Search This Blog

Saturday, September 22, 2018

Heterozygote advantage

From Wikipedia, the free encyclopedia

A heterozygote advantage describes the case in which the heterozygous genotype has a higher relative fitness than either the homozygous dominant or homozygous recessive genotype. The specific case of heterozygote advantage due to a single locus is known as overdominance. Overdominance is a condition in genetics where the phenotype of the heterozygote lies outside of the phenotypical range of both homozygote parents, and heterozygous individuals have a higher fitness than homozygous individuals.

Polymorphism can be maintained by selection favoring the heterozygote, and this mechanism is used to explain the occurrence of some kinds of genetic variability. A common example is the case where the heterozygote conveys both advantages and disadvantages, while both homozygotes convey a disadvantage. A well-established case of heterozygote advantage is that of the gene involved in sickle cell anaemia.

Often, the advantages and disadvantages conveyed are rather complicated, because more than one gene may influence a given trait or morph. Major genes almost always have multiple effects (pleiotropism), which can simultaneously convey separate advantageous traits and disadvantageous traits upon the same organism. In this instance, the state of the organism's environment will provide selection, with a net effect either favoring or working in opposition to the gene, until an environmentally determined equilibrium is reached.

Heterozygote advantage is a major underlying mechanism for heterosis, or "hybrid vigor", which is the improved or increased function of any biological quality in a hybrid offspring. Previous research, comparing measures of dominance, overdominance and epistasis (mostly in plants), found that the majority of cases of heterozygote advantage were due to complementation (or dominance), the masking of deleterious recessive alleles by wild-type alleles, as discussed in the articles Heterosis and Complementation (genetics), but there were also findings of overdominance, especially in rice. More recent research, however, has established that there is also an epigenetic contribution to heterozygote advantage, primarily as determined in plants, though also reported in mice.

In theory

When two populations of any sexual organism are separated and kept isolated from each other, the frequencies of deleterious mutations in the two populations will differ over time, by genetic drift. It is highly unlikely, however, that the same deleterious mutations will be common in both populations after a long period of separation. Since loss-of-function mutations tend to be recessive (given that dominant mutations of this type generally prevent the organism from reproducing and thereby passing the gene on to the next generation), the result of any cross between the two populations will be fitter than the parent.

This article deals with the specific case of fitness overdominance, where the fitness advantage of the cross is caused by being heterozygous at one specific locus alone.

Experimental confirmation

Cases of heterozygote advantage have been demonstrated in several organisms, including humans. The first experimental confirmation of heterozygote advantage was with Drosophila melanogaster, a fruit fly that has been a model organism for genetic research. In a classic study, Kalmus demonstrated how polymorphism can persist in a population through heterozygote advantage.

If weakness were the only effect of the mutant allele, so it conveyed only disadvantages, natural selection would weed out this version of the gene until it became extinct from the population. However, the same mutation also conveyed advantages, providing improved viability for heterozygous individuals. The heterozygote expressed none of the disadvantages of homozygotes, yet gained improved viability. The homozygote wild type was perfectly healthy, but did not possess the improved viability of the heterozygote, and was thus at a disadvantage compared to the heterozygote in survival and reproduction.

This mutation, which at first glance appeared to be harmful, conferred enough of an advantage to heterozygotes to make it beneficial, so that it remained at dynamic equilibrium in the gene pool. Kalmus introduced flies with the ebony mutation to a wild-type population. The ebony allele persisted through many generations of flies in the study, at genotype frequencies that varied from 8% to 30%. In experimental populations, the ebony allele was more prevalent and therefore advantageous when flies were raised at low, dry temperatures, but less so in warm, moist environments.

In human genetics

Sickle-cell anemia

Sickle-cell anemia (SCA) is a genetic disorder caused by the presence of two incompletely recessive alleles. When a sufferer's red blood cells are exposed to low-oxygen conditions, the cells lose their healthy round shape and become sickle-shaped. This deformation of the cells can cause them to become lodged in capillaries, depriving other parts of the body of sufficient oxygen. When untreated, a person with SCA may suffer from painful periodic bouts, often causing damage to internal organs, strokes, or anemia. Typically, the disease results in premature death.

Because the genetic disorder is incompletely recessive, a person with only one SCA allele and one unaffected allele will have a "mixed" phenotype: The sufferer will not experience the ill effects of the disease, yet will still possess a sickle cell trait, whereby some of the red blood cells undergo benign effects of SCA, but nothing severe enough to be harmful. Those afflicted with sickle-cell trait are also known as carriers: If two carriers have a child, there is a 25% chance their child will have SCA, a 50% chance their child will be a carrier, and a 25% chance that the child will neither have SCA nor be a carrier. Were the presence of the SCA allele to confer only negative traits, its allele frequency would be expected to decrease generation after generation, until its presence were completely eliminated by selection and by chance.

However, convincing evidence indicates, in areas with persistent malaria outbreaks, individuals with the heterozygous state have a distinct advantage (and this is why individuals with heterozygous alleles are far more common in these areas). Those with the benign sickle trait possess a resistance to malarial infection. The pathogen that causes the disease spends part of its cycle in the red blood cells and triggers an abnormal drop in oxygen levels in the cell. In carriers, this drop is sufficient to trigger the full sickle-cell reaction, which leads to infected cells being rapidly removed from circulation and strongly limiting the infection's progress. These individuals have a great resistance to infection and have a greater chance of surviving outbreaks. However, those with two alleles for SCA may survive malaria, but will typically die from their genetic disease unless they have access to advanced medical care. Those of the homozygous "normal" or wild-type case will have a greater chance of passing on their genes successfully, in that there is no chance of their offspring's suffering from SCA; yet, they are more susceptible to dying from malarial infection before they have a chance to pass on their genes.

This resistance to infection is the main reason the SCA allele and SCA disease still exist. It is found in greatest frequency in populations where malaria was and often still is a serious problem. Approximately one in 10 African Americans is a carrier, as their recent ancestry is from malaria-stricken regions. Other populations in Africa, India, the Mediterranean and the Middle East have higher allele frequencies, as well. As effective antimalarial treatment becomes increasingly available to malaria-stricken populations, the allele frequency for SCA is expected to decrease, so long as SCA treatments are unavailable or only partially effective. If effective sickle-cell anemia treatments become available to the same degree, allele frequencies should remain at their present levels in these populations. In this context, 'treatment effectiveness' refers to the reproductive fitness it grants, rather than the degree of suffering alleviation.

