Search This Blog

Wednesday, July 26, 2017

Valence bond theory

From Wikipedia, the free encyclopedia

In chemistry, valence bond (VB) theory is one of two basic theories, along with molecular orbital (MO) theory, that were developed to use the methods of quantum mechanics to explain chemical bonding. It focuses on how the atomic orbitals of the dissociated atoms combine to give individual chemical bonds when a molecule is formed. In contrast, molecular orbital theory has orbitals that cover the whole molecule.[1]

History

In 1916, G. N. Lewis proposed that a chemical bond forms by the interaction of two shared bonding electrons, with the representation of molecules as Lewis structures. In 1927 the HeitlerLondon theory was formulated which for the first time enabled the calculation of bonding properties of the hydrogen molecule H2 based on quantum mechanical considerations. Specifically, Walter Heitler determined how to use Schrödinger's wave equation (1926) to show how two hydrogen atom wavefunctions join together, with plus, minus, and exchange terms, to form a covalent bond. He then called up his associate Fritz London and they worked out the details of the theory over the course of the night.[2] Later, Linus Pauling used the pair bonding ideas of Lewis together with Heitler–London theory to develop two other key concepts in VB theory: resonance (1928) and orbital hybridization (1930). According to Charles Coulson, author of the noted 1952 book Valence, this period marks the start of "modern valence bond theory", as contrasted with older valence bond theories, which are essentially electronic theories of valence couched in pre-wave-mechanical terms. Resonance theory was criticized as imperfect by Soviet chemists during the 1950s.[3]

Theory

According to this theory a covalent bond is formed between the two atoms by the overlap of half filled valence atomic orbitals of each atom containing one unpaired electron. A valence bond structure is similar to a Lewis structure, but where a single Lewis structure cannot be written, several valence bond structures are used. Each of these VB structures represents a specific Lewis structure. This combination of valence bond structures is the main point of resonance theory. Valence bond theory considers that the overlapping atomic orbitals of the participating atoms form a chemical bond. Because of the overlapping, it is most probable that electrons should be in the bond region. Valence bond theory views bonds as weakly coupled orbitals (small overlap). Valence bond theory is typically easier to employ in ground state molecules. The inner-shell orbitals and electrons remain essentially unchanged during the formation of bonds.
σ bond between two atoms: localization of electron density
Two p-orbitals forming a π-bond.

The overlapping atomic orbitals can differ. The two types of overlapping orbitals are sigma and pi. Sigma bonds occur when the orbitals of two shared electrons overlap head-to-head. Pi bonds occur when two orbitals overlap when they are parallel. For example, a bond between two s-orbital electrons is a sigma bond, because two spheres are always coaxial. In terms of bond order, single bonds have one sigma bond, double bonds consist of one sigma bond and one pi bond, and triple bonds contain one sigma bond and two pi bonds. However, the atomic orbitals for bonding may be hybrids. Often, the bonding atomic orbitals have a character of several possible types of orbitals. The methods to get an atomic orbital with the proper character for the bonding is called hybridization.

Valence bond theory today

Modern valence bond theory now complements molecular orbital theory, which does not adhere to the valence bond idea that electron pairs are localized between two specific atoms in a molecule but that they are distributed in sets of molecular orbitals which can extend over the entire molecule. Molecular orbital theory can predict magnetic and ionization properties in a straightforward manner, while valence bond theory gives similar results but is more complicated. Modern valence bond theory views aromatic properties of molecules as due to spin coupling of the π orbitals.[4][5][6][7] This is essentially still the old idea of resonance between Kekulé and Dewar structures. In contrast, molecular orbital theory views aromaticity as delocalization of the π-electrons. Valence bond treatments are restricted to relatively small molecules, largely due to the lack of orthogonality between valence bond orbitals and between valence bond structures, while molecular orbitals are orthogonal. On the other hand, valence bond theory provides a much more accurate picture of the reorganization of electronic charge that takes place when bonds are broken and formed during the course of a chemical reaction. In particular, valence bond theory correctly predicts the dissociation of homonuclear diatomic molecules into separate atoms, while simple molecular orbital theory predicts dissociation into a mixture of atoms and ions. For example, the molecular orbital function for dihydrogen is an equal mixture of the covalent and ionic valence bond structures and so predicts incorrectly that the molecule would dissociate into an equal mixture of hydrogen atoms and hydrogen positive and negative ions.

