When using the term 'the speed of light' it is sometimes necessary to make the distinction between its one-way speed and its two-way speed. The "one-way" speed of light, from a source to a detector, cannot be measured independently of a convention as to how to synchronize the clocks at the source and the detector. What can however be experimentally measured is the round-trip speed (or "two-way" speed of light) from the source to the detector and back again. Albert Einstein chose a synchronization convention (see Einstein synchronization)
that made the one-way speed equal to the two-way speed. The constancy
of the one-way speed in any given inertial frame is the basis of his special theory of relativity, although all experimentally verifiable predictions of this theory do not depend on that convention.
Experiments that attempted to directly probe the one-way speed of light independent of synchronization have been proposed, but none has succeeded in doing so. Those experiments directly establish that synchronization with slow clock-transport is equivalent to Einstein synchronization, which is an important feature of special relativity. Though those experiments don't directly establish the isotropy of the one-way speed of light, because it was shown that slow clock-transport, the laws of motion, and the way inertial reference frames are defined, already involve the assumption of isotropic one-way speeds and thus are conventional as well. In general, it was shown that these experiments are consistent with anisotropic one-way light speed as long as the two-way light speed is isotropic.
The 'speed of light' in this article refers to the speed of all electromagnetic radiation in vacuum.
Experiments that attempted to directly probe the one-way speed of light independent of synchronization have been proposed, but none has succeeded in doing so. Those experiments directly establish that synchronization with slow clock-transport is equivalent to Einstein synchronization, which is an important feature of special relativity. Though those experiments don't directly establish the isotropy of the one-way speed of light, because it was shown that slow clock-transport, the laws of motion, and the way inertial reference frames are defined, already involve the assumption of isotropic one-way speeds and thus are conventional as well. In general, it was shown that these experiments are consistent with anisotropic one-way light speed as long as the two-way light speed is isotropic.
The 'speed of light' in this article refers to the speed of all electromagnetic radiation in vacuum.
The two-way speed
The two-way speed of light is the average speed of light from one
point, such as a source, to a mirror and back again. Because the light
starts and finishes in the same place only one clock is needed to
measure the total time, thus this speed can be experimentally determined
independently of any clock synchronization scheme. Any measurement in
which the light follows a closed path is considered a two-way speed
measurement.
Many tests of special relativity such as the Michelson–Morley experiment and the Kennedy–Thorndike experiment
have shown within tight limits that in an inertial frame the two-way
speed of light is isotropic and independent of the closed path
considered. Isotropy experiments of the Michelson–Morley type do not use
an external clock to directly measure the speed of light, but rather
compare two internal frequencies or clocks. Therefore, such experiments
are sometimes called "clock anisotropy experiments", since every arm of a
Michelson interferometer can be seen as a light clock having a specific rate, whose relative orientation dependences can be tested.
Since 1983 the metre has been defined as the distance traveled by light in vacuum in 1⁄299,792,458 second.
This means that the speed of light can no longer be experimentally
measured in SI units, but the length of a meter can be compared
experimentally against some other standard of length.
The one-way speed
Although the average speed over a two-way path can be measured, the
one-way speed in one direction or the other is undefined (and not simply
unknown), unless one can define what is "the same time" in two
different locations. To measure the time that the light has taken to
travel from one place to another it is necessary to know the start and
finish times as measured on the same time scale. This requires either
two synchronized clocks, one at the start and one at the finish, or some
means of sending a signal instantaneously from the start to the finish.
No instantaneous means of transmitting information is known. Thus the
measured value of the average one-way speed is dependent on the method
used to synchronize the start and finish clocks. This is a matter of
convention.
The Lorentz transformation is defined such that the one-way speed of light will be measured to be independent of the inertial frame chosen.
Some authors such as Mansouri and Sexl (1977) as well as Will (1992) argued that this problem doesn't affect measurements of the isotropy
of the one-way speed of light, for instance, due to direction dependent
changes relative to a "preferred" (aether) frame Σ. They based their
analysis on a specific interpretation of the RMS test theory in relation to experiments in which light follows a unidirectional path and to slow clock-transport
experiments. Will agreed that it is impossible to measure the one-way
speed between two clocks using a time-of-flight method without
synchronization scheme, though he argued: "...a test of the isotropy
of the speed between the same two clocks as the orientation of the
propagation path varies relative to Σ should not depend on how they were
synchronized...". He added that aether theories can only be made consistent with relativity by introducing ad-hoc hypotheses. In more recent papers (2005, 2006) Will referred to those experiments as measuring the "isotropy of light speed using one-way propagation".