Cystic fibrosis

Cystic fibrosis (CF) is an autosomal recessive hereditary monogenic disease of the lungs, sweat glands and digestive system. The disorder is caused by the malfunction of the CFTR protein, which controls intermembrane transport of chloride ions, which is vital to maintaining equilibrium of water in the body. The malfunctioning protein causes viscous mucus to form in the lungs and intestinal tract. Before modern times, children born with CF would have a life expectancy of only a few years, but modern medicine has made it possible for these people to live into adulthood. However, even in these individuals, CF typically causes male infertility. It is the most common genetic disease among people of European descent.

The presence of a single CF mutation may influence survival of people affected by diseases involving loss of body fluid, typically due to diarrhea. The most common of these maladies is cholera, which only began killing Europeans millennia after the CF mutation frequency was already established in the population. Another such disease that CF may protect against is typhoid. Those with cholera would often die of dehydration due to intestinal water losses. A mouse model of CF was used to study resistance to cholera, and the results were published in Science in 1994 (Gabriel, et al.). The heterozygote (carrier) mouse had less secretory diarrhea than normal, noncarrier mice. Thus, it appeared for a time that resistance to cholera explained the selective advantage to being a carrier for CF and why the carrier state was so frequent.

This theory has been called into question. Hogenauer, et al. have challenged this popular theory with a human study. Prior data were based solely on mouse experiments. These authors found the heterozygote state was indistinguishable from the noncarrier state.

Another theory for the prevalence of the CF mutation is that it provides resistance to tuberculosis. Tuberculosis was responsible for 20% of all European deaths between 1600 and 1900, so even partial protection against the disease could account for the current gene frequency.

The most recent hypothesis, published in the Journal of Theoretical Biology, proposed having a single CF mutation granted respiratory advantage for early Europeans migrating north into the dusty wasteland left by the Last Glacial Maximum.

As of 2016, the selective pressure for the high gene prevalence of CF mutations is still uncertain, and may be due to an unbiased genetic drift rather than a selective advantage. Approximately one in 25 persons of European descent is a carrier of the disease, and one in 2500 to 3000 children born is affected by Cystic fibrosis.

Triosephosphate isomerase

Triosephosphate isomerase (TPI) is a central enzyme of glycolysis, the main pathway for cells to obtain energy by metabolizing sugars. In humans, certain mutations within this enzyme, which affect the dimerisation of this protein, are causal for a rare disease, triosephosphate isomerase deficiency. Other mutations, which inactivate the enzyme (= null alleles) are lethal when inherited homozygously (two defective copies of the TPI gene), but have no obvious effect in heterozygotes (one defective and one normal copy). However, the frequency of heterozygous null alleles is much higher than expected, indicating a heterozygous advantage for TPI null alleles. The reason is unknown; however, new scientific results are suggesting cells having reduced TPI activity are more resistant against oxidative stress. PlosOne, Dec. 2006

Resistance to hepatitis C virus infection

There is evidence that genetic heterozygosity in humans provides increased resistance to certain viral infections. A significantly lower proportion of HLA-DRB1 heterozygosity exists among HCV-infected cases than uninfected cases. The differences were more pronounced with alleles represented as functional supertypes (P = 1.05 × 10−6) than those represented as low-resolution genotypes (P = 1.99 × 10−3). These findings constitute evidence that heterozygosity provides an advantage among carriers of different supertype HLA-DRB1 alleles against HCV infection progression to end-stage liver disease in a large-scale, long-term study population.

MHC heterozygosity and human scent preferences

Multiple studies have shown, in double-blind experiments, females prefer the scent of males who are heterozygous at all three MHC loci. The reasons proposed for these findings are speculative; however, it has been argued that heterozygosity at MHC loci results in more alleles to fight against a wider variety of diseases, possibly increasing survival rates against a wider range of infectious diseases. The latter claim has been tested in an experiment, which showed outbreeding mice to exhibit MHC heterozygosity enhanced their health and survival rates against multiple-strain infections.

BAFF and autoimmune disease

B-cell activating factor (BAFF) is a cytokine encoded by the TNFSF13B gene. A variant of the gene containing a deletion (GCTGT—>A) renders a shorter mRNA transcript that escapes degradation by microRNA, thus increasing expression of BAFF, which consequently up-regulates the humoral immune response. This variant is associated with systemic lupus erythematosus and multiple sclerosis, but heterozygote carriers of the variant have decreased susceptibility to malaria infection.

Extended evolutionary synthesis

From Wikipedia, the free encyclopedia

The extended evolutionary synthesis consists of a set of theoretical concepts more comprehensive than the earlier modern synthesis of evolutionary biology that took place between 1918 and 1942. The extended evolutionary synthesis was called for in the 1950s by C. H. Waddington, argued for on the basis of punctuated equilibrium by Stephen Jay Gould and Niles Eldredge in the 1980s, and was reconceptualized in 2007 by Massimo Pigliucci and Gerd B. Müller.

The extended evolutionary synthesis revisits the relative importance of different factors at play, examining several assumptions of the earlier synthesis, and augmenting it with additional causative factors. It includes multilevel selection, transgenerational epigenetic inheritance, niche construction, evolvability, and several concepts from evo-devo.

Not all biologists have agreed on the need for, or the scope of, an extended synthesis. Many have collaborated on another synthesis in evolutionary developmental biology, which concetrates on developmental molecular genetics and evolution to understand how natural selection operated on developmental processes and deep homologies between organisms at the level of highly conserved genes.

The preceding "modern synthesis"

Several major ideas about evolution came together in the population genetics of the early 20th century to form the modern synthesis, including genetic variation, natural selection, and particulate (Mendelian) inheritance. This ended the eclipse of Darwinism and supplanted a variety of non-Darwinian theories of evolution. However, it did not unify all of biology, omitting sciences such as developmental biology.

The modern synthesis was the widely accepted early-20th-century synthesis reconciling Charles Darwin's theory of evolution by natural selection and Gregor Mendel's theory of genetics in a joint mathematical framework. It established evolution as biology's central paradigm. The 19th-century ideas of natural selection by Darwin and Mendelian genetics were united by researchers who included Ronald Fisher, one of the three founders of population genetics, and J. B. S. Haldane and Sewall Wright, between 1918 and 1932. Julian Huxley introduced the phrase "modern synthesis" in his 1942 book, Evolution: The Modern Synthesis.

Early history

During the 1950s, the English biologist C. H. Waddington called for an extended synthesis based on his research on epigenetics and genetic assimilation. An extended synthesis was also proposed by the Austrian zoologist Rupert Riedl, with the study of evolvability. In 1978, Michael J. D. White wrote about an extension of the modern synthesis based on new research from speciation.

