Search This Blog

Wednesday, September 16, 2020

Minute and second of arc

From Wikipedia, the free encyclopedia
 
Arcminute
Arcminute and football.png
An illustration of the size of an arcminute (not to scale). A standard association football (soccer) ball (with a diameter of 22 cm or 8.7 in) subtends an angle of 1 arcminute at a distance of approximately 756 m (827 yd).
General information
Unit systemNon-SI units mentioned in the SI
Unit ofAngle
Symbol or arcmin 
In unitsDimensionless with an arc length of approx. ≈ 0.2909/1000 of the radius, i.e. 0.2909 mm/m
Conversions
1 in ...... is equal to ...
   degrees   1/60° = 0.016°
   arcseconds   60″
   radians   π/10800 ≈ 0.000290888 rad
   milliradians   π·1000/10800 ≈ 0.2909 mrad
   gons   600/9g = 66.6g
   turns   1/21600

A minute of arc, arcminute (arcmin), arc minute, or minute arc, denoted by the symbol , is a unit of angular measurement equal to 1/60 of one degree. Since one degree is 1/360 of a turn (or complete rotation), one minute of arc is 1/21600 of a turn. The nautical mile was originally defined as a minute of latitude on a hypothetical spherical Earth, so the actual Earth circumference is very near 21 600 nautical miles. A minute of arc is π/10800 of a radian.

A second of arc, arcsecond (arcsec), or arc second, denoted by the symbol , is 1/60 of an arcminute, 1/3600 of a degree, 1/1296000 of a turn, and π/648000 (about 1/206264.8) of a radian.

These units originated in Babylonian astronomy as sexagesimal subdivisions of the degree; they are used in fields that involve very small angles, such as astronomy, optometry, ophthalmology, optics, navigation, land surveying, and marksmanship.

To express even smaller angles, standard SI prefixes can be employed; the milliarcsecond (mas) and microarcsecond (μas), for instance, are commonly used in astronomy.

The number of square arcminutes in a complete sphere is 148510660 square arcminutes (the surface area of a unit sphere in square units, divided by the solid angle area subtended by a square arcminute (also in square units), so that the final result is a dimensionless number).

The fact that the terms "minute" and "second" also denote units of time derives from Babylonian astronomy, where the corresponding time-related terms denoted the duration of the Sun's apparent motion of one minute or one second of arc, respectively, through the ecliptic. In present terms, the Babylonian degree of time was four minutes long, so the "minute" of time was four seconds long and the "second" 1/15 of a second.

Symbols and abbreviations

The prime symbol (′) (U+2032) designates the arcminute, though a single quote (') (U+0027) is commonly used where only ASCII characters are permitted. One arcminute is thus written as 1′. It is also abbreviated as arcmin or amin or, less commonly, the prime with a circumflex over it ().

Similarly, double prime (″) (U+2033) designates the arcsecond, though a double quote (") (U+0022) is commonly used where only ASCII characters are permitted. One arcsecond is thus written as 1″. It is also abbreviated as arcsec or asec.

Sexagesimal system of angular measurement
Unit Value Symbol Abbreviations In radians, approx.
Degree 1/360 turn ° Degree deg 17.4532925 mrad
Arcminute 1/60 degree Prime arcmin, amin, am, , MOA 290.8882087 μrad
Arcsecond 1/60 arcminute = 1/3600 degree Double prime arcsec, asec, as 4.8481368 μrad
Milliarcsecond 0.001 arcsecond = 1/3600000 degree

mas 4.8481368 nrad
Microarcsecond 0.001 mas = 0.000001 arcsecond

μas 4.8481368 prad

In celestial navigation, seconds of arc are rarely used in calculations, the preference usually being for degrees, minutes and decimals of a minute, for example, written as 42° 25.32′ or 42° 25.322′. This notation has been carried over into marine GPS receivers, which normally display latitude and longitude in the latter format by default.

Common examples

The full moon's average apparent size is about 31 arcminutes (or 0.52°).

An arcminute is approximately the resolution of the human eye.

An arcsecond is approximately the angle subtended by a U.S. dime coin (18 mm) at a distance of 4 kilometres (about 2.5 mi). An arcsecond is also the angle subtended by

  • an object of diameter 725.27 km at a distance of one astronomical unit,
  • an object of diameter 45866916 km at one light-year,
  • an object of diameter one astronomical unit (149597870.7 km) at a distance of one parsec, per the definition of the latter.

A milliarcsecond is about the size of a dime atop the Eiffel Tower, as seen from New York City.

A microarcsecond is about the size of a period at the end of a sentence in the Apollo mission manuals left on the Moon as seen from Earth.

A nanoarcsecond is about the size of a penny on Neptune's moon Triton as observed from Earth.

Also notable examples of size in arcseconds are:

Uses

Astronomy

Comparison of angular diameter of the Sun, Moon, planets and the International Space Station. True representation of the sizes is achieved when the image is viewed at a distance of 103 times the width of the "Moon: max." circle. For example, if the "Moon: max." circle is 10 cm wide on a computer display, viewing it from 10.3 m (11.3 yards) away will show true representation of the sizes.

Since antiquity, the arcminute and arcsecond have been used in astronomy: in the ecliptic coordinate system as latitude (β) and longitude (λ); in the horizon system as altitude (Alt) and azimuth (Az); and in the equatorial coordinate system as declination (δ). All are measured in degrees, arcminutes and arcseconds. The principal exception is right ascension (RA) in equatorial coordinates, which is measured in time units of hours, minutes, and seconds.

The arcsecond is also often used to describe small astronomical angles such as the angular diameters of planets (e.g. the angular diameter of Venus which varies between 10″ and 60″), the proper motion of stars, the separation of components of binary star systems, and parallax, the small change of position of a star in the course of a year, or of a solar system body as the Earth rotates. These small angles may also be written in milliarcseconds (mas), or thousandths of an arcsecond. The unit of distance, the parsec, named from the parallax of one arc second, was developed for such parallax measurements. It is the distance at which the mean radius of the Earth's orbit (more precisely, one astronomical unit) would subtend an angle of one arcsecond.