However, others such as Zhang (1995, 1997) and Anderson et al. (1998) showed this interpretation to be incorrect. For instance, Anderson et al.
pointed out that the conventionality of simultaneity must already be
considered in the preferred frame, so all assumptions concerning the
isotropy of the one-way speed of light and other velocities in this
frame are conventional as well. Therefore, RMS remains a useful test
theory to analyze tests of Lorentz invariance and the two-way speed of
light, though not of the one-way speed of light. They concluded :"...one
cannot hope even to test the isotropy of the speed of light without, in
the course of the same experiment, deriving a one-way numerical value
at least in principle, which then would contradict the conventionality
of synchrony." Using generalizations of Lorentz transformations with anisotropic one-way speeds,
Zhang and Anderson pointed out that all events and experimental results
compatible with the Lorentz transformation and the isotropic one-way
speed of light must also be compatible with transformations preserving
two-way light speed constancy and isotropy, while allowing anisotropic
one-way speeds.
Synchronization conventions
The
way in which distant clocks are synchronized can have an effect on all
time-related measurements over distance, such as speed or acceleration
measurements. In isotropy experiments, simultaneity conventions are
often not explicitly stated but are implicitly present in the way
coordinates are defined or in the laws of physics employed.
Einstein convention
This method synchronizes distant clocks in such a way that the
one-way speed of light becomes equal to the two-way speed of light. If a
signal sent from A at time is arriving at B at time and coming back to A at time , then the following convention applies:
- .
The details of this method, and the conditions that assure its consistency are discussed in Einstein synchronization.
Slow clock-transport
It
is easily demonstrated that if two clocks are brought together and
synchronized, then one clock is moved rapidly away and back again, the
two clocks will no longer be synchronized due to time dilation. This was measured in a variety of tests and is related to the twin paradox.
However, if one clock is moved away slowly in frame S and
returned the two clocks will be very nearly synchronized when they are
back together again. The clocks can remain synchronized to an arbitrary
accuracy by moving them sufficiently slowly. If it is taken that, if
moved slowly, the clocks remain synchronized at all times, even when
separated, this method can be used to synchronize two spatially
separated clocks. In the limit as the speed of transport tends to zero,
this method is experimentally and theoretically equivalent to the
Einstein convention.
Though the effect of time dilation on those clocks cannot be neglected
anymore when analyzed in another relatively moving frame S'. This
explains why the clocks remain synchronized in S, whereas they are not
synchronized anymore from the viewpoint of S', establishing relativity of simultaneity in agreement with Einstein synchronization. Therefore, testing the equivalence between these clock synchronization schemes is important for special relativity, and some experiments in which light follows a unidirectional path have proven this equivalence to high precision.
Non-standard synchronizations
As demonstrated by Hans Reichenbach and Adolf Grünbaum,
Einstein synchronization is only a special case of a more broader
synchronization scheme, which leaves the two-way speed of light
invariant, but allows for different one-way speeds. The formula for
Einstein synchronization is modified by replacing ½ with ε:
ε can have values between 0 and 1. It was shown that this scheme can
be used for observationally equivalent reformulations of the Lorentz
transformation, see Generalizations of Lorentz transformations with anisotropic one-way speeds.
As required by the experimentally proven equivalence between
Einstein synchronization and slow clock-transport synchronization, which
requires knowledge of time dilation
of moving clocks, the same non-standard synchronisations must also
affect time dilation. It was indeed pointed out that time dilation of
moving clocks depends on the convention for the one-way velocities used
in its formula.
That is, time dilation can be measured by synchronizing two stationary
clocks A and B, and then the readings of a moving clock C are compared
with them. Changing the convention of synchronization for A and B makes
the value for time dilation (like the one-way speed of light)
directional dependent. The same conventionality also applies to the
influence of time dilation on the Doppler effect.
Only when time dilation is measured on closed paths, it is not
conventional and can unequivocally be measured like the two-way speed of
light. Time dilation on closed paths was measured in the Hafele–Keating experiment and in experiments on the time dilation of moving particles such as Bailey et al. (1977).