1980s: punctuated equilibrium

In the 1980s, the American palaeontologists Stephen Jay Gould and Niles Eldredge argued for an extended synthesis based on their idea of punctuated equilibrium, the role of species selection shaping large scale evolutionary patterns and natural selection working on multiple levels extending from genes to species. The ethologist John Endler wrote a paper in 1988 discussing processes of evolution that he felt had been neglected.

Contributions from evolutionary developmental biology

Some researchers in the field of evolutionary developmental biology proposed another synthesis. They argue that the modern and extended syntheses should mostly center on genes and suggest an integration of embryology with molecular genetics an evolution, aiming to understand how natural selection operates on gene regulation and deep homologies between organisms at the level of highly conserved genes, transcription factors and signalling pathways. By contrast, a different strand of evo-devo following an organismal approach contributes to the extended synthesis by emphasizing (amongst others) developmental bias (both through facilitation and constraint), evolvability, and inherency of form as primary factors in the evolution of complex structures and phenotypic novelties.

Recent history

Massimo Pigliucci, a leading proponent of the extended evolutionary synthesis in its 2007 form

The idea of an extended synthesis was relaunched in 2007 by Massimo Pigliucci, and Gerd B. Müller with a book in 2010 titled Evolution: The Extended Synthesis, which has served as a launching point for work on the extended synthesis. This includes:
Other processes such as evolvability, phenotypic plasticity, reticulate evolution, sex evolution and symbiogenesis are said by proponents to have been excluded or missed from the modern synthesis. The goal of Piglucci's and Müller's extended synthesis is to take evolution beyond the gene-centered approach of population genetics to consider more organism- and ecology-centered approaches. Many of these causes are currently considered secondary in evolutionary causation, and proponents of the extended synthesis want them to be considered first-class evolutionary causes. The biologist Eugene Koonin wrote in 2009 that "the new developments in evolutionary biology by no account should be viewed as refutation of Darwin. On the contrary, they are widening the trails that Darwin blazed 150 years ago and reveal the extraordinary fertility of his thinking."

Predictions

The extended synthesis is characterized by its additional set of predictions that differ from the standard modern synthesis theory:
  1. change in phenotype can precede change in genotype
  2. changes in phenotype are predominantly positive, rather than neutral
  3. changes in phenotype are induced in many organisms, rather than one organism
  4. revolutionary change in phenotype can occur through mutation, facilitated variation or threshold events
  5. repeated evolution in isolated populations can be by convergent evolution or developmental bias
  6. adaptation can be caused by natural selection, environmental induction, non-genetic inheritance, learning and cultural transmission (see: Baldwin effect, meme, transgenerational epigenetic inheritance, ecological inheritance, non-Mendelian inheritance)
  7. rapid evolution can result from simultaneous induction, natural selection and developmental dynamics
  8. biodiversity can be affected by features of developmental systems such as differences in evolvability
  9. heritable variation is directed towards variants that are adaptive and integrated with phenotype
  10. niche construction is biased towards environmental changes that suit the constructor's phenotype, or that of its descendants, and enhance their fitness
  11. kin selection
  12. multilevel selection
  13. self-organization

Testing

The extended evolutionary synthesis is currently being tested by a group of scientists from eight institutions in Britain, Sweden and the United States. The £7.7 million project is supported by a £5.7 million grant from the John Templeton Foundation.

The project is headed by Kevin N. Laland at the University of St Andrews and Tobias Uller at Lund University. According to Laland what the extended synthesis "really boils down to is recognition that, in addition to selection, drift, mutation and other established evolutionary processes, other factors, particularly developmental influences, shape the evolutionary process in important ways."

Status

Biologists disagree on the need for an extended synthesis. Opponents contend that the modern synthesis is able to fully account for the newer observations, whereas others criticize that the Extended synthesis is not radical enough. Proponents think that the conceptions of evolution at the core of the modern synthesis are too narrow. Proponents argue that even when the modern synthesis allows for the ideas in the extended synthesis, using the modern synthesis affects the way that biologists think about evolution. For example, Denis Noble says that using terms and categories of the modern synthesis distort the picture of biology that modern experimentation has discovered. Proponents therefore claim that the extended synthesis is necessary to help expand the conceptions and framework of how evolution is considered throughout the biological disciplines.

Evolvability

From Wikipedia, the free encyclopedia
 
Evolvability is defined as the capacity of a system for adaptive evolution. Evolvability is the ability of a population of organisms to not merely generate genetic diversity, but to generate adaptive genetic diversity, and thereby evolve through natural selection.
 
In order for a biological organism to evolve by natural selection, there must be a certain minimum probability that new, heritable variants are beneficial. Random mutations, unless they occur in DNA sequences with no function, are expected to be mostly detrimental. Beneficial mutations are always rare, but if they are too rare, then adaptation cannot occur. Early failed efforts to evolve computer programs by random mutation and selection showed that evolvability is not a given, but depends on the representation of the program. Analogously, the evolvability of organisms depends on their genotype–phenotype map. This means that genomes are structured in ways that make beneficial changes less unlikely. This has been taken as evidence that evolution has created not just fitter organisms, but populations of organisms that are better able to evolve.

Alternative definitions

Andreas Wagner describes two definitions of evolvability. According to the first definition, a biological system is evolvable:
  • if its properties show heritable genetic variation, and
  • if natural selection can thus change these properties.
According to the second definition, a biological system is evolvable:
  • if it can acquire novel functions through genetic change, functions that help the organism survive and reproduce.
For example, consider an enzyme with multiple alleles in the population. Each allele catalyzes the same reaction, but with a different level of activity. However, even after millions of years of evolution, exploring many sequences with similar function, no mutation might exist that gives this enzyme the ability to catalyze a different reaction. Thus, although the enzyme's activity is evolvable in the first sense, that does not mean that the enzyme's function is evolvable in the second sense. However, every system evolvable in the second sense must also be evolvable in the first.

Pigliucci recognizes three classes of definition, depending on timescale. The first corresponds to Wagner's first, and represents the very short timescales that are described by quantitative genetics. He divides Wagner's second definition into two categories, one representing the intermediate timescales that can be studied using population genetics, and one representing exceedingly rare long-term innovations of form.

Pigliucci's second definition of evolvability includes Altenberg's quantitative concept of evolvability, being not a single number, but the entire upper tail of the fitness distribution of the offspring produced by the population. This quantity was considered a "local" property of the instantaneous state of a population, and its integration over the population's evolutionary trajectory, and over many possible populations, would be necessary to give a more global measure of evolvability.