The ESA astrometric satellite Gaia, launched in 2013, can approximate star positions to 7 microarcseconds (µas).

Milky Way’s central region with an angular resolution of 0.2 arcseconds.

Apart from the Sun, the star with the largest angular diameter from Earth is R Doradus, a red giant with a diameter of 0.05 arcsecond. Because of the effects of atmospheric blurring, ground-based telescopes will smear the image of a star to an angular diameter of about 0.5 arcsecond; in poor conditions this increases to 1.5 arcseconds or even more. The dwarf planet Pluto has proven difficult to resolve because its angular diameter is about 0.1 arcsecond.

Space telescopes are not affected by the Earth's atmosphere but are diffraction limited. For example, the Hubble Space Telescope can reach an angular size of stars down to about 0.1″. Techniques exist for improving seeing on the ground. Adaptive optics, for example, can produce images around 0.05 arcsecond on a 10 m class telescope.

Cartography

Minutes (′) and seconds (″) of arc are also used in cartography and navigation. At sea level one minute of arc along the equator or a meridian (indeed, any great circle) equals exactly one geographical mile along the Earth's equator or approximately one nautical mile (1,852 metres; 1.151 miles). A second of arc, one sixtieth of this amount, is roughly 30 metres (98 feet). The exact distance varies along meridian arcs because the figure of the Earth is slightly oblate (bulges a third of a percent at the equator).

Positions are traditionally given using degrees, minutes, and seconds of arcs for latitude, the arc north or south of the equator, and for longitude, the arc east or west of the Prime Meridian. Any position on or above the Earth's reference ellipsoid can be precisely given with this method. However, when it is inconvenient to use base-60 for minutes and seconds, positions are frequently expressed as decimal fractional degrees to an equal amount of precision. Degrees given to three decimal places (1/1000 of a degree) have about 1/4 the precision of degrees-minutes-seconds (1/3600 of a degree) and specify locations within about 120 metres (390 feet). For navigational purposes positions are given in degrees and decimal minutes, for instance The Needles lighthouse is at 50º 39.734’N 001º 35.500’W.

Property cadastral surveying

Related to cartography, property boundary surveying using the metes and bounds system relies on fractions of a degree to describe property lines' angles in reference to cardinal directions. A boundary "mete" is described with a beginning reference point, the cardinal direction North or South followed by an angle less than 90 degrees and a second cardinal direction, and a linear distance. The boundary runs the specified linear distance from the beginning point, the direction of the distance being determined by rotating the first cardinal direction the specified angle toward the second cardinal direction. For example, North 65° 39′ 18″ West 85.69 feet would describe a line running from the starting point 85.69 feet in a direction 65° 39′ 18″ (or 65.655°) away from north toward the west.

Firearms

Example ballistic table for a given 7.62×51mm NATO load. Bullet drop and wind drift are shown both in mrad and minute of angle.

The arcminute is commonly found in the firearms industry and literature, particularly concerning the precision of rifles, though the industry refers to it as minute of angle (MOA). It is especially popular as a unit of measurement with shooters familiar with the imperial measurement system because 1 MOA subtends a circle with a diameter of 1.047 inches (which is often rounded to just 1 inch) at 100 yards (2.908 cm at 100 m), a traditional distance on American target ranges. The subtension is linear with the distance, for example, at 500 yards, 1 MOA subtends 5.235 inches, and at 1000 yards 1 MOA subtends 10.47 inches. Since many modern telescopic sights are adjustable in half (1/2), quarter (1/4) or eighth (1/8) MOA increments, also known as clicks, zeroing and adjustments are made by counting 2, 4 and 8 clicks per MOA respectively.

For example, if the point of impact is 3 inches high and 1.5 inches left of the point of aim at 100 yards (which for instance could be measured by using a spotting scope with a calibrated reticle), the scope needs to be adjusted 3 MOA down, and 1.5 MOA right. Such adjustments are trivial when the scope's adjustment dials have a MOA scale printed on them, and even figuring the right number of clicks is relatively easy on scopes that click in fractions of MOA. This makes zeroing and adjustments much easier:

  • To adjust a ​12 MOA scope 3 MOA down and 1.5 MOA right, the scope needs to be adjusted 3 × 2 = 6 clicks down and 1.5 x 2 = 3 clicks right
  • To adjust a ​14 MOA scope 3 MOA down and 1.5 MOA right, the scope needs to be adjusted 3 x 4 = 12 clicks down and 1.5 × 4 = 6 clicks right
  • To adjust a ​18 MOA scope 3 MOA down and 1.5 MOA right, the scope needs to be adjusted 3 x 8 = 24 clicks down and 1.5 × 8 = 12 clicks right

Another common system of measurement in firearm scopes is the milliradian (mrad). Zeroing an mrad based scope is easy for users familiar with base ten systems. The most common adjustment value in mrad based scopes is 1/10 mrad (which approximates ​13 MOA).

  • To adjust a 1/10 mrad scope 0.9 mrad down and 0.4 mrad right, the scope needs to be adjusted 9 clicks down and 4 clicks right (which equals approximately 3 and 1.5 MOA respectively).

One thing to be aware of is that some MOA scopes, including some higher-end models, are calibrated such that an adjustment of 1 MOA on the scope knobs corresponds to exactly 1 inch of impact adjustment on a target at 100 yards, rather than the mathematically correct 1.047". This is commonly known as the Shooter's MOA (SMOA) or Inches Per Hundred Yards (IPHY). While the difference between one true MOA and one SMOA is less than half of an inch even at 1000 yards, this error compounds significantly on longer range shots that may require adjustment upwards of 20–30 MOA to compensate for the bullet drop. If a shot requires an adjustment of 20 MOA or more, the difference between true MOA and SMOA will add up to 1 inch or more. In competitive target shooting, this might mean the difference between a hit and a miss.