Modern valence bond theory replaces the overlapping atomic orbitals by overlapping valence bond orbitals that are expanded over a large number of basis functions, either centered each on one atom to give a classical valence bond picture, or centered on all atoms in the molecule. The resulting energies are more competitive with energies from calculations where electron correlation is introduced based on a Hartree–Fock reference wavefunction. The most recent text is by Shaik and Hiberty.[8]

Applications of valence bond theory

An important aspect of the VB theory is the condition of maximum overlap, which leads to the formation of the strongest possible bonds. This theory is used to explain the covalent bond formation in many molecules.

For example, in the case of the F2 molecule, the F−F bond is formed by the overlap of pz orbitals of the two F atoms, each containing an unpaired electron. Since the nature of the overlapping orbitals are different in H2 and F2 molecules, the bond strength and bond lengths differ between H2 and F2 molecules.

In an HF molecule the covalent bond is formed by the overlap of the 1s orbital of H and the 2pz orbital of F, each containing an unpaired electron. Mutual sharing of electrons between H and F results in a covalent bond in HF.

Electronegativity

From Wikipedia, the free encyclopedia
Electrostatic potential map of a water molecule, where the oxygen atom has a more negative charge (red) than the positive (blue) hydrogen atoms

Electronegativity, symbol χ, is a chemical property that describes the tendency of an atom to attract electrons (or electron density) towards itself.[1] An atom's electronegativity is affected by both its atomic number and the distance at which its valence electrons reside from the charged nucleus. The higher the associated electronegativity number, the more an element or compound attracts electrons towards it.

The term "electronegativity" was introduced by Jöns Jacob Berzelius in 1811,[2] though the concept was known even before that and was studied by many chemists including Avogadro.[2] In spite of its long history, an accurate scale of electronegativity had to wait until 1932, when Linus Pauling proposed an electronegativity scale, which depends on bond energies, as a development of valence bond theory.[3] It has been shown to correlate with a number of other chemical properties. Electronegativity cannot be directly measured and must be calculated from other atomic or molecular properties. Several methods of calculation have been proposed, and although there may be small differences in the numerical values of the electronegativity, all methods show the same periodic trends between elements.

The most commonly used method of calculation is that originally proposed by Linus Pauling. This gives a dimensionless quantity, commonly referred to as the Pauling scale (χr), on a relative scale running from around 0.7 to 3.98 (hydrogen = 2.20). When other methods of calculation are used, it is conventional (although not obligatory) to quote the results on a scale that covers the same range of numerical values: this is known as an electronegativity in Pauling units.

As it is usually calculated, electronegativity is not a property of an atom alone, but rather a property of an atom in a molecule.[4] Properties of a free atom include ionization energy and electron affinity. It is to be expected that the electronegativity of an element will vary with its chemical environment,[5] but it is usually considered to be a transferable property, that is to say that similar values will be valid in a variety of situations.

On the most basic level, electronegativity is determined by factors like the nuclear charge (the more protons an atom has, the more "pull" it will have on electrons) and the number/location of other electrons present in the atomic shells (the more electrons an atom has, the farther from the nucleus the valence electrons will be, and as a result the less positive charge they will experience—both because of their increased distance from the nucleus, and because the other electrons in the lower energy core orbitals will act to shield the valence electrons from the positively charged nucleus).

The opposite of electronegativity is electropositivity: a measure of an element's ability to donate electrons.