Generating more variation

More heritable phenotypic variation means more evolvability. While mutation is the ultimate source of heritable variation, its permutations and combinations also make a big difference. Sexual reproduction generates more variation (and thereby evolvability) relative to asexual reproduction (see evolution of sexual reproduction). Evolvability is further increased by generating more variation when an organism is stressed, and thus likely to be less well adapted, but less variation when an organism is doing well. The amount of variation generated can be adjusted in many different ways, for example via the mutation rate, via the probability of sexual vs. asexual reproduction, via the probability of outcrossing vs. inbreeding, via dispersal, and via access to previously cryptic variants through the switching of an evolutionary capacitor. A large population size increases the influx of novel mutations each generation.

Enhancement of selection

Rather than creating more phenotypic variation, some mechanisms increase the intensity and effectiveness with which selection acts on existing phenotypic variation. For example:
  • Mating rituals that allow sexual selection on "good genes", and so intensify natural selection.
  • Large effective population size increasing the threshold value of the selection coefficient above which selection becomes an important player. This could happen through an increase in the census population size, decreasing genetic drift, through an increase in the recombination rate, decreasing genetic draft, or through changes in the probability distribution of the numbers of offspring..
  • Recombination decreasing the importance of the Hill-Robertson effect, where different genotypes contain different adaptive mutations. Recombination brings the two alleles together, creating a super-genotype in place of two competing lineages..
  • Shorter generation time.

Robustness and evolvability

The relationship between robustness and evolvability depends on whether recombination can be ignored. Recombination can generally be ignored in asexual populations and for traits affected by single genes.

Without recombination

Robustness in the face of mutation does not increase evolvability in the first sense. In organisms with a high level of robustness, mutations have smaller phenotypic effects than in organisms with a low level of robustness. Thus, robustness reduces the amount of heritable genetic variation on which selection can act. However, robustness may allow exploration of large regions of genotype space, increasing evolvability according to the second sense. Even without genetic diversity, some genotypes have higher evolvability than others, and selection for robustness can increase the "neighborhood richness" of phenotypes that can be accessed from the same starting genotype by mutation. For example, one reason many proteins are less robust to mutation is that they have marginal thermodynamic stability, and most mutations reduce this stability further. Proteins that are more thermostable can tolerate a wider range of mutations and are more evolvable. For polygenic traits, neighborhood richness contributes more to evolvability than does genetic diversity or "spread" across genotype space.

With recombination

Temporary robustness, or canalisation, may lead to the accumulation of significant quantities of cryptic genetic variation. In a new environment or genetic background, this variation may be revealed and sometimes be adaptive.

Exploration ahead of time

When mutational robustness exists, many mutants will persist in a cryptic state. Mutations tend to fall into two categories, having either a very bad effect or very little effect: few mutations fall somewhere in between. Sometimes, these mutations will not be completely invisible, but still have rare effects, with very low penetrance. When this happens, natural selection weeds out the very bad mutations, while leaving the others relatively unaffected. While evolution has no "foresight" to know which environment will be encountered in the future, some mutations cause major disruption to a basic biological process, and will never be adaptive in any environment. Screening these out in advance leads to preadapted stocks of cryptic genetic variation.

Another way that phenotypes can be explored, prior to strong genetic commitment, is through learning. An organism that learns gets to "sample" several different phenotypes during its early development, and later sticks to whatever worked best. Later in evolution, the optimal phenotype can be genetically assimilated so it becomes the default behavior rather than a rare behavior. This is known as the Baldwin effect, and it can increase evolvability.

Learning biases phenotypes in a beneficial direction. But an exploratory flattening of the fitness landscape can also increase evolvability even when it has no direction, for example when the flattening is a result of random errors in molecular and/or developmental processes. This increase in evolvability can happen when evolution is faced with crossing a "valley" in an adaptive landscape. This means that two mutations exist that are deleterious by themselves, but beneficial in combination. These combinations can evolve more easily when the landscape is first flattened, and the discovered phenotype is then fixed by genetic assimilation.

Modularity

If every mutation affected every trait, then a mutation that was an improvement for one trait would be a disadvantage for other traits. This means that almost no mutations would be beneficial overall. But if pleiotropy is restricted to within functional modules, then mutations affect only one trait at a time, and adaptation is much less constrained. In a modular gene network, for example, a gene that induces a limited set of other genes that control a specific trait under selection may evolve more readily than one that also induces other gene pathways controlling traits not under selection. Individual genes also exhibit modularity. A mutation in one cis-regulatory element of a gene's promoter region may allow the expression of the gene to be altered only in specific tissues, developmental stages, or environmental conditions rather than changing gene activity in the entire organism simultaneously.

Evolution of evolvability

While variation yielding high evolvability could be useful in the long term, in the short term most of that variation is likely to be a disadvantage. For example, naively it would seem that increasing the mutation rate via a mutator allele would increase evolvability. But as an extreme example, if the mutation rate is too high then all individuals will be dead or at least carry a heavy mutation load. Short-term selection for low variation most of the time is usually thought likely to be more powerful than long-term selection for evolvability, making it difficult for natural selection to cause the evolution of evolvability. Other forces of selection also affect the generation of variation; for example, mutation and recombination may in part be byproducts of mechanisms to cope with DNA damage.

When recombination is low, mutator alleles may still sometimes hitchhike on the success of adaptive mutations that they cause. In this case, selection can take place at the level of the lineage. This may explain why mutators are often seen during experimental evolution of microbes. Mutator alleles can also evolve more easily when they only increase mutation rates in nearby DNA sequences, not across the whole genome: this is known as a contingency locus.

The evolution of evolvability is less controversial if it occurs via the evolution of sexual reproduction, or via the tendency of variation-generating mechanisms to become more active when an organism is stressed. The yeast prion [PSI+] may also be an example of the evolution of evolvability through evolutionary capacitance. An evolutionary capacitor is a switch that turns genetic variation on and off. This is very much like bet-hedging the risk that a future environment will be similar or different. Theoretical models also predict the evolution of evolvability via modularity. When the costs of evolvability are sufficiently short-lived, more evolvable lineages may be the most successful in the long-term. However, the hypothesis that evolvability is an adaptation is often rejected in favor of alternative hypotheses, e.g. minimization of costs.

Applications

Evolvability phenomena have practical applications. For protein engineering we wish to increase evolvability, and in medicine and agriculture we wish to decrease it. Protein evolvability is defined as the ability of the protein to acquire sequence diversity and conformational flexibility which can enable it to evolve toward a new function.