Thus the so-called twin paradox occurs in all transformations preserving the constancy of the two-way speed of light.
Inertial frames and dynamics
It was argued against the conventionality of the one-way speed of light that this concept is closely related to dynamics, the laws of motion and inertial reference frames. Salmon described some variations of this argument using momentum
conservation, from which it follows that two equal bodies at the same
place which are equally accelerated in opposite directions, should move
with the same one-way velocity.
Similarly, Ohanian argued that inertial reference frames are defined so
that Newton's laws of motion hold in first approximation. Therefore,
since the laws of motion predict isotropic one-way speeds of moving
bodies with equal acceleration, and because of the experiments
demonstrating the equivalence between Einstein synchronization and slow
clock-transport synchronization, it appears to be required and directly
measured that the one-way speed of light is isotropic in inertial
frames. Otherwise, both the concept of inertial reference frames and the
laws of motion must be replaced by much more complicated ones involving
anisotropic coordinates.
However, it was shown by others that this is principally not in
contradiction with the conventionality of the one-way speed of light.
Salmon argued that momentum conservation in its standard form assumes
isotropic one-way speed of moving bodies from the outset. So it involves
practically the same convention as in the case of isotropic one-way
speed of light, thus using this as an argument against light speed
conventionality would be circular.
And in response to Ohanian, both Macdonald and Martinez argued that
even though the laws of physics become more complicated with
non-standard synchrony, they still are a consistent way to describe the
phenomena. They also argued that it's not necessary to define inertial
frames in terms of Newton's laws of motion, because other methods are
possible as well.
In addition, Iyer and Prabhu distinguished between "isotropic inertial
frames" with standard synchrony and "anisotropic inertial frames" with
non-standard synchrony.
Experiments which appear to measure the one-way speed of light
Experiments which claimed to use a one-way light signal
The Greaves, Rodriguez and Ruiz-Camacho experiment
In
the October 2009 issue of the American Journal of Physics Greaves,
Rodriguez and Ruiz-Camacho reported a new method of measurement of the
one-way speed of light.
In the June 2013 issue of the American Journal of Physics Hankins,
Rackson and Kim repeated the Greaves et al. experiment obtaining with
greater accuracy the one way speed of light.
This experiment proves with greater accuracy that the signal return
path to the measuring device has a constant delay, independent of the
end point of the light flight path, allowing measurement of the time of
flight in a single direction.
J. Finkelstein showed that the Greaves et al. experiment actually measures the round trip (two-way) speed of light.
Experiments in which light follows a unidirectional path
Many experiments intended to measure the one-way speed of light, or
its variation with direction, have been (and occasionally still are)
performed in which light follows a unidirectional path.
Claims have been made that those experiments have measured the one-way
speed of light independently of any clock synchronisation convention,
but they have all been shown to actually measure the two-way speed,
because they are consistent with generalized Lorentz transformations
including synchronizations with different one-way speeds on the basis of
isotropic two-way speed of light.
These experiments also confirm agreement between clock synchronization by slow transport and Einstein synchronization. Even though some authors argued that this is sufficient to demonstrate the isotropy of the one-way speed of light,
it has been shown that such experiments cannot, in any meaningful way,
measure the (an)isotropy of the one way speed of light unless inertial
frames and coordinates are defined from the outset so that space and
time coordinates as well as slow clock-transport are described
isotropically (see sections inertial frames and dynamics and the one-way speed).
Regardless of those different interpretations, the observed agreement
between those synchronization schemes is an important prediction of
special relativity, because this requires that transported clocks
undergo time dilation (which itself is synchronization dependent) when viewed from another frame (see sections Slow clock-transport and Non-standard synchronizations).
The JPL experiment
This experiment, carried out in 1990 by the NASA Jet Propulsion Laboratory, measured the time of flight of light signals through a fibre optic link between two hydrogen maser clocks. In 1992 the experimental results were analysed by Clifford Will who concluded that the experiment did actually measure the one-way speed of light.
In 1997 the experiment was re-analysed by Zhang who showed that, in fact, only the two-way speed had been measured.
Rømer's measurement
The first experimental determination of the speed of light was made by Ole Christensen Rømer.
It may seem that this experiment measures the time for light to
traverse part of the Earth's orbit and thus determines its one-way
speed, however, this experiment was carefully re-analysed by Zhang, who
showed that the measurement does not measure the speed independently of a
clock synchronization scheme but actually used the Jupiter system as a
slowly-transported clock to measure the light transit times.