Caesium is the least electronegative element in the periodic table (=0.79), while fluorine is most electronegative (=3.98). Francium and caesium were originally both assigned 0.7; caesium's value was later refined to 0.79, but no experimental data allows a similar refinement for francium. However, francium's ionization energy is known to be slightly higher than caesium's, in accordance with the relativistic stabilization of the 7s orbital, and this in turn implies that francium is in fact more electronegative than caesium.[6]

Electronegativities of the elements

Atomic radius decreases → Ionization energy increases → Electronegativity increases →

1 2 3
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Group →
↓ Period
1 H
2.20

He
 
2 Li
0.98
Be
1.57

B
2.04
C
2.55
N
3.04
O
3.44
F
3.98
Ne
 
3 Na
0.93
Mg
1.31

Al
1.61
Si
1.90
P
2.19
S
2.58
Cl
3.16
Ar
 
4 K
0.82
Ca
1.00
Sc
1.36

Ti
1.54
V
1.63
Cr
1.66
Mn
1.55
Fe
1.83
Co
1.88
Ni
1.91
Cu
1.90
Zn
1.65
Ga
1.81
Ge
2.01
As
2.18
Se
2.55
Br
2.96
Kr
3.00
5 Rb
0.82
Sr
0.95
Y
1.22

Zr
1.33
Nb
1.6
Mo
2.16
Tc
1.9
Ru
2.2
Rh
2.28
Pd
2.20
Ag
1.93
Cd
1.69
In
1.78
Sn
1.96
Sb
2.05
Te
2.1
I
2.66
Xe
2.60
6 Cs
0.79
Ba
0.89
La
1.1
1 asterisk Hf
1.3
Ta
1.5
W
2.36
Re
1.9
Os
2.2
Ir
2.20
Pt
2.28
Au
2.54
Hg
2.00
Tl
1.62
Pb
1.87
Bi
2.02
Po
2.0
At
2.2
Rn
2.2
7 Fr
0.7[en 1]
Ra
0.9
Ac
1.1
1 asterisk Rf
 
Db
 
Sg
 
Bh
 
Hs
 
Mt
 
Ds
 
Rg
 
Cn
 
Nh
 
Fl
 
Mc
 
Lv
 
Ts
 
Og
 

1 asterisk Ce
1.12
Pr
1.13
Nd
1.14
Pm
1.13
Sm
1.17
Eu
1.2
Gd
1.2
Tb
1.1
Dy
1.22
Ho
1.23
Er
1.24
Tm
1.25
Yb
1.1
Lu
1.27
1 asterisk Th
1.3
Pa
1.5
U
1.38
Np
1.36
Pu
1.28
Am
1.13
Cm
1.28
Bk
1.3
Cf
1.3
Es
1.3
Fm
1.3
Md
1.3
No
1.3
Lr
1.3[en 2]
Values are given for the elements in their most common and stable oxidation states.
See also: Electronegativities of the elements (data page)

  • Electronegativity of francium was chosen by Pauling as 0.7, close to that of caesium (also assessed 0.7 at that point). The base value of hydrogen was later increased by 0.10 and caesium's electronegativity was later refined to 0.79; however, no refinements have been made for francium as no experiment has been conducted and the old value was kept. However, francium is expected and, to a small extent, observed to be more electronegative than caesium. See francium for details.

    1. See Brown, Geoffrey (2012). The Inaccessible Earth: An integrated view to its structure and composition. Springer Science & Business Media. p. 88. ISBN 9789401115162.

    Methods of calculation

    Pauling electronegativity

    Pauling first proposed[3] the concept of electronegativity in 1932 as an explanation of the fact that the covalent bond between two different atoms (A–B) is stronger than would be expected by taking the average of the strengths of the A–A and B–B bonds. According to valence bond theory, of which Pauling was a notable proponent, this "additional stabilization" of the heteronuclear bond is due to the contribution of ionic canonical forms to the bonding.