In protein engineering, both rational design and directed evolution approaches aim to create changes rapidly through mutations with large effects. Such mutations, however, commonly destroy enzyme function or at least reduce tolerance to further mutations. Identifying evolvable proteins and manipulating their evolvability is becoming increasingly necessary in order to achieve ever larger functional modification of enzymes. Proteins are also often studied as part of the basic science of evolvability, because the biophysical properties and chemical functions can be easily changed by a few mutations. More evolvable proteins can tolerate a broader range of amino acid changes and allow them to evolve toward new functions. The study of evolvability has fundamental importance for understanding very long term evolution of protein superfamilies.

Many human diseases are capable of evolution. Viruses, bacteria, fungi and cancers evolve to be resistant to host immune defences, as well as pharmaceutical drugs. These same problems occur in agriculture with pesticide and herbicide resistance. It is possible that we are facing the end of the effective life of most of available antibiotics. Predicting the evolution and evolvability of our pathogens, and devising strategies to slow or circumvent the development of resistance, demands deeper knowledge of the complex forces driving evolution at the molecular level.

A better understanding of evolvability is proposed to be part of an Extended Evolutionary Synthesis.

Fertilisation

From Wikipedia, the free encyclopedia

Sperm and ovum fusing

Fertilisation or fertilization, also known as generative fertilisation, insemination, pollination, fecundation, syngamy and impregnation, is the fusion of gametes to initiate the development of a new individual organism. The cycle of fertilisation and development of new individuals is called sexual reproduction. During double fertilisation in angiosperms the haploid male gamete combines with two haploid polar nuclei to form a triploid primary endosperm nucleus by the process of vegetative fertilisation.

History

In Antiquity, Aristotle conceived the formation of new individuals through fusion of male and female fluids, with form and function emerging gradually, in a mode called by him as epigenetic.

In 1784, Spallanzani established the need of interaction between the female's ovum and male's sperm to form a zygote in frogs. In 1827, von Baer observed a mammalian egg for the first time. Oscar Hertwig (1876), in Germany, described the fusion of nuclei of spermatozoa and of ova from sea urchin.

Evolution

The evolution of fertilisation is related to the origin of meiosis, as both are part of sexual reproduction, originated in eukaryotes. There are two conflicting theories on how the couple meiosis–fertilisation arose. One is that it evolved from prokaryotic sex (bacterial recombination) as eukaryotes evolved from prokaryotes. The other is that mitosis originated meiosis.

Fertilisation in plants

In the Bryophyte land plants, fertilisation takes place within the archegonium. This moss has been genetically modified so that the unfertilised egg within the archegonium produces a blue colour.

The gametes that participate in fertilisation of plants are the pollen (male), and the egg (female) cell. Various families of plants have differing methods by which the female gametophyte is fertilized. In Bryophyte land plants, fertilisation takes place within the archegonium. In flowering plants a second fertilisation event involves another sperm cell and the central cell which is a second female gamete. In flowering plants there are two sperm from each pollen grain.

In seed plants, after pollination, a pollen grain germinates, and a pollen tube grows and penetrates the ovule through a tiny pore called a micropyle. The sperm are transferred from the pollen through the pollen tube to the ovule.

Pollen tube growth

Unlike animal sperm which is motile, plant sperm is immotile and relies on the pollen tube to carry it to the ovule where the sperm is released. The pollen tube penetrates the stigma and elongates through the extracellular matrix of the style before reaching the ovary. Then near the receptacle, it breaks through the ovule through the micropyle (an opening in the ovule wall) and the pollen tube "bursts" into the embryo sac, releasing sperm. The growth of the pollen tube has been believed to depend on chemical cues from the pistil, however these mechanisms were poorly understood until 1995. Work done on tobacco plants revealed a family of glycoproteins called TTS proteins that enhanced growth of pollen tubes. Pollen tubes in a sugar free pollen germination medium and a medium with purified TTS proteins both grew. However, in the TTS medium, the tubes grew at a rate 3x that of the sugar-free medium. TTS proteins were also placed on various locations of semi in vevo pollinated pistils, and pollen tubes were observed to immediately extend toward the proteins. Transgenic plants lacking the ability to produce TTS proteins exhibited slower pollen tube growth and reduced fertility.

Rupture of pollen tube

The rupture of the pollen tube to release sperm in Arabidopsis has been shown to depend on a signal from the female gametophyte. Specific proteins called FER protein kinases present in the ovule control the production of highly reactive derivatives of oxygen called reactive oxygen species (ROS). ROS levels have been shown via GFP to be at their highest during floral stages when the ovule is the most receptive to pollen tubes, and lowest during times of development and following fertilization. High amounts of ROS activate Calcium ion channels in the pollen tube, causing these channels to take up Calcium ions in large amounts. This increased uptake of calcium causes the pollen tube to rupture, and release its sperm into the ovule. Pistil feeding assays in which plants were fed diphenyl iodonium chloride (DPI) suppressed ROS concentrations in Arabidopsis, which in turn prevented pollen tube rupture.

Bryophytes

Bryophyte is a traditional name used to refer to all embryophytes (land plants) that do not have true vascular tissue and are therefore called "non-vascular plants". Some bryophytes do have specialised tissues for the transport of water; however, since these do not contain lignin, they are not considered true vascular tissue.

Ferns

A fern is a member of a group of roughly 12,000 species of vascular plants that reproduce via spores and have neither seeds nor flowers. They differ from mosses by being vascular (i.e. having water-conducting vessels). They have stems and leaves, like other vascular plants. Most ferns have what are called fiddleheads that expand into fronds, which are each delicately divided.

Gymnosperms

The gymnosperms are a group of seed producing plants that includes conifers, Cycads, Ginkgo, and Gnetales. The term "gymnosperm" comes from the Greek composite word γυμνόσπερμος (γυμνός gymnos, "naked" and σπέρμα sperma, "seed"), meaning "naked seeds", after the unenclosed condition of their seeds (called ovules in their unfertilised state). Their naked condition stands in contrast to the seeds and ovules of flowering plants (angiosperms), which are enclosed within an ovary. Gymnosperm seeds develop either on the surface of scales or leaves, often modified to form cones, or at the end of short stalks as in Ginkgo.

