrupting bone and tooth development. They include a class warning about staining of teeth and decreased development of dental enamel in children exposed to tetracyclines in utero, during breastfeeding or during young childhood. However, the FDA has acknowledged that the actual risk of dental staining of primary teeth is undetermined for doxycycline specifically. The best available evidence indicates that doxycycline has little or no effect on hypoplasia of dental enamel or on staining of teeth and the CDC recommends the use of doxycycline for treatment of Q fever and also for tick-borne rickettsial diseases in young children and others advocate for its use in malaria.

Other

Other contraindications are severe liver disease and concomitant use of isotretinoin or other retinoids, as both tetracyclines and retinoids can cause intracranial hypertension (increased pressure around the brain) in rare cases.

Adverse effects

Adverse effects are similar to those of other members of the tetracycline antibiotic group. Doxycycline can cause gastrointestinal upset. Oral doxycycline can cause pill esophagitis, particularly when it is swallowed without adequate fluid, or by persons with difficulty swallowing or impaired mobility. Doxycycline is less likely than other antibiotic drugs to cause Clostridium difficile colitis.

An erythematous rash in sun-exposed parts of the body has been reported to occur in 7.3–21.2% of persons taking doxycycline for malaria prophylaxis. One study examined the tolerability of various malaria prophylactic regimens and found doxycycline did not cause a significantly higher percentage of all skin events (photosensitivity not specified) when compared with other antimalarials. The rash resolves upon discontinuation of the drug.

Unlike some other members of the tetracycline group, it may be used in those with renal impairment.

Doxycycline use has been associated with increased risk of inflammatory bowel disease. In one large retrospective study, patients who were prescribed doxycycline for their acne had a 2.25-fold greater risk of developing Crohn's disease.

Interactions

The combination of doxycycline with dairy, antacids, calcium supplements, iron products, laxatives containing magnesium, or bile acid sequestrants is not inherently dangerous, but any of these foods and supplements may decrease doxycycline's effectiveness.

Breakfast was observed to reduce doxycycline absorption significantly. Absorption of tetracycline occurs in the stomach and the upper small intestine. Absorption of tetracyclines has been reported to be impaired by milk products, aluminum hydroxide gels, sodium bicarbonate, calcium and magnesium salts, laxatives containing magnesium and iron preparations. The mechanisms responsible for decreased absorption appear to be chelation and an increase in gastric pH. ... In view of these results, it is advisable to instruct the patients to take doxycycline on an empty stomach.

Previously, doxycycline was believed to impair the effectiveness of many types of hormonal contraception due to CYP450 induction. Research has shown no significant loss of effectiveness in oral contraceptives while using most tetracycline antibiotics (including doxycycline), although many physicians still recommend the use of barrier contraception for people taking the drug to prevent unwanted pregnancy.

Pharmacology

Doxycycline, like other tetracycline antibiotics, is bacteriostatic. It works by preventing bacteria from reproducing through the inhibition of protein synthesis.

Doxycycline is highly lipophilic so can easily enter cells, meaning the drug is easily absorbed after oral administration and has a large volume of distribution. It can also be re-absorbed in the renal tubules and gastrointestinal tract due to its high lipophillicity so has a long elimination half life, and does not accumulate in the kidneys of patients with kidney failure due to the compensatory excretion in faeces. Doxycycline–metal ion complexes are unstable at acid pH, therefore more doxycycline enters the duodenum for absorption than the earlier tetracycline compounds. In addition, food has less effect on absorption than on absorption of earlier drugs with doxycycline serum concentrations being reduced by about 20% by test meals compared with 50% for tetracycline.

Mechanism of action

Doxycycline is a broad spectrum antibiotic. It inhibits the synthesis of bacterial proteins by binding to the 30S ribosomal subunit, which is only found in bacteria. This prevents the binding of transfer RNA to messenger RNA at the ribosomal subunit meaning amino acids cannot be added to polypeptide chains and new proteins cannot be made. This stops bacterial growth giving the immune system time to kill and remove the bacteria.

Pharmacokinetics

The substance is almost completely absorbed from the upper part of the small intestine. It reaches highest concentrations in the blood plasma after one to two hours and has a high plasma protein binding rate of about 80–90%. Doxycycline penetrates into almost all tissues and body fluids. Very high concentrations are found in the gallbladder, liver, kidneys, lung, breast milk, bone and genitals; low ones in saliva, aqueous humour, cerebrospinal fluid (CSF), and especially in inflamed meninges. By comparison, the tetracycline antibiotic minocycline penetrates significantly better into the CSF and meninges.