    The difference in electronegativity between atoms A and B is given by:
    {\displaystyle |\chi _{\rm {A}}-\chi _{\rm {B}}|=({\rm {eV}})^{-1/2}{\sqrt {E_{\rm {d}}({\rm {AB}})-[E_{\rm {d}}({\rm {AA}})+E_{\rm {d}}({\rm {BB}})]/2}}}
    where the dissociation energies, Ed, of the A–B, A–A and B–B bonds are expressed in electronvolts, the factor (eV)12 being included to ensure a dimensionless result. Hence, the difference in Pauling electronegativity between hydrogen and bromine is 0.73 (dissociation energies: H–Br, 3.79 eV; H–H, 4.52 eV; Br–Br 2.00 eV)

    As only differences in electronegativity are defined, it is necessary to choose an arbitrary reference point in order to construct a scale. Hydrogen was chosen as the reference, as it forms covalent bonds with a large variety of elements: its electronegativity was fixed first[3] at 2.1, later revised[7] to 2.20. It is also necessary to decide which of the two elements is the more electronegative (equivalent to choosing one of the two possible signs for the square root). This is usually done using "chemical intuition": in the above example, hydrogen bromide dissolves in water to form H+ and Br ions, so it may be assumed that bromine is more electronegative than hydrogen. However, in principle, since the same electronegativities should be obtained for any two bonding compounds, the data are in fact overdetermined, and the signs are unique once a reference point is fixed (usually, for H or F).

    To calculate Pauling electronegativity for an element, it is necessary to have data on the dissociation energies of at least two types of covalent bond formed by that element. A. L. Allred updated Pauling's original values in 1961 to take account of the greater availability of thermodynamic data,[7] and it is these "revised Pauling" values of the electronegativity that are most often used.

    The essential point of Pauling electronegativity is that there is an underlying, quite accurate, semi-empirical formula for dissociation energies, namely:
    E_{\rm {d}}({\rm {AB}})=[E_{\rm {d}}({\rm {AA}})+E_{\rm {d}}({\rm {BB}})]/2+(\chi _{\rm {A}}-\chi _{\rm {B}})^{2}eV
    or sometimes, a more accurate fit
    E_{\rm {d}}({\rm {AB}})={\sqrt {E_{\rm {d}}({\rm {AA}})E_{\rm {d}}({\rm {BB}})}}+1.3(\chi _{\rm {A}}-\chi _{\rm {B}})^{2}eV
    This is an approximate equation, but holds with good accuracy. Pauling obtained it by noting that a bond can be approximately represented as a quantum mechanical superposition of a covalent bond and two ionic bond-states. The covalent energy of a bond is approximately, by quantum mechanical calculations, the geometric mean of the two energies of covalent bonds of the same molecules, and there is an additional energy that comes from ionic factors, i.e. polar character of the bond.

    The geometric mean is approximately equal to the arithmetic mean - which is applied in the first formula above - when the energies are of the similar value, e.g., except for the highly electropositive elements, where there is a larger difference of two dissociation energies; the geometric mean is more accurate and almost always gives a positive excess energy, due to ionic bonding. The square root of this excess energy, Pauling notes, is approximately additive, and hence one can introduce the electronegativity. Thus, it is this semi-empirical formula for bond energy that underlies Pauling electronegativity concept.

    The formulas are approximate, but this rough approximation is in fact relatively good and gives the right intuition, with the notion of polarity of the bond and some theoretical grounding in quantum mechanics. The electronegativities are then determined to best fit the data.

    In more complex compounds, there is additional error since electronegativity depends on the molecular environment of an atom. Also, the energy estimate can be only used for single, not for multiple bonds. The energy of formation of a molecule containing only single bonds then can be approximated from an electronegativity table, and depends on the constituents and sum of squares of differences of electronegativities of all pairs of bonded atoms. Such a formula for estimating energy typically has relative error of order of 10%, but can be used to get a rough qualitative idea and understanding of a molecule.