Flowering plants

After being fertilised, the ovary starts to swell and develop into the fruit. With multi-seeded fruits, multiple grains of pollen are necessary for syngamy with each ovule. The growth of the pollen tube is controlled by the vegetative (or tube) cytoplasm. Hydrolytic enzymes are secreted by the pollen tube that digest the female tissue as the tube grows down the stigma and style; the digested tissue is used as a nutrient source for the pollen tube as it grows. During pollen tube growth towards the ovary, the generative nucleus divides to produce two separate sperm nuclei (haploid number of chromosomes) – a growing pollen tube therefore contains three separate nuclei, two sperm and one tube. The sperms are interconnected and dimorphic, the large one, in a number of plants, is also linked to the tube nucleus and the interconnected sperm and the tube nucleus form the "male germ unit".

Double fertilisation is the process in angiosperms (flowering plants) in which two sperm from each pollen tube fertilise two cells in a female gametophyte (sometimes called an embryo sac) that is inside an ovule. After the pollen tube enters the gametophyte, the pollen tube nucleus disintegrates and the two sperm cells are released; one of the two sperm cells fertilises the egg cell (at the bottom of the gametophyte near the micropyle), forming a diploid (2n) zygote. This is the point when fertilisation actually occurs; pollination and fertilisation are two separate processes. The nucleus of the other sperm cell fuses with two haploid polar nuclei (contained in the central cell) in the centre of the gametophyte. The resulting cell is triploid (3n). This triploid cell divides through mitosis and forms the endosperm, a nutrient-rich tissue, inside the seed.

The two central-cell maternal nuclei (polar nuclei) that contribute to the endosperm arise by mitosis from the single meiotic product that also gave rise to the egg. Therefore, maternal contribution to the genetic constitution of the triploid endosperm is double that of the embryo.

One primitive species of flowering plant, Nuphar polysepala, has endosperm that is diploid, resulting from the fusion of a sperm with one, rather than two, maternal nuclei. It is believed that early in the development of angiosperm linages, there was a duplication in this mode of reproduction, producing seven-celled/eight-nucleate female gametophytes, and triploid endosperms with a 2:1 maternal to paternal genome ratio.

In many plants, the development of the flesh of the fruit is proportional to the percentage of fertilised ovules. For example, with watermelon, about a thousand grains of pollen must be delivered and spread evenly on the three lobes of the stigma to make a normal sized and shaped fruit.

Cross-fertilisation and self-fertilisation represent different strategies with differing benefits and costs. An estimated 48.7% of plant species are either dioecious or self-incompatible obligate out-crossers. It is also estimated that about 42% of flowering plants exhibit a mixed mating system in nature.

In the most common kind of mixed mating system, individual plants produce a single type of flower and fruits may contain self-fertilised, out-crossed or a mixture of progeny types. The transition from cross-fertilisation to self-fertilisation is the most common evolutionary transition in plants, and has occurred repeatedly in many independent lineages. About 10-15% of flowering plants are predominantly self-fertilising.

Self-Pollination

Under circumstances where pollinators and/or mates are rare, self-fertilisation offers the advantage of reproductive assurance. Self-fertilisation can therefore result in improved colonisation ability. In some species, self-fertilisation has persisted over many generations. Capsella rubella is a self-fertilisating species that became self-compatible 50,000 to 100,000 years ago. Arabidopsis thaliana is a predominantly self-fertilising plant with an out-crossing rate in the wild of less than 0.3%; a study suggested that self-fertilisation evolved roughly a million years ago or more in A. thaliana. In long-established self-fertilising plants, the masking of deleterious mutations and the production of genetic variability is infrequent and thus unlikely to provide a sufficient benefit over many generations to maintain the meiotic apparatus. Consequently, one might expect self-fertilisation to be replaced in nature by an ameiotic asexual form of reproduction that would be less costly. However the actual persistence of meiosis and self-fertilisation as a form of reproduction in long-established self-fertilising plants may be related to the immediate benefit of efficient recombinational repair of DNA damage during formation of germ cells provided by meiosis at each generation.

Fertilisation in animals

The mechanics behind fertilisation has been studied extensively in sea urchins and mice. This research addresses the question of how the sperm and the appropriate egg find each other and the question of how only one sperm gets into the egg and delivers its contents. There are three steps to fertilisation that ensure species-specificity:
  1. Chemotaxis
  2. Sperm activation/acrosomal reaction
  3. Sperm/egg adhesion

Internal vs. external

Consideration as to whether an animal (more specifically a vertebrate) uses internal or external fertilisation is often dependent on the method of birth. Oviparous animals laying eggs with thick calcium shells, such as chickens, or thick leathery shells generally reproduce via internal fertilisation so that the sperm fertilises the egg without having to pass through the thick, protective, tertiary layer of the egg. Ovoviviparous and viviparous animals also use internal fertilisation. It is important to note that although some organisms reproduce via amplexus, they may still use internal fertilisation, as with some salamanders. Advantages to internal fertilisation include: minimal waste of gametes; greater chance of individual egg fertilisation, relatively "longer" time period of egg protection, and selective fertilisation; many females have the ability to store sperm for extended periods of time and can fertilise their eggs at their own desire.

Oviparous animals producing eggs with thin tertiary membranes or no membranes at all, on the other hand, use external fertilisation methods. Advantages to external fertilisation include: minimal contact and transmission of bodily fluids; decreasing the risk of disease transmission, and greater genetic variation (especially during broadcast spawning external fertilisation methods).

Sea urchins

Acrosome reaction on a sea urchin cell.

Sperm find the eggs via chemotaxis, a type of ligand/receptor interaction. Resact is a 14 amino acid peptide purified from the jelly coat of A. punctulata that attracts the migration of sperm.

After finding the egg, the sperm penetrates the jelly coat through a process called sperm activation. In another ligand/receptor interaction, an oligosaccharide component of the egg binds and activates a receptor on the sperm and causes the acrosomal reaction. The acrosomal vesicles of the sperm fuse with the plasma membrane and are released. In this process, molecules bound to the acrosomal vesicle membrane, such as bindin, are exposed on the surface of the sperm. These contents digest the jelly coat and eventually the vitelline membrane. In addition to the release of acrosomal vesicles, there is explosive polymerisation of actin to form a thin spike at the head of the sperm called the acrosomal process.

The sperm binds to the egg through another ligand reaction between receptors on the vitelline membrane. The sperm surface protein bindin, binds to a receptor on the vitelline membrane identified as EBR1.

Fusion of the plasma membranes of the sperm and egg are likely mediated by bindin. At the site of contact, fusion causes the formation of a fertilisation cone.