The Australian physicist Karlov also showed that Rømer actually
measured the speed of light by implicitly making the assumption of the
equality of the speeds of light back and forth.
Other experiments comparing Einstein synchronization with slow clock-transport synchronization
Experiments | Year | ||
---|---|---|---|
Moessbauer rotor experiments | 1960s | Gamma radiation was sent from the rear of a rotating disc into its center. It was expected that anisotropy of the speed of light would lead to Doppler shifts. | |
Vessot et al. | 1980 | Comparing the times-of-flight of the uplink- and downlink signal of Gravity Probe A. | |
Riis et al. | 1988 | Comparing the frequency of two-photon absorption in a fast particle beam, whose direction was changed relative to the fixed stars, with the frequency of a resting absorber. | |
Nelson et al. | 1992 | Comparing the frequencies of a hydrogen maser clock and laser light pulses. The path length was 26 km. | |
Wolf & Petit | 1997 | Clock comparisons between hydrogen maser clocks on the ground and cesium and rubidium clocks on board 25 GPS satellites. |
Experiments that can be done on the one-way speed of light
Although experiments cannot be done in which the one-way speed of
light is measured independently of any clock synchronization scheme, it
is possible to carry out experiments that measure a change in the
one-way speed of light due, for example, to the motion of the source.
Such experiments are the De Sitter double star experiment (1913), conclusively repeated in the X-ray spectrum by K. Brecher in 1977;
or the terrestrial experiment by Alväger, et al. (1963);
they show that, when measured in an inertial frame, the one-way speed
of light is independent of the motion of the source within the limits of
experimental accuracy. In such experiments the clocks may be
synchronized in any convenient way, since it is only a change of speed
that is being measured.
Observations of the arrival of radiation from distant
astronomical events have shown that the one-way speed of light does not
vary with frequency, that is, there is no vacuum dispersion of light. Similarly, differences in the one-way propagation between left- and right-handed photons, leading to vacuum birefringence, were excluded by observation of the simultaneous arrival of distant star light. For current limits on both effects, often analyzed with the Standard-Model Extension, see Vacuum dispersion and Vacuum birefringence.
Experiments on two-way and one-way speeds using the Standard-Model Extension
While the experiments above were analyzed using generalized Lorentz transformations as in the Robertson–Mansouri–Sexl test theory, many modern tests are based on the Standard-Model Extension (SME). This test theory includes all possible Lorentz violations not only of special relativity, but of the Standard Model and General relativity
as well. Regarding the isotropy of the speed of light, both two-way and
one-way limits are described using coefficients (3x3 matrices):
- representing anisotropic shifts in the two-way speed of light,
- representing anisotropic differences in the one-way speed of counterpropagating beams along an axis,
- representing isotropic (orientation independent) shifts in the one-way phase velocity of light.
A series of experiments have been (and still are) performed since
2002 testing all of those coefficients using, for instance, symmetric
and asymmetric optical resonators. No Lorentz violations have been observed as of 2013, providing current upper limits for Lorentz violations: , , and .
However, the partially conventional character of those quantities was demonstrated by Kostelecky et al,
pointing out that such variations in the speed of light can be removed
by suitable coordinate transformations and field redefinitions. Though
this doesn't remove the Lorentz violation per se, since such a
redefinition only transfers the Lorentz violation from the photon sector
to the matter sector of SME, thus those experiments remain valid tests
of Lorentz invariance violation.
There are one-way coefficients of the SME that cannot be redefined into
other sectors, since different light rays from the same distance
location are directly compared with each other, see the previous
section.
Theories in which the one-way speed of light is not equal to the two-way speed
Theories equivalent to special relativity
Lorentz ether theory
In 1904 and 1905, Hendrik Lorentz and Henri Poincaré
proposed a theory which explained this result as being due the effect
of motion through the aether on the lengths of physical objects and the
speed at which clocks ran. Due to motion through the aether objects
would shrink along the direction of motion and clocks would slow down.
Thus, in this theory, slowly transported clocks do not, in general,
remain synchronized although this effect cannot be observed. The
equations describing this theory are known as the Lorentz transformations.
In 1905 these transformations became the basic equations of Einstein's
special theory of relativity which proposed the same results without
reference to an aether.