    Mulliken electronegativity

    The correlation between Mulliken electronegativities (x-axis, in kJ/mol) and Pauling electronegativities (y-axis).

    Robert S. Mulliken proposed that the arithmetic mean of the first ionization energy (Ei) and the electron affinity (Eea) should be a measure of the tendency of an atom to attract electrons.[8][9] As this definition is not dependent on an arbitrary relative scale, it has also been termed absolute electronegativity,[10] with the units of kilojoules per mole or electronvolts.
    \chi =(E_{\rm {i}}+E_{\rm {ea}})/2\,
    However, it is more usual to use a linear transformation to transform these absolute values into values that resemble the more familiar Pauling values. For ionization energies and electron affinities in electronvolts,[11]
    \chi =0.187(E_{\rm {i}}+E_{\rm {ea}})+0.17\,
    and for energies in kilojoules per mole,[12]
    \chi =(1.97\times 10^{-3})(E_{\rm {i}}+E_{\rm {ea}})+0.19.
    The Mulliken electronegativity can only be calculated for an element for which the electron affinity is known, fifty-seven elements as of 2006. The Mulliken electronegativity of an atom is sometimes said to be the negative of the chemical potential. By inserting the energetic definitions of the ionization potential and electron affinity into the Mulliken electronegativity, it is possible to show that the Mulliken chemical potential is a finite difference approximation of the electronic energy with respect to the number of electrons., i.e.,
    \mu ({\rm {Mulliken)=-\chi ({\rm {Mulliken)=-(E_{\rm {i}}+E_{\rm {ea}})/2\,}}}}

    Allred–Rochow electronegativity

    The correlation between Allred–Rochow electronegativities (x-axis, in Å−2) and Pauling electronegativities (y-axis).

    A. Louis Allred and Eugene G. Rochow considered[13] that electronegativity should be related to the charge experienced by an electron on the "surface" of an atom: The higher the charge per unit area of atomic surface the greater the tendency of that atom to attract electrons. The effective nuclear charge, Zeff, experienced by valence electrons can be estimated using Slater's rules, while the surface area of an atom in a molecule can be taken to be proportional to the square of the covalent radius, rcov. When rcov is expressed in picometres,[14]
    \chi =3590{{Z_{\rm {eff}}} \over {r_{\rm {cov}}^{2}}}+0.744

    Sanderson electronegativity equalization

    The correlation between Sanderson electronegativities (x-axis, arbitrary units) and Pauling electronegativities (y-axis).

    R.T. Sanderson has also noted the relationship between Mulliken electronegativity and atomic size, and has proposed a method of calculation based on the reciprocal of the atomic volume.[15] With a knowledge of bond lengths, Sanderson's model allows the estimation of bond energies in a wide range of compounds.[16] Sanderson's model has also been used to calculate molecular geometry, s-electrons energy, NMR spin-spin constants and other parameters for organic compounds.[17][18] This work underlies the concept of electronegativity equalization, which suggests that electrons distribute themselves around a molecule to minimize or to equalize the Mulliken electronegativity.[19] This behavior is analogous to the equalization of chemical potential in macroscopic thermodynamics.[20]

    Allen electronegativity

    The correlation between Allen electronegativities (x-axis, in kJ/mol) and Pauling electronegativities (y-axis).
    Perhaps the simplest definition of electronegativity is that of Leland C. Allen, who has proposed that it is related to the average energy of the valence electrons in a free atom,[21] ,[22] ,[23]
    \chi ={n_{\rm {s}}\varepsilon _{\rm {s}}+n_{\rm {p}}\varepsilon _{\rm {p}} \over n_{\rm {s}}+n_{\rm {p}}}
    where εs,p are the one-electron energies of s- and p-electrons in the free atom and ns,p are the number of s- and p-electrons in the valence shell. It is usual to apply a scaling factor, 1.75×10−3 for energies expressed in kilojoules per mole or 0.169 for energies measured in electronvolts, to give values that are numerically similar to Pauling electronegativities.