The physical group size equivalent to m minutes of arc can be calculated as follows: group size = tan(m/60) × distance. In the example previously given, for 1 minute of arc, and substituting 3,600 inches for 100 yards, 3,600 tan(1/60) ≈ 1.047 inches. In metric units 1 MOA at 100 metres ≈ 2.908 centimetres.

Sometimes, a precision-oriented firearm's performance will be measured in MOA. This simply means that under ideal conditions (i.e. no wind, high-grade ammo, clean barrel, and a stable mounting platform such as a vise or a benchrest used to eliminate shooter error), the gun is capable of producing a group of shots whose center points (center-to-center) fit into a circle, the average diameter of circles in several groups can be subtended by that amount of arc. For example, a 1 MOA rifle should be capable, under ideal conditions, of repeatably shooting 1-inch groups at 100 yards. Most higher-end rifles are warrantied by their manufacturer to shoot under a given MOA threshold (typically 1 MOA or better) with specific ammunition and no error on the shooter's part. For example, Remington's M24 Sniper Weapon System is required to shoot 0.8 MOA or better, or be rejected from sale by quality control.

Rifle manufacturers and gun magazines often refer to this capability as sub-MOA, meaning a gun consistently shooting groups under 1 MOA. This means that a single group of 3 to 5 shots at 100 yards, or the average of several groups, will measure less than 1 MOA between the two furthest shots in the group, i.e. all shots fall within 1 MOA. If larger samples are taken (i.e., more shots per group) then group size typically increases, however this will ultimately average out. If a rifle was truly a 1 MOA rifle, it would be just as likely that two consecutive shots land exactly on top of each other as that they land 1 MOA apart. For 5-shot groups, based on 95% confidence, a rifle that normally shoots 1 MOA can be expected to shoot groups between 0.58 MOA and 1.47 MOA, although the majority of these groups will be under 1 MOA. What this means in practice is if a rifle that shoots 1-inch groups on average at 100 yards shoots a group measuring 0.7 inches followed by a group that is 1.3 inches, this is not statistically abnormal.

The Metric System counterpart of the MOA is the milliradian or mrad, being equal to one 1000th of the target range, laid out on a circle that has the observer as centre and the target range as radius. The number of milliradians on a full such circle therefore always is equal to 2 × π × 1000, regardless the target range. Therefore, 1 MOA ≈ 0.2909 mrad. This means that an object which spans 1 mrad on the reticle is at a range that is in metres equal to the object's size in millimetres (e.g. an object of 100 mm @ 1 mrad is 100 metres away). So there is no conversion factor required, contrary to the MOA system. A reticle with markings (hashes or dots) spaced with a one mrad apart (or a fraction of a mrad) are collectively called a mrad reticle. If the markings are round they are called mil-dots.

In the table below conversions from mrad to metric values are exact (e.g. 0.1 mrad equals exactly 10 mm at 100 metres), while conversions of minutes of arc to both metric and imperial values are approximate.

Comparison of milliradian (mrad) and minute of arc (MOA).
 
Conversion between common sight adjustments based on milliradian and minute of arc
Angle
adjustment
per click
Minutes
of arc
Milli-
radians
At 100 m At 100 yd
mm cm in in
112 0.083′ 0.024 mrad 2.42 mm 0.242 cm 0.0958 in 0.087 in
0.2510 mrad 0.086′ 0.025 mrad 2.5 mm 0.25 cm 0.0985 in 0.09 in
18 0.125′ 0.036 mrad 3.64 mm 0.36 cm 0.144 in 0.131 in
16 0.167′ 0.0485 mrad 4.85 mm 0.485 cm 0.192 in 0.175 in
0.510 mrad 0.172′ 0.05 mrad 5 mm 0.5 cm 0.197 in 0.18 in
14 0.25′ 0.073 mrad 7.27 mm 0.73 cm 0.29 in 0.26 in
110 mrad 0.344′ 0.1 mrad 10 mm 1 cm 0.39 in 0.36 in
12 0.5′ 0.145 mrad 14.54 mm 1.45 cm 0.57 in 0.52 in
1.510 mrad 0.516′ 0.15 mrad 15 mm 1.5 cm 0.59 in 0.54 in
210 mrad 0.688′ 0.2 mrad 20 mm 2 cm 0.79 in 0.72 in
1′ 1.0′ 0.291 mrad 29.1 mm 2.91 cm 1.15 in 1.047 in
1 mrad 3.438′ 1 mrad 100 mm 10 cm 3.9 in 3.6 in
  • 1′ at 100 yards is about 1.047 inches
  • 1′ ≈ 0.291 mrad (or 29.1 mm at 100 m, approximately 30 mm at 100 m)
  • 1 mrad ≈ 3.44′, so 1/10 mrad ≈ 1/3
  • 0.1 mrad equals exactly 1 cm at 100 m, or approximately 0.36 inches at 100 yards

Human vision

In humans, 20/20 vision is the ability to resolve a spatial pattern separated by a visual angle of one minute of arc. A 20/20 letter subtends 5 minutes of arc total.

Materials

The deviation from parallelism between two surfaces, for instance in optical engineering, is usually measured in arcminutes or arcseconds. In addition, arcseconds are sometimes used in rocking curve (ω-scan) x ray diffraction measurements of high-quality epitaxial thin films.

Manufacturing

Some measurement devices make use of arcminutes and arcseconds to measure angles when the object being measured is too small for direct visual inspection. For instance, a toolmaker's optical comparator will often include an option to measure in "minutes and seconds".