Mammals

Mammals internally fertilise through copulation. After a male ejaculates, many sperm move to the upper vagina (via contractions from the vagina) through the cervix and across the length of the uterus to meet the ovum. In cases where fertilisation occurs, the female usually ovulates during a period that extends from hours before copulation to a few days after; therefore, in most mammals it is more common for ejaculation to precede ovulation than vice versa.

The capacitated spermatozoon and the oocyte meet and interact in the ampulla of the fallopian tube. Rheotaxis, thermotaixs and chemotaxis are known mechanisms in guiding sperm towards the egg during the final stage of sperm migration. Spermatozoa respond to the temperature gradient of ~2 °C between the oviduct and the ampulla, and chemotactic gradients of progesterone have been confirmed as the signal emanating from the cumulus oophorus cells surrounding rabbit and human oocytes. Capacitated and hyperactivated sperm respond to these gradients by changing their behaviour and moving towards the cumulus-oocyte complex. Other chemotactic signals such as formyl Met-Leu-Phe (fMLF) may also guide spermatozoa.

The zona pellucida, a thick layer of extracellular matrix that surrounds the egg and is similar to the role of the vitelline membrane in sea urchins, binds with the sperm. Unlike sea urchins, the sperm binds to the egg before the acrosomal reaction. ZP3, a glycoprotein in the zona pellucida, is responsible for egg/sperm adhesion in mice. The receptor galactosyltransferase (GalT) binds to the N-acetylglucosamine residues on the ZP3 and is important for binding with the sperm and activating the acrosome reaction. ZP3 is sufficient though unnecessary for sperm/egg binding. Two additional sperm receptors exist: a 250kD protein that binds to an oviduct secreted protein, and SED1, which independently binds to the zona. After the acrosome reaction, the sperm is believed to remain bound to the zona pellucida through exposed ZP2 receptors. These receptors are unknown in mice but have been identified in guinea pigs.

In mammals, the binding of the spermatozoon to the GalT initiates the acrosome reaction. This process releases the hyaluronidase that digests the matrix of hyaluronic acid in the vestments around the oocyte. Fusion between the oocyte plasma membranes and sperm follows and allows the sperm nucleus, the typical centriole, and atypical centriole that is attached to the flagellum, but not the mitochondria, to enter the oocyte. The protein CD9 likely mediates this fusion in mice (the binding homolog). The egg "activates" itself upon fusing with a single sperm cell and thereby changes its cell membrane to prevent fusion with other sperm. Zinc atoms are released during this activation.

This process ultimately leads to the formation of a diploid cell called a zygote. The zygote divides to form a blastocyst and, upon entering the uterus, implants in the endometrium, beginning pregnancy. Embryonic implantation not in the uterine wall results in an ectopic pregnancy that can kill the mother.

In such animals as rabbits, coitus induces ovulation by stimulating the release of the pituitary hormone gonadotropin; this release greatly increases the likelihood of pregnancy.

Humans

Fertilisation in humans. The sperm and ovum unite through fertilisation, creating a zygote that (over the course of 8-9 days) implants in the uterine wall, where it resides for nine months.

The term conception commonly refers to fertilisation, which is the successful fusion of gametes to form a new organism. Its use 'conception' by some to refer to implantation makes it a subject of semantic arguments about the beginning of pregnancy, typically in the context of the abortion debate. Upon gastrulation, which occurs around 16 days after fertilisation, the implanted blastocyst develops three germ layers, the endoderm, the ectoderm and the mesoderm, and the genetic code of the father becomes fully involved in the development of the embryo; later twinning is impossible. Additionally, interspecies hybrids survive only until gastrulation and cannot further develop. However, some human developmental biology literature refers to the conceptus and such medical literature refers to the "products of conception" as the post-implantation embryo and its surrounding membranes. The term "conception" is not usually used in scientific literature because of its variable definition and connotation.

Insects

Red-veined darters (Sympetrum fonscolombii) flying "in cop" (male ahead), enabling the male to prevent other males from mating. The eggs are fertilised as they are laid, one at a time.

Insects in different groups, including the Odonata (dragonflies and damselflies) and the Hymenoptera (ants, bees, and wasps) practise delayed fertilisation. Anong the Odonata, females may mate with multiple males, and store sperm until the eggs are laid. The male may hover above the female during egg-laying (oviposition) to prevent her from mating with other males and replacing his sperm; in some groups such as the darters, the male continues to grasp the female with his claspers during egg-laying, the pair flying around in tandem. Among social Hymenoptera, honeybee queens mate only on mating flights, in a short period lasting some days; a queen may mate with eight or more drones. She then stores the sperm for the rest of her life, perhaps for five years or more.

Fertilisation in fungi

In many fungi (except chytrids), as in some protists, fertilisation is a two step process. First, the cytoplasms of the two gamete cells fuse (called plasmogamy), producing a dikaryotic or heterokaryotic cell with multiple nuclei. This cell may then divide to produce dikaryotic or heterokaryotic hyphae. The second step of fertilisation is karyogamy, the fusion of the nuclei to form a diploid zygote.

In chytrid fungi, fertilisation occurs in a single step with the fusion of gametes, as in animals and plants.

Fertilisation in protists

Fertilisation in protozoa

There are three types of fertilisation processes in protozoa:
  • gametogamy;
  • autogamy;
  • gamontogamy.

Fertilisation and genetic recombination

Meiosis results in a random segregation of the genes that each parent contributes. Each parent organism is usually identical save for a fraction of their genes; each gamete is therefore genetically unique. At fertilisation, parental chromosomes combine. In humans, (2²²)² = 17.6x1012 chromosomally different zygotes are possible for the non-sex chromosomes, even assuming no chromosomal crossover. If crossover occurs once, then on average (4²²)² = 309x1024 genetically different zygotes are possible for every couple, not considering that crossover events can take place at most points along each chromosome. The X and Y chromosomes undergo no crossover events and are therefore excluded from the calculation. The mitochondrial DNA is only inherited from the maternal parent.

Parthenogenesis

Organisms that normally reproduce sexually can also reproduce via parthenogenesis, wherein an unfertilised female gamete produces viable offspring. These offspring may be clones of the mother, or in some cases genetically differ from her but inherit only part of her DNA. Parthenogenesis occurs in many plants and animals and may be induced in others through a chemical or electrical stimulus to the egg cell. In 2004, Japanese researchers led by Tomohiro Kono succeeded after 457 attempts to merge the ova of two mice by blocking certain proteins that would normally prevent the possibility; the resulting embryo normally developed into a mouse.

Allogamy and autogamy

Allogamy, which is also known as cross-fertilisation, refers to the fertilisation of an egg cell from one individual with the male gamete of another.