In the theory, the one-way speed of light is principally only
equal to the two-way speed in the aether frame, though not in other
frames due to the motion of the observer through the aether. However,
the difference between the one-way and two-way speeds of light can never
be observed due to the action of the aether on the clocks and lengths.
Therefore, the Poincaré-Einstein convention is also employed in this
model, making the one-way speed of light isotropic in all frames of
reference.
Even though this theory is experimentally indistinguishable
from special relativity, Lorentz's theory is no longer used for reasons
of philosophical preference and because of the development of general relativity.
Generalizations of Lorentz transformations with anisotropic one-way speeds
A
sychronisation scheme proposed by Reichenbach and Grünbaum, which they
called ε-synchronization, was further developed by authors such as
Edwards (1963), Winnie (1970), Anderson and Stedman (1977), who reformulated the Lorentz transformation without changing its physical predictions.
For instance, Edwards replaced Einstein's postulate that the one-way
speed of light is constant when measured in an inertial frame with the
postulate:
The two way speed of light in a vacuum as measured in two (inertial) coordinate systems moving with constant relative velocity is the same regardless of any assumptions regarding the one-way speed.
So the average speed for the round trip remains the experimentally
verifiable two-way speed, whereas the one-way speed of light is allowed
to take the form in opposite directions:
κ can have values between 0 and 1. In the extreme as κ approaches 1,
light might propagate in one direction instantaneously, provided it
takes the entire round-trip time to travel in the opposite direction.
Following Edwards and Winnie, Anderson et al. formulated generalized Lorentz transformations for arbitrary boosts of the form:
(with κ and κ' being the synchrony vectors in frames S and S',
respectively). This transformation indicates the one-way speed of light
is conventional in all frames, leaving the two-way speed invariant. κ=0
means Einstein synchronization which results in the standard Lorentz
transformation. As shown by Edwards, Winnie and Mansouri-Sexl, by
suitable rearrangement of the synchrony parameters even some sort of
"absolute simultaneity" can be achieved, in order to simulate the basic
assumption of Lorentz ether theory. That is, in one frame the one-way
speed of light is chosen to be isotropic, while all other frames take
over the values of this "preferred" frame by "external synchronization".
All predictions derived from such a transformation are
experimentally indistinguishable from those of the standard Lorentz
transformation; the difference is only that the defined clock time
varies from Einstein's according to the distance in a specific
direction.
Theories not equivalent to special relativity
Test theories
A number of theories have been developed to allow assessment of the
degree to which experimental results differ from the predictions of
relativity. These are known as test theories and include the Robertson
and Mansouri-Sexl (RMS) theories. To date, all experimental results agree with special relativity within the experimental uncertainty.
Another test theory is the Standard-Model Extension (SME). It employs a broad variety of coefficients indicating Lorentz symmetry violations in special relativity, general relativity, and the Standard Model.
Some of those parameters indicate anisotropies of the two-way and
one-way speed of light. However, it was pointed out that such variations
in the speed of light can be removed by suitable redefinitions of the
coordinates and fields employed. Though this doesn't remove Lorentz
violations per se, it only shifts their appearance from the photon sector into the matter sector of SME.
Aether theories
Before 1887 it was generally believed that light travelled as a wave
at a constant speed relative to the hypothesised medium of the aether.
For an observer in motion with respect to the aether, this would result
in slightly different two-way speeds of light in different directions.
In 1887, the Michelson–Morley experiment
showed that the two-way speed of light was constant regardless of
direction or motion through the aether. At the time, the obvious
explanation for this effect was that objects in motion through the
aether experience the combined effects of time dilation and length
contraction in the direction of motion.
Preferred reference frame
A
preferred reference frame is a reference frame in which the laws of
physics take on a special form. The ability to make measurements which
show the one-way speed of light to be different from its two-way speed
would, in principle, enable a preferred reference frame to be
determined. This would be the reference frame in which the two-way speed
of light was equal to the one-way speed.
In Einstein's special theory of relativity, all inertial frames
of reference are equivalent and there is no preferred frame. There are
theories, such as Lorentz ether theory
that are experimentally and mathematically equivalent to special
relativity but have a preferred reference frame. In order for these
theories to be compatible with experimental results the preferred frame
must be undetectable. In other words, it is a preferred frame in
principle only, in practice all inertial frames must be equivalent, as
in special relativity.