 

Andromeda Galaxy

From Wikipedia, the free encyclopedia
 
Andromeda Galaxy
Andromeda Galaxy (with h-alpha).jpg
The Andromeda Galaxy with satellite galaxies M32, (center left above the galactic nucleus) and M110, (center left below the galaxy)
Observation data (J2000 epoch)
Pronunciation/ænˈdrɒmɪdə/
ConstellationAndromeda
Right ascension 00h 42m 44.3s
Declination+41° 16′ 9″
Redshiftz = −0.001001
(minus sign
indicates blueshift)
Helio radial velocity−301 ± 1 km/s
Distance2.54 ± 0.11 Mly
(778 ± 33 kpc)
Apparent magnitude (V)3.44
Absolute magnitude (V)−21.5
Characteristics
TypeSA(s)b
Mass(1.5±0.5)×1012 M
Number of stars~1 trillion (1012)
Size~220 kly (67 kpc) (diameter)
Apparent size (V)3.167° × 1°
Other designations
M31, NGC 224, UGC 454, PGC 2557, 2C 56 (Core),[1] CGCG 535-17, MCG +07-02-016, IRAS 00400+4059, 2MASX J00424433+4116074, GC 116, h 50, Bode 3, Flamsteed 58, Hevelius 32, Ha 3.3, IRC +40013

The Andromeda Galaxy (IPA: /ænˈdrɒmɪdə/), also known as Messier 31, M31, or NGC 224 and originally the Andromeda Nebula (see below), is a barred spiral galaxy approximately 2.5 million light-years (770 kiloparsecs) from Earth and the nearest major galaxy to the Milky Way. The galaxy's name stems from the area of Earth's sky in which it appears, the constellation of Andromeda, which itself is named after the Ethiopian (or Phoenician) princess who was the wife of Perseus in Greek mythology.

The virial mass of the Andromeda Galaxy is of the same order of magnitude as that of the Milky Way, at 1 trillion solar masses (2.0×1042 kilograms). The mass of either galaxy is difficult to estimate with any accuracy, but it was long thought that the Andromeda Galaxy is more massive than the Milky Way by a margin of some 25% to 50%. This has been called into question by a 2018 study that cited a lower estimate on the mass of the Andromeda Galaxy, combined with preliminary reports on a 2019 study estimating a higher mass of the Milky Way. The Andromeda Galaxy has a diameter of about 220,000 ly (67 kpc), making it the largest member of the Local Group in terms of extension, if not mass.

The number of stars contained in the Andromeda Galaxy is estimated at one trillion (1×1012), or roughly twice the number estimated for the Milky Way.

The Milky Way and Andromeda galaxies are expected to collide in around 4.5 billion years, merging to form a giant elliptical galaxy or a large lenticular galaxy. With an apparent magnitude of 3.4, the Andromeda Galaxy is among the brightest of the Messier objects, making it visible to the naked eye from Earth on moonless nights, even when viewed from areas with moderate light pollution.

Observation history

Great Andromeda Nebula by Isaac Roberts, 1899.

Around the year 964, the Persian astronomer Abd al-Rahman al-Sufi was the first to describe the Andromeda Galaxy. He referred to it in his Book of Fixed Stars as a "nebulous smear".

Star charts of that period labeled it as the Little Cloud. In 1612, the German astronomer Simon Marius gave an early description of the Andromeda Galaxy based on telescopic observations. Pierre Louis Maupertuis conjectured in 1745 that the blurry spot was an island universe. In 1764, Charles Messier cataloged Andromeda as object M31 and incorrectly credited Marius as the discoverer despite it being visible to the naked eye. In 1785, the astronomer William Herschel noted a faint reddish hue in the core region of Andromeda. He believed Andromeda to be the nearest of all the "great nebulae", and based on the color and magnitude of the nebula, he incorrectly guessed that it was no more than 2,000 times the distance of Sirius, or roughly 18,000 ly (5.5 kpc). In 1850, William Parsons, 3rd Earl of Rosse made the first drawing of Andromeda's spiral structure.

In 1864 Sir William Huggins noted that the spectrum of Andromeda differed from that of a gaseous nebula. The spectra of Andromeda displays a continuum of frequencies, superimposed with dark absorption lines that help identify the chemical composition of an object. Andromeda's spectrum is very similar to the spectra of individual stars, and from this, it was deduced that Andromeda has a stellar nature. In 1885, a supernova (known as S Andromedae) was seen in Andromeda, the first and so far only one observed in that galaxy. At the time Andromeda was considered to be a nearby object, so the cause was thought to be a much less luminous and unrelated event called a nova, and was named accordingly; "Nova 1885".

In 1887, Isaac Roberts took the first photographs of Andromeda, which was still commonly thought to be a nebula within our galaxy. Roberts mistook Andromeda and similar spiral nebulae as solar systems being formed. In 1912, Vesto Slipher used spectroscopy to measure the radial velocity of Andromeda with respect to our Solar System—the largest velocity yet measured, at 300 km/s (190 mi/s).

Island universe

Location of the Andromeda Galaxy (M31) in the Andromeda constellation.

In 1917, Heber Curtis observed a nova within Andromeda. Searching the photographic record, 11 more novae were discovered. Curtis noticed that these novae were, on average, 10 magnitudes fainter than those that occurred elsewhere in the sky. As a result, he was able to come up with a distance estimate of 500,000 ly (3.2×1010 AU). He became a proponent of the so-called "island universes" hypothesis, which held that spiral nebulae were actually independent galaxies.

Andromeda Galaxy above the Very Large Telescope. The Triangulum Galaxy is visible on the top.

In 1920, the Great Debate between Harlow Shapley and Curtis took place concerning the nature of the Milky Way, spiral nebulae, and the dimensions of the universe. To support his claim of the Great Andromeda Nebula being, in fact, an external galaxy, Curtis also noted the appearance of dark lanes within Andromeda which resembled the dust clouds in our own galaxy, as well as historical observations of Andromeda Galaxy's significant Doppler shift. In 1922 Ernst Öpik presented a method to estimate the distance of Andromeda using the measured velocities of its stars. His result placed the Andromeda Nebula far outside our galaxy at a distance of about 450 kpc (1,500 kly). Edwin Hubble settled the debate in 1925 when he identified extragalactic Cepheid variable stars for the first time on astronomical photos of Andromeda. These were made using the 2.5-metre (8 ft 2 in) Hooker telescope, and they enabled the distance of Great Andromeda Nebula to be determined. His measurement demonstrated conclusively that this feature was not a cluster of stars and gas within our own galaxy, but an entirely separate galaxy located a significant distance from the Milky Way.