Autogamy which is also known as self-fertilisation, occurs in such hermaphroditic organisms as plants and flatworms; therein, two gametes from one individual fuse.

Other variants of bisexual reproduction

Some relatively unusual forms of reproduction are:

Gynogenesis: A sperm stimulates the egg to develop without fertilisation or syngamy. The sperm may enter the egg.

Hybridogenesis: One genome is eliminated to produce haploid eggs.

Canina meiosis: (sometimes called "permanent odd polyploidy") one genome is transmitted in the Mendelian fashion, others are transmitted clonally.

Benefits of cross-fertilisation

The major benefit of cross-fertilisation is generally thought to be the avoidance of inbreeding depression. Charles Darwin, in his 1876 book The Effects of Cross and Self Fertilisation in the Vegetable Kingdom (pages 466-467) summed up his findings in the following way.
“It has been shown in the present volume that the offspring from the union of two distinct individuals, especially if their progenitors have been subjected to very different conditions, have an immense advantage in height, weight, constitutional vigour and fertility over the self-fertilised offspring from one of the same parents. And this fact is amply sufficient to account for the development of the sexual elements, that is, for the genesis of the two sexes.”
In addition, it is thought by some, that a long-term advantage of out-crossing in nature is increased genetic variability that promotes adaptation and/or avoidance of extinction.

The ‘Real You’ is a Myth


Summary: Researchers say we constantly create false memories to help us achieve the identity we want.

Source: The Conversation

We all want other people to “get us” and appreciate us for who we really are. In striving to achieve such relationships, we typically assume that there is a “real me”. But how do we actually know who we are? It may seem simple – we are a product of our life experiences, which we can be easily accessed through our memories of the past.

Indeed, substantial research has shown that memories shape a person’s identity. People with profound forms of amnesia typically also lose their identity – as beautifully described by the late writer and neurologist Oliver Sacks in his case study of 49-year-old Jimmy G, the “lost mariner”, who struggles to find meaning as he cannot remember anything that’s happened after his late adolescence.

But it turns out that identity is often not a truthful representation of who we are anyway – even if we have an intact memory. Research shows that we don’t actually access and use all available memories when creating personal narratives. It is becoming increasingly clear that, at any given moment, we unawarely tend to choose and pick what to remember.

When we create personal narratives, we rely on a psychological screening mechanism, dubbed the monitoring system, which labels certain mental concepts as memories, but not others. Concepts that are rather vivid and rich in detail and emotion – episodes we can re-experience – are more likely to be marked as memories. These then pass a “plausibility test” carried out by a similar monitoring system which tells whether the events fit within the general personal history. For example, if we remember flying unaided in vivid detail, we know straight away that it cannot be real.

But what is selected as a personal memory also needs to fit the current idea that we have of ourselves. Let’s suppose you have always been a very kind person, but after a very distressing experience you have developed a strong aggressive trait that now suits you. Not only has your behaviour changed, your personal narrative has too. If you are now asked to describe yourself, you might include past events previously omitted from your narrative – for example, instances in which you acted aggressively.

False memories


And this is only half of the story. The other half has to do with the truthfulness of the memories that each time are chosen and picked to become part of the personal narrative. Even when we correctly rely on our memories, they can be highly inaccurate or outright false: we often make up memories of events that never happened.

Remembering is not like playing a video from the past in your mind – it is a highly reconstructive process that depends on knowledge, self image, needs and goals. Indeed, brain imaging studies have shown that personal memory does not have just one location in the brain, it is based on an “autobiographical memory brain network” which comprises many separate areas.

A crucial area is the frontal lobes, which are in charge of integrating all the information received into an event that needs to be meaningful – both in the sense of lacking impossible, incongruent elements within it, but also in the sense of fitting the idea the individual remembering has of themselves. If not congruent or meaningful, the memory is either discarded or undergoes changes, with information added or deleted.

Memories are therefore very malleable, they can be distorted and changed easily, as many studies in our lab have shown. For example, we have found that suggestions and imagination can create memories that are very detailed and emotional while still completely false. Jean Piaget, a famous developmental psychologist, remembered all his life in vivid detail an event in which he was abducted with his nanny – she often told him about it. After many years, she confessed to having made the story up. At that point, Piaget stopped believing in the memory, but it nevertheless remained as vivid as it was before.

Memory manipulation

We have assessed the frequency and nature of these false and no-longer-believed memories in a series of studies. Examining a very large sample across several countries, we discovered that they are actually rather common. What’s more, as for Piaget, they all feel very much like real memories.

brain scans
Many parts of the brain are involved in creating personal
memories. NeuroscienceNews.com image is adapted from The
Conversation news release.

This remained true even when we successfully created false memories in the lab using doctored videos suggesting that participants had performed certain actions. We later told them that these memories never actually happened. At this point, the participants stopped believing in the memory but reported that the characteristics of it made them feel as if it were true.

A common source of false memories are photos from the past. In a new study, we have discovered that we are particularly likely to create false memories when we see an image of someone who is just about to perform an action. That’s because such scenes trigger our minds to imagine the action being carried out over time.

But is all this a bad thing? For a number of years, researchers have focused on the negatives of this process. For example, there are fears that therapy could create false memories of historical sexual abuse, leading to false accusations. There have also been heated discussions about how people who suffer from mental health problems – for example, depression – can be biased to remember very negative events. Some self-help books therefore make suggestions about how to obtain a more accurate sense of self. For example, we could reflect on our biases and get feedback from others. But it is important to remember that other people may have false memories about us, too.

Crucially, there are upsides to our malleable memory. Picking and choosing memories is actually the norm, guided by self-enhancing biases that lead us to rewrite our past so it resembles what we feel and believe now. Inaccurate memories and narratives are necessary, resulting from the need to maintain a positive, up-to-date sense of self.

My own personal narrative is that I am a person who has always loved science, who has lived in many countries and met many people. But I might have made it up, at least in part. My current enjoyment for my job, and frequent travels, might taint my memories. Ultimately, there may have been times when I didn’t love science and wanted to settle down permanently. But clearly it doesn’t matter, does it? What matters is that I am happy and know what I want now.
 
About this neuroscience research article

Funding: Giuliana Mazzoni receives funding from ESRC, British Academy, Canadian SSHRC, Leverhulme Trust, Wellcome Trust.

Source: Giuliana Mazzoni – The Conversation
 
Publisher: Organized by NeuroscienceNews.com.
 
Image Source: NeuroscienceNews.com image is adapted from The Conversation news release.

Distance education

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Distance_...