    The one-electron energies can be determined directly from spectroscopic data, and so electronegativities calculated by this method are sometimes referred to as spectroscopic electronegativities. The necessary data are available for almost all elements, and this method allows the estimation of electronegativities for elements that cannot be treated by the other methods, e.g. francium, which has an Allen electronegativity of 0.67.[24] However, it is not clear what should be considered to be valence electrons for the d- and f-block elements, which leads to an ambiguity for their electronegativities calculated by the Allen method.

    In this scale neon has the highest electronegativity of all elements, followed by fluorine, helium, and oxygen.
    Electronegativity using the Allen scale
    Group → 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
    ↓ Period
    1 H
    2.300

    He
    4.160
    2 Li
    0.912
    Be
    1.576

    B
    2.051
    C
    2.544
    N
    3.066
    O
    3.610
    F
    4.193
    Ne
    4.787
    3 Na
    0.869
    Mg
    1.293

    Al
    1.613
    Si
    1.916
    P
    2.253
    S
    2.589
    Cl
    2.869
    Ar
    3.242
    4 K
    0.734
    Ca
    1.034
    Sc
    1.19
    Ti
    1.38
    V
    1.53
    Cr
    1.65
    Mn
    1.75
    Fe
    1.80
    Co
    1.84
    Ni
    1.88
    Cu
    1.85
    Zn
    1.59
    Ga
    1.756
    Ge
    1.994
    As
    2.211
    Se
    2.424
    Br
    2.685
    Kr
    2.966
    5 Rb
    0.706
    Sr
    0.963
    Y
    1.12
    Zr
    1.32
    Nb
    1.41
    Mo
    1.47
    Tc
    1.51
    Ru
    1.54
    Rh
    1.56
    Pd
    1.58
    Ag
    1.87
    Cd
    1.52
    In
    1.656
    Sn
    1.824
    Sb
    1.984
    Te
    2.158
    I
    2.359
    Xe
    2.582
    6 Cs
    0.659
    Ba
    0.881
    Lu
    1.09
    Hf
    1.16
    Ta
    1.34
    W
    1.47
    Re
    1.60
    Os
    1.65
    Ir
    1.68
    Pt
    1.72
    Au
    1.92
    Hg
    1.76
    Tl
    1.789
    Pb
    1.854
    Bi
    2.01
    Po
    2.19
    At
    2.39
    Rn
    2.60
    7 Fr
    0.67
    Ra
    0.89

    Correlation of electronegativity with other properties

    The variation of the isomer shift (y-axis, in mm/s) of [SnX6]2− anions, as measured by 119Sn Mössbauer spectroscopy, against the sum of the Pauling electronegativities of the halide substituents (x-axis).

    The wide variety of methods of calculation of electronegativities, which all give results that correlate well with one another, is one indication of the number of chemical properties which might be affected by electronegativity. The most obvious application of electronegativities is in the discussion of bond polarity, for which the concept was introduced by Pauling. In general, the greater the difference in electronegativity between two atoms the more polar the bond that will be formed between them, with the atom having the higher electronegativity being at the negative end of the dipole. Pauling proposed an equation to relate "ionic character" of a bond to the difference in electronegativity of the two atoms,[4] although this has fallen somewhat into disuse.

    Several correlations have been shown between infrared stretching frequencies of certain bonds and the electronegativities of the atoms involved:[25] however, this is not surprising as such stretching frequencies depend in part on bond strength, which enters into the calculation of Pauling electronegativities. More convincing are the correlations between electronegativity and chemical shifts in NMR spectroscopy[26] or isomer shifts in Mössbauer spectroscopy[27] (see figure). Both these measurements depend on the s-electron density at the nucleus, and so are a good indication that the different measures of electronegativity really are describing "the ability of an atom in a molecule to attract electrons to itself".[1][4]

    Trends in electronegativity

    Periodic trends

    The variation of Pauling electronegativity (y-axis) as one descends the main groups of the periodic table from the second period to the sixth period

    In general, electronegativity increases on passing from left to right along a period, and decreases on descending a group. Hence, fluorine is the most electronegative of the elements (not counting noble gases), whereas caesium is the least electronegative, at least of those elements for which substantial data is available.[24] This would lead one to believe that caesium fluoride is the compound whose bonding features the most ionic character.