In 1943, Walter Baade was the first person to resolve stars in the central region of the Andromeda Galaxy. Baade identified two distinct populations of stars based on their metallicity, naming the young, high-velocity stars in the disk Type I and the older, red stars in the bulge Type II. This nomenclature was subsequently adopted for stars within the Milky Way, and elsewhere. (The existence of two distinct populations had been noted earlier by Jan Oort.) Baade also discovered that there were two types of Cepheid variable stars, which resulted in a doubling of the distance estimate to Andromeda, as well as the remainder of the universe.

In 1950, radio emission from the Andromeda Galaxy was detected by Hanbury Brown and Cyril Hazard at Jodrell Bank Observatory. The first radio maps of the galaxy were made in the 1950s by John Baldwin and collaborators at the Cambridge Radio Astronomy Group. The core of the Andromeda Galaxy is called 2C 56 in the 2C radio astronomy catalog. In 2009, the first planet may have been discovered in the Andromeda Galaxy. This was detected using a technique called microlensing, which is caused by the deflection of light by a massive object.

Observations of linearly polarized radio emission with the Westerbork Synthesis Radio Telescope, the Effelsberg 100-m telescope, and the Very Large Array revealed ordered magnetic fields aligned along the "10-kpc ring" of gas and star formation. The total magnetic field has a strength of about 0.5 nT, of which 0.3 nT are ordered.

General

The estimated distance of the Andromeda Galaxy from our own was doubled in 1953 when it was discovered that there is another, dimmer type of Cepheid variable star. In the 1990s, measurements of both standard red giants as well as red clump stars from the Hipparcos satellite measurements were used to calibrate the Cepheid distances.

Formation and history

The Andromeda Galaxy as seen by NASA's Wide-field Infrared Survey Explorer.

The Andromeda Galaxy was formed roughly 10 billion years ago from the collision and subsequent merger of smaller protogalaxies.

This violent collision formed most of the galaxy's (metal-rich) galactic halo and extended disk. During this epoch, its rate of star formation would have been very high, to the point of becoming a luminous infrared galaxy for roughly 100 million years. Andromeda and the Triangulum Galaxy had a very close passage 2–4 billion years ago. This event produced high rates of star formation across the Andromeda Galaxy's disk—even some globular clusters—and disturbed M33's outer disk.

Over the past 2 billion years, star formation throughout Andromeda's disk is thought to have decreased to the point of near-inactivity. There have been interactions with satellite galaxies like M32, M110, or others that have already been absorbed by Andromeda Galaxy. These interactions have formed structures like Andromeda's Giant Stellar Stream. A galactic merger roughly 100 million years ago is believed to be responsible for a counter-rotating disk of gas found in the center of Andromeda as well as the presence there of a relatively young (100 million years old) stellar population.

Distance estimate

At least four distinct techniques have been used to estimate distances from Earth to the Andromeda Galaxy. In 2003, using the infrared surface brightness fluctuations (I-SBF) and adjusting for the new period-luminosity value and a metallicity correction of −0.2 mag dex−1 in (O/H), an estimate of 2.57 ± 0.06 million light-years (1.625×1011 ± 3.8×109 astronomical units) was derived. A 2004 Cepheid variable method estimated the distance to be 2.51 ± 0.13 million light-years (770 ± 40 kpc). In 2005, an eclipsing binary star was discovered in the Andromeda Galaxy. The binary is two hot blue stars of types O and B. By studying the eclipses of the stars, astronomers were able to measure their sizes. Knowing the sizes and temperatures of the stars, they were able to measure their absolute magnitude. When the visual and absolute magnitudes are known, the distance to the star can be calculated. The stars lie at a distance of 2.52×106 ± 0.14×106 ly (1.594×1011 ± 8.9×109 AU) and the whole Andromeda Galaxy at about 2.5×106 ly (1.6×1011 AU). This new value is in excellent agreement with the previous, independent Cepheid-based distance value. The TRGB method was also used in 2005 giving a distance of 2.56×106 ± 0.08×106 ly (1.619×1011 ± 5.1×109 AU). Averaged together, these distance estimates give a value of 2.54×106 ± 0.11×106 ly (1.606×1011 ± 7.0×109 AU). And, from this, the diameter of Andromeda at the widest point is estimated to be 220 ± 3 kly (67,450 ± 920 pc). Applying trigonometry (angular diameter), this is equivalent to an apparent 4.96° angle in the sky.

Mass estimates

The Andromeda Galaxy pictured in ultraviolet light by GALEX (2003).
 
Illustration showing both the size of each galaxy and the distance between the two galaxies, to scale.
 
Giant halo around Andromeda Galaxy.  Until 2018, mass estimates for the Andromeda Galaxy's halo (including dark matter) gave a value of approximately 1.5×1012 M, compared to 8×1011 M for the Milky Way. This contradicted earlier measurements that seemed to indicate that the Andromeda Galaxy and Milky Way are almost equal in mass. In 2018, the equality of mass was re-established by radio results as approximately 8×1011 M In 2006, Andromeda Galaxy's spheroid was determined to have a higher stellar density than that of the Milky Way, and its galactic stellar disk was estimated at about twice the diameter of that of the Milky Way. The total mass of Andromeda Galaxy is estimated to be between 8×1011 M and 1.1×1012 M. The stellar mass of M31 is 10-15×1010 M, with 30% of that mass in the central bulge, 56% in the disk, and the remaining 14% in the stellar halo. The radio results (similar mass to Milky Way galaxy) should be taken as likeliest as of 2018, although clearly this matter is still under active investigation by a number of research groups worldwide.

As of 2019, current calculations based on escape velocity and dynamical mass measurements put the Andromeda Galaxy at 0.8×1012 M, which is only half of the Milky Way's newer mass, calculated in 2019 at 1.5×1012 M.

In addition to stars, Andromeda Galaxy's interstellar medium contains at least 7.2×109 M in the form of neutral hydrogen, at least 3.4×108 M as molecular hydrogen (within its innermost 10 kiloparsecs), and 5.4×107 M of dust.