Doxycycline metabolism is negligible. It is actively excreted into the gut (in part via the gallbladder, in part directly from blood vessels), where some of it is inactivated by forming chelates. About 40% are eliminated via the kidneys, much less in people with end-stage kidney disease. The biological half-life is 18 to 22 hours (16±6 hours according to another source) in healthy people, slightly longer in those with end-stage kidney disease, and significantly longer in those with liver disease.

Chemistry

Expired tetracyclines or tetracyclines allowed to stand at a pH less than 2 are reported to be nephrotoxic due to the formation of a degradation product, anhydro-4-epitetracycline causing Fanconi syndrome. In the case of doxycycline, the absence of a hydroxyl group in C-6 prevents the formation of the nephrotoxic compound. Nevertheless, tetracyclines and doxycycline itself have to be taken with caution in patients with kidney injury, as they can worsen azotemia due to catabolic effects.

Chemical properties

Doxycycline, doxycycline monohydrate and doxycycline hyclate are yellow, crystalline powders with a bitter taste. The latter smells faintly of ethanol; a 1% aqueous solution has a pH of 2–3; and the specific rotation is −110° cm³/dm·g in 0.01 N methanolic hydrochloric acid.

Solubility
Solubility in Doxycycline Doxycycline monohydrate Doxycycline hyclate
Water very slightly very slightly freely
Ethanol very slightly very slightly sparingly
Aqueous acids freely freely
Alkali hydroxyde solutions freely freely
Chloroform very slightly practically insoluble practically insoluble
Diethyl ether insoluble practically insoluble practically insoluble

History

After penicillin revolutionized the treatment of bacterial infections in WWII, many chemical companies moved into the field of discovering antibiotics by bioprospecting. American Cyanamid was one of these, and in the late 1940s chemists there discovered chlortetracycline, the first member of the tetracycline class of antibiotics. Shortly thereafter, scientists at Pfizer discovered terramycin and it was brought to market. Both compounds, like penicillin, were natural products and it was commonly believed that nature had perfected them, and further chemical changes could only degrade their effectiveness. Scientists at Pfizer led by Lloyd Conover modified these compounds, which led to the invention of tetracycline itself, the first semi-synthetic antibiotic. Charlie Stephens' group at Pfizer worked on further analogs and created one with greatly improved stability and pharmacological efficacy: doxycycline. It was clinically developed in the early 1960s and approved by the FDA in 1967.

As its patent grew near to expiring in the early 1970s, the patent became the subject of lawsuit between Pfizer and International Rectifier that was not resolved until 1983; at the time it was the largest litigated patent case in US history. Instead of a cash payment for infringement, Pfizer took the veterinary and feed-additive businesses of International Rectifier's subsidiary, Rachelle Laboratories.

In January 2013, the FDA reported shortages of some, but not all, forms of doxycycline "caused by increased demand and manufacturing issues". Companies involved included an unnamed major generics manufacturer that ceased production in February 2013, Teva (which ceased production in May 2013), Mylan, Actavis, and Hikma Pharmaceuticals. The shortage came at a particularly bad time, since there were also shortages of an alternative antibiotic, tetracycline, at the same time. The market price for doxycycline dramatically increased in the United States in 2013 and early 2014 (from $20 to over $1800 for a bottle of 500 tablets), before decreasing again.

Society and culture

Doxycycline is available worldwide under many brand names. Doxycycline is available as a generic medicine.

Research

In chronic obstructive pulmonary disease, doxycycline has been shown to improve lung functions in people with stable symptoms.

Other experimental applications include:

Tet-ON inducible shRNA system

Research reagent

Doxycycline and other members of the tetracycline class of antibiotics are often used as research reagents in in vitro and in vivo biomedical research experiments involving bacteria as well in experiments in eukaryotic cells and organisms with inducible protein expression systems using tetracycline-controlled transcriptional activation. The mechanism of action for the antibacterial effect of tetracyclines relies on disrupting protein translation in bacteria, thereby damaging the ability of microbes to grow and repair; however protein translation is also disrupted in eukaryotic mitochondria impairing metabolism and leading to effects that can confound experimental results. Doxycycline is also used in "tet-on" (gene expression activated by doxycycline) and "tet-off" (gene expression inactivated by doxycycline) tetracycline-controlled transcriptional activation to regulate transgene expression in organisms and cell cultures. Doxycycline is more stable than tetracycline for this purpose. At subantimicrobial doses, doxycycline is an inhibitor of matrix metalloproteases, and has been used in various experimental systems for this purpose, such as for recalcitrant recurrent corneal erosions.

Streaming algorithm

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Streaming_algorithm ...