    There are some exceptions to this general rule. Gallium and germanium have higher electronegativities than aluminium and silicon, respectively, because of the d-block contraction. Elements of the fourth period immediately after the first row of the transition metals have unusually small atomic radii because the 3d-electrons are not effective at shielding the increased nuclear charge, and smaller atomic size correlates with higher electronegativity (see Allred-Rochow electronegativity, Sanderson electronegativity above). The anomalously high electronegativity of lead, in particular when compared to thallium and bismuth, appears to be an artifact of data selection (and data availability)—methods of calculation other than the Pauling method show the normal periodic trends for these elements.

    Variation of electronegativity with oxidation number

    In inorganic chemistry it is common to consider a single value of the electronegativity to be valid for most "normal" situations. While this approach has the advantage of simplicity, it is clear that the electronegativity of an element is not an invariable atomic property and, in particular, increases with the oxidation state of the element.

    Allred used the Pauling method to calculate separate electronegativities for different oxidation states of the handful of elements (including tin and lead) for which sufficient data was available.[7] However, for most elements, there are not enough different covalent compounds for which bond dissociation energies are known to make this approach feasible. This is particularly true of the transition elements, where quoted electronegativity values are usually, of necessity, averages over several different oxidation states and where trends in electronegativity are harder to see as a result.
    Acid Formula Chlorine
    oxidation
    state
    pKa
    Hypochlorous acid HClO +1 +7.5
    Chlorous acid HClO2 +3 +2.0
    Chloric acid HClO3 +5 –1.0
    Perchloric acid HClO4 +7 –10

    The chemical effects of this increase in electronegativity can be seen both in the structures of oxides and halides and in the acidity of oxides and oxoacids. Hence CrO3 and Mn2O7 are acidic oxides with low melting points, while Cr2O3 is amphoteric and Mn2O3 is a completely basic oxide.

    The effect can also be clearly seen in the dissociation constants of the oxoacids of chlorine. The effect is much larger than could be explained by the negative charge being shared among a larger number of oxygen atoms, which would lead to a difference in pKa of log10(14) = –0.6 between hypochlorous acid and perchloric acid. As the oxidation state of the central chlorine atom increases, more electron density is drawn from the oxygen atoms onto the chlorine, reducing the partial negative charge on the oxygen atoms and increasing the acidity.

    Group electronegativity

    In organic chemistry, electronegativity is associated more with different functional groups than with individual atoms. The terms group electronegativity and substituent electronegativity are used synonymously. However, it is common to distinguish between the inductive effect and the resonance effect, which might be described as σ- and π-electronegativities, respectively. There are a number of linear free-energy relationships that have been used to quantify these effects, of which the Hammett equation is the best known. Kabachnik parameters are group electronegativities for use in organophosphorus chemistry.

    Electropositivity

    Electropositivity is a measure of an element's ability to donate electrons, and therefore form positive ions; thus, it is opposed to electronegativity.

    Mainly, this is an attribute of metals, meaning that, in general, the greater the metallic character of an element the greater the electropositivity. Therefore, the alkali metals are most electropositive of all. This is because they have a single electron in their outer shell and, as this is relatively far from the nucleus of the atom, it is easily lost; in other words, these metals have low ionization energies.[28]

    While electronegativity increases along periods in the periodic table, and decreases down groups, electropositivity decreases along periods (from left to right) and increases down groups.

    Education reform

    From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Education_reform ...