Andromeda Galaxy is surrounded by a massive halo of hot gas that is estimated to contain half the mass of the stars in the galaxy. The nearly invisible halo stretches about a million light-years from its host galaxy, halfway to our Milky Way galaxy. Simulations of galaxies indicate the halo formed at the same time as the Andromeda Galaxy. The halo is enriched in elements heavier than hydrogen and helium, formed from supernovae and its properties are those expected for a galaxy that lies in the "green valley" of the Galaxy color–magnitude diagram (see below). Supernovae erupt in Andromeda Galaxy's star-filled disk and eject these heavier elements into space. Over Andromeda Galaxy's lifetime, nearly half of the heavy elements made by its stars have been ejected far beyond the galaxy's 200,000-light-year-diameter stellar disk.

Luminosity estimates

Compared to the Milky Way, the Andromeda Galaxy appears to have predominantly older stars with ages >7×109 years. The estimated luminosity of Andromeda Galaxy, ~2.6×1010 L, is about 25% higher than that of our own galaxy. However, the galaxy has a high inclination as seen from Earth and its interstellar dust absorbs an unknown amount of light, so it is difficult to estimate its actual brightness and other authors have given other values for the luminosity of the Andromeda Galaxy (some authors even propose it is the second-brightest galaxy within a radius of 10 mega-parsecs of the Milky Way, after the Sombrero Galaxy, with an absolute magnitude of around -22.21 or close).

An estimation done with the help of Spitzer Space Telescope published in 2010 suggests an absolute magnitude (in the blue) of −20.89 (that with a color index of +0.63 translates to an absolute visual magnitude of −21.52, compared to −20.9 for the Milky Way), and a total luminosity in that wavelength of 3.64×1010 L.

The rate of star formation in the Milky Way is much higher, with Andromeda Galaxy producing only about one solar mass per year compared to 3–5 solar masses for the Milky Way. The rate of novae in the Milky Way is also double that of Andromeda Galaxy. This suggests that the latter once experienced a great star formation phase, but is now in a relative state of quiescence, whereas the Milky Way is experiencing more active star formation. Should this continue, the luminosity of the Milky Way may eventually overtake that of Andromeda Galaxy.

According to recent studies, the Andromeda Galaxy lies in what in the Galaxy color–magnitude diagram is known as the "green valley," a region populated by galaxies like the Milky Way in transition from the "blue cloud" (galaxies actively forming new stars) to the "red sequence" (galaxies that lack star formation). Star formation activity in green valley galaxies is slowing as they run out of star-forming gas in the interstellar medium. In simulated galaxies with similar properties to Andromeda Galaxy, star formation is expected to extinguish within about five billion years from the now, even accounting for the expected, short-term increase in the rate of star formation due to the collision between Andromeda Galaxy and the Milky Way.

Structure

The Andromeda Galaxy seen in infrared by the Spitzer Space Telescope, one of NASA's four Great Space Observatories.
 
Image of the Andromeda Galaxy taken by Spitzer in infrared, 24 micrometres (Credit:NASA/JPLCaltech/Karl D. Gordon, University of Arizona).
 
A Swift Tour of Andromeda Galaxy.
 
A Galaxy Evolution Explorer image of the Andromeda Galaxy. The bands of blue-white making up the galaxy's striking rings are neighborhoods that harbor hot, young, massive stars. Dark blue-grey lanes of cooler dust show up starkly against these bright rings, tracing the regions where star formation is currently taking place in dense cloudy cocoons. When observed in visible light, Andromeda Galaxy's rings look more like spiral arms. The ultraviolet view shows that these arms more closely resemble the ring-like structure previously observed in infrared wavelengths with NASA's Spitzer Space Telescope. Astronomers using the latter interpreted these rings as evidence that the galaxy was involved in a direct collision with its neighbor, M32, more than 200 million years ago.

Based on its appearance in visible light, the Andromeda Galaxy is classified as an SA(s)b galaxy in the de Vaucouleurs–Sandage extended classification system of spiral galaxies. However, infrared data from the 2MASS survey and from the Spitzer Space Telescope showed that Andromeda is actually a barred spiral galaxy, like the Milky Way, with Andromeda's bar major axis oriented 55 degrees anti-clockwise from the disc major axis.

In 2005, astronomers used the Keck telescopes to show that the tenuous sprinkle of stars extending outward from the galaxy is actually part of the main disk itself. This means that the spiral disk of stars in the Andromeda Galaxy is three times larger in diameter than previously estimated. This constitutes evidence that there is a vast, extended stellar disk that makes the galaxy more than 220,000 light-years (67 kiloparsecs) in diameter. Previously, estimates of the Andromeda Galaxy's size ranged from 70,000 to 120,000 light-years (21 to 37 kpc) across.

The galaxy is inclined an estimated 77° relative to Earth (where an angle of 90° would be viewed directly from the side). Analysis of the cross-sectional shape of the galaxy appears to demonstrate a pronounced, S-shaped warp, rather than just a flat disk. A possible cause of such a warp could be gravitational interaction with the satellite galaxies near the Andromeda Galaxy. The Galaxy M33 could be responsible for some warp in Andromeda's arms, though more precise distances and radial velocities are required.

Spectroscopic studies have provided detailed measurements of the rotational velocity of the Andromeda Galaxy as a function of radial distance from the core. The rotational velocity has a maximum value of 225 km/s (140 mi/s) at 1,300 ly (82,000,000 AU) from the core, and it has its minimum possibly as low as 50 km/s (31 mi/s) at 7,000 ly (440,000,000 AU) from the core. Further out, rotational velocity rises out to a radius of 33,000 ly (2.1×109 AU), where it reaches a peak of 250 km/s (160 mi/s). The velocities slowly decline beyond that distance, dropping to around 200 km/s (120 mi/s) at 80,000 ly (5.1×109 AU). These velocity measurements imply a concentrated mass of about 6×109 M in the nucleus. The total mass of the galaxy increases linearly out to 45,000 ly (2.8×109 AU), then more slowly beyond that radius.

The spiral arms of the Andromeda Galaxy are outlined by a series of HII regions, first studied in great detail by Walter Baade and described by him as resembling "beads on a string". His studies show two spiral arms that appear to be tightly wound, although they are more widely spaced than in our galaxy.[72] His descriptions of the spiral structure, as each arm crosses the major axis of the Andromeda Galaxy, are as follows[73]§pp1062§pp92:

Baade's spiral arms of M31
Arms (N=cross M31's major axis at north, S=cross M31's major axis at south) Distance from center (arcminutes) (N*/S*) Distance from center (kpc) (N*/S*) Notes
N1/S1 3.4/1.7 0.7/0.4 Dust arms with no OB associations of HII regions.
N2/S2 8.0/10.0 1.7/2.1 Dust arms with some OB associations.
N3/S3 25/30 5.3/6.3 As per N2/S2, but with some HII regions too.
N4/S4 50/47 11/9.9 Large numbers of OB associations, HII regions, and little dust.
N5/S5 70/66 15/14 As per N4/S4 but much fainter.
N6/S6 91/95 19/20 Loose OB associations. No dust visible.
N7/S7 110/116 23/24 As per N6/S6 but fainter and inconspicuous.

Since the Andromeda Galaxy is seen close to edge-on, it is difficult to study its spiral structure. Rectified images of the galaxy seem to show a fairly normal spiral galaxy, exhibiting two continuous trailing arms that are separated from each other by a minimum of about 13,000 ly (820,000,000 AU) and that can be followed outward from a distance of roughly 1,600 ly (100,000,000 AU) from the core. Alternative spiral structures have been proposed such as a single spiral arm or a flocculent pattern of long, filamentary, and thick spiral arms.

The most likely cause of the distortions of the spiral pattern is thought to be interaction with galaxy satellites M32 and M110. This can be seen by the displacement of the neutral hydrogen clouds from the stars.

In 1998, images from the European Space Agency's Infrared Space Observatory demonstrated that the overall form of the Andromeda Galaxy may be transitioning into a ring galaxy. The gas and dust within the galaxy is generally formed into several overlapping rings, with a particularly prominent ring formed at a radius of 32,000 ly (9.8 kpc) from the core, nicknamed by some astronomers the ring of fire. This ring is hidden from visible light images of the galaxy because it is composed primarily of cold dust, and most of the star formation that is taking place in the Andromeda Galaxy is concentrated there.

Later studies with the help of the Spitzer Space Telescope showed how Andromeda Galaxy's spiral structure in the infrared appears to be composed of two spiral arms that emerge from a central bar and continue beyond the large ring mentioned above. Those arms, however, are not continuous and have a segmented structure.

Close examination of the inner region of the Andromeda Galaxy with the same telescope also showed a smaller dust ring that is believed to have been caused by the interaction with M32 more than 200  million years ago. Simulations show that the smaller galaxy passed through the disk of the Andromeda Galaxy along the latter's polar axis. This collision stripped more than half the mass from the smaller M32 and created the ring structures in Andromeda. It is the co-existence of the long-known large ring-like feature in the gas of Messier 31, together with this newly discovered inner ring-like structure, offset from the barycenter, that suggested a nearly head-on collision with the satellite M32, a milder version of the Cartwheel encounter.

Studies of the extended halo of the Andromeda Galaxy show that it is roughly comparable to that of the Milky Way, with stars in the halo being generally "metal-poor", and increasingly so with greater distance. This evidence indicates that the two galaxies have followed similar evolutionary paths. They are likely to have accreted and assimilated about 100–200 low-mass galaxies during the past 12 billion years. The stars in the extended halos of the Andromeda Galaxy and the Milky Way may extend nearly one third the distance separating the two galaxies.

Nucleus

Hubble image of the Andromeda Galaxy core showing possible double structure. NASA/ESA photo.
 
Artist's concept of the Andromeda Galaxy's core, showing a view across a disk of young, blue stars encircling a supermassive black hole. NASA/ESA photo.

The Andromeda Galaxy is known to harbor a dense and compact star cluster at its very center. In a large telescope it creates a visual impression of a star embedded in the more diffuse surrounding bulge. In 1991, the Hubble Space Telescope was used to image Andromeda Galaxy's inner nucleus. The nucleus consists of two concentrations separated by 1.5 pc (4.9 ly). The brighter concentration, designated as P1, is offset from the center of the galaxy. The dimmer concentration, P2, falls at the true center of the galaxy and contains a black hole measured at 3–5 × 107 M in 1993, and at 1.1–2.3 × 108 M in 2005. The velocity dispersion of material around it is measured to be ≈ 160 km/s (99 mi/s).

Chandra X-ray telescope image of the center of Andromeda Galaxy. A number of X-ray sources, likely X-ray binary stars, within the galaxy's central region appear as yellowish dots. The blue source at the center is at the position of the supermassive black hole.

It has been proposed that the observed double nucleus could be explained if P1 is the projection of a disk of stars in an eccentric orbit around the central black hole. The eccentricity is such that stars linger at the orbital apocenter, creating a concentration of stars. P2 also contains a compact disk of hot, spectral-class A stars. The A stars are not evident in redder filters, but in blue and ultraviolet light they dominate the nucleus, causing P2 to appear more prominent than P1.

While at the initial time of its discovery it was hypothesized that the brighter portion of the double nucleus is the remnant of a small galaxy "cannibalized" by Andromeda Galaxy, this is no longer considered a viable explanation, largely because such a nucleus would have an exceedingly short lifetime due to tidal disruption by the central black hole. While this could be partially resolved if P1 had its own black hole to stabilize it, the distribution of stars in P1 does not suggest that there is a black hole at its center.

Discrete sources

The Andromeda Galaxy in high-energy X-ray and ultraviolet light (released 5 January 2016).

Apparently, by late 1968, no X-rays had been detected from the Andromeda Galaxy. A balloon flight on 20 October 1970, set an upper limit for detectable hard X-rays from the Andromeda Galaxy. The Swift BAT all-sky survey successfully detected hard X-rays coming from a region centered 6 arcseconds away from the galaxy center. The emission above 25 keV was later found to be originating from a single source named 3XMM J004232.1+411314, and identified as a binary system where a compact object (a neutron star or a black hole) accretes matter from a star.

Multiple X-ray sources have since been detected in the Andromeda Galaxy, using observations from the European Space Agency's (ESA) XMM-Newton orbiting observatory. Robin Barnard et al. hypothesized that these are candidate black holes or neutron stars, which are heating the incoming gas to millions of kelvins and emitting X-rays. Neutron stars and black holes can be distinguished mainly by measuring their masses. An observation campaign of NuSTAR space mission identified 40 objects of this kind in the galaxy. In 2012, a microquasar, a radio burst emanating from a smaller black hole was detected in the Andromeda Galaxy. The progenitor black hole is located near the galactic center and has about 10 M. It was discovered through data collected by the European Space Agency's XMM-Newton probe and was subsequently observed by NASA's Swift Gamma-Ray Burst Mission and Chandra X-Ray Observatory, the Very Large Array, and the Very Long Baseline Array. The microquasar was the first observed within the Andromeda Galaxy and the first outside of the Milky Way Galaxy.

Globular clusters

Star clusters in the Andromeda Galaxy.

There are approximately 460 globular clusters associated with the Andromeda Galaxy. The most massive of these clusters, identified as Mayall II, nicknamed Globular One, has a greater luminosity than any other known globular cluster in the Local Group of galaxies.  It contains several million stars, and is about twice as luminous as Omega Centauri, the brightest known globular cluster in the Milky Way. Globular One (or G1) has several stellar populations and a structure too massive for an ordinary globular. As a result, some consider G1 to be the remnant core of a dwarf galaxy that was consumed by Andromeda in the distant past. The globular with the greatest apparent brightness is G76 which is located in the south-west arm's eastern half. Another massive globular cluster, named 037-B327 and discovered in 2006 as is heavily reddened by the Andromeda Galaxy's interstellar dust, was thought to be more massive than G1 and the largest cluster of the Local Group; however, other studies have shown it is actually similar in properties to G1.

Unlike the globular clusters of the Milky Way, which show a relatively low age dispersion, Andromeda Galaxy's globular clusters have a much larger range of ages: from systems as old as the galaxy itself to much younger systems, with ages between a few hundred million years to five billion years.

In 2005, astronomers discovered a completely new type of star cluster in the Andromeda Galaxy. The new-found clusters contain hundreds of thousands of stars, a similar number of stars that can be found in globular clusters. What distinguishes them from the globular clusters is that they are much larger—several hundred light-years across—and hundreds of times less dense. The distances between the stars are, therefore, much greater within the newly discovered extended clusters.

Satellites

Messier 32 is to the left of the center, Messier 110 is to the bottom-right of the center.

Like the Milky Way, the Andromeda Galaxy has satellite galaxies, consisting of over 20 known dwarf galaxies. The best known and most readily observed satellite galaxies are M32 and M110. Based on current evidence, it appears that M32 underwent a close encounter with the Andromeda Galaxy in the past. M32 may once have been a larger galaxy that had its stellar disk removed by M31, and underwent a sharp increase of star formation in the core region, which lasted until the relatively recent past.

M110 also appears to be interacting with the Andromeda Galaxy, and astronomers have found in the halo of the latter a stream of metal-rich stars that appear to have been stripped from these satellite galaxies. M110 does contain a dusty lane, which may indicate recent or ongoing star formation. M32 has a young stellar population as well.

In 2006, it was discovered that nine of the satellite galaxies lie in a plane that intersects the core of the Andromeda Galaxy; they are not randomly arranged as would be expected from independent interactions. This may indicate a common tidal origin for the satellites.

PA-99-N2 event and possible exoplanet in galaxy

PA-99-N2 was a microlensing event detected in the Andromeda Galaxy in 1999. One of the explanations for this is the gravitational lensing of a red giant with a mass between 0.02 and 3.6 masses of the Sun, which suggested that the star is likely a planet. This possible exoplanet would have a mass equivalent to 6.34 times that of Jupiter. If finally confirmed, it would be the first ever found extragalactic planet. However, anomalies in the event were later found.

Collision with the Milky Way

The Andromeda Galaxy is approaching the Milky Way at about 110 kilometres per second (68 miles per second). It has been measured approaching relative to the Sun at around 300 km/s (190 mi/s) as the Sun orbits around the center of the galaxy at a speed of approximately 225 km/s (140 mi/s). This makes the Andromeda Galaxy one of about 100 observable blueshifted galaxies. Andromeda Galaxy's tangential or sideways velocity with respect to the Milky Way is relatively much smaller than the approaching velocity and therefore it is expected to collide directly with the Milky Way in about 4 billion years. A likely outcome of the collision is that the galaxies will merge to form a giant elliptical galaxy or perhaps even a large disc galaxy. Such events are frequent among the galaxies in galaxy groups. The fate of the Earth and the Solar System in the event of a collision is currently unknown. Before the galaxies merge, there is a small chance that the Solar System could be ejected from the Milky Way or join the Andromeda Galaxy.

Amateur observing

The Andromeda Galaxy is the most distant object and the only spiral galaxy outside our Milky Way able to be seen with the naked eye. The galaxy is commonly located in the sky in reference to the constellations Cassiopeia and Pegasus. Andromeda is best seen during autumn nights in the Northern Hemisphere when it passes high overhead, reaching its highest point around midnight in October, and two hours later each successive month. In early evening, it rises in the east in September and sets in the west in February. From the Southern Hemisphere the Andromeda Galaxy is visible between October and December, best viewed from as far north as possible. Binoculars can reveal some larger structures of the galaxy and its two brightest satellite galaxies, M32 and M110. An amateur telescope can reveal Andromeda's disk, some of its brightest globular clusters, dark dust lanes and the large star cloud NGC 206.

Rydberg atom

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Rydberg_atom Figure 1: Electron orbi...