Search This Blog

Friday, January 10, 2025

Molten-salt reactor

From Wikipedia, the free encyclopedia
Example of a molten-salt reactor scheme

A molten-salt reactor (MSR) is a class of nuclear fission reactor in which the primary nuclear reactor coolant and/or the fuel is a mixture of molten salt with a fissile material.

Two research MSRs operated in the United States in the mid-20th century. The 1950s Aircraft Reactor Experiment (ARE) was primarily motivated by the technology's compact size, while the 1960s Molten-Salt Reactor Experiment (MSRE) aimed to demonstrate a nuclear power plant using a thorium fuel cycle in a breeder reactor.

Increased research into Generation IV reactor designs renewed interest in the 21st century with multiple nations starting projects. As of June 2023, China has been operating its TMSR-LF1 thorium unit.

Properties

MSRs eliminate the nuclear meltdown scenario present in water-cooled reactors because the fuel mixture is kept in a molten state. The fuel mixture is designed to drain without pumping from the core to a containment vessel in emergency scenarios, where the fuel solidifies, quenching the reaction. In addition, hydrogen evolution does not occur. This eliminates the risk of hydrogen explosions (as in the Fukushima nuclear disaster). They operate at or close to atmospheric pressure, rather than the 75–150 times atmospheric pressure of a typical light-water reactor (LWR). This reduces the need and cost for reactor pressure vessels. The gaseous fission products (Xe and Kr) have little solubility in the fuel salt, and can be safely captured as they bubble out of the fuel, rather than increasing the pressure inside the fuel tubes, as happens in conventional reactors. MSRs can be refueled while operating (essentially online-nuclear reprocessing) while conventional reactors shut down for refueling (notable exceptions include pressure tube reactors like the heavy water CANDU or the Atucha-class PHWRs, light water cooled graphite moderated RBMK, and British-built gas-cooled reactors such as Magnox, AGR). MSR operating temperatures are around 700 °C (1,292 °F), significantly higher than traditional LWRs at around 300 °C (572 °F). This increases electricity-generation efficiency and process-heat opportunities.

Relevant design challenges include the corrosivity of hot salts and the changing chemical composition of the salt as it is transmuted by the neutron flux.

MSRs, especially those with fuel in the molten salt, offer lower operating pressures, and higher temperatures. In this respect an MSR is more similar to a liquid metal cooled reactor than to a conventional light water cooled reactor. MSR designs are often breeding reactors with a closed fuel cycle—as opposed to the once-through fuel currently used in conventional nuclear power generators.

MSRs exploit a negative temperature coefficient of reactivity and a large allowable temperature rise to prevent criticality accidents. For designs with the fuel in the salt, the salt thermally expands immediately with power excursions. In conventional reactors the negative reactivity is delayed since the heat from the fuel must be transferred to the moderator. An additional method is to place a separate, passively cooled container below the reactor. Fuel drains into the container during malfunctions or maintenance, which stops the reaction.

The temperatures of some designs are high enough to produce process heat, which led them to be included on the GEN-IV roadmap.

Advantages

MSRs offer many potential advantages over light water reactors:

  • Passive decay heat removal is achieved in MSRs. In some designs, the fuel and the coolant are a single fluid, so a loss of coolant carries the fuel with it. Fluoride salts dissolve poorly in water, and do not form burnable hydrogen. The molten salt coolant is not damaged by neutron bombardment, though the reactor vessel is.
  • A low-pressure MSR does not require an expensive, steel core containment vessel, piping, and safety equipment. However, most MSR designs place radioactive fluid in direct contact with pumps and heat exchangers.
  • MSRs enable cheaper closed nuclear fuel cycles, because they can operate with slow neutrons. Closed fuel cycles can reduce environmental impacts: chemical separation turns long-lived actinides into reactor fuel. Discharged wastes are mostly fission products with shorter half-lives. This can reduce the needed containment to 300 years versus the tens of thousands of years needed by light-water reactor spent fuel.
  • The fuel's liquid phase can be pyroprocessed to separate fission products from fuels. This may have advantages over conventional reprocessing.
  • Fuel rod fabrication is replaced with salt synthesis.
  • Some designs are compatible with fast neutrons, which can "burn" transuranic elements such as 240
    Pu
    , 241
    Pu
    (reactor grade plutonium) from LWRs.
  • An MSR can react to load changes in under 60 seconds (unlike LWRs that suffer from xenon poisoning).
  • Molten-salt reactors can run at high temperatures, yielding high thermal efficiency. This reduces size, expense, and environmental impacts.
  • MSRs can offer a high "specific power", (high power at low mass), as demonstrated by ARE.
  • Potential neutron economy suggests that MSR may be able to exploit the neutron-poor thorium fuel cycle.

Disadvantages

  • In circulating-fuel-salt designs, radionuclides dissolved in fuel contact equipment such as pumps and heat exchangers, potentially requiring fully remote maintenance.
  • Some MSRs require onsite chemical processing to manage core mixture and remove fission products.
  • Regulatory changes to accommodate non-traditional design features
  • Some MSR designs rely on expensive nickel alloys to contain the molten salt. Such alloys are prone to embrittlement under high neutron flux.
  • Corrosion risk. Molten salts require careful management of their oxidation state to manage corrosion risks. This is particularly challenging for circulating designs, in which a mix of isotopes and their decay products circulate through the reactor. Static designs benefit from modularising the problem: the fuel salt is contained within fuel pins whose regular replacement, primarily due to neutron irradiation, is normalized; while the coolant salt has a simpler chemical composition and does not pose a corrosion risk either to the fuel pins or to the reactor vessel. MSRs developed at ORNL in the 1960s were safe to operate only for a few years, and operated at only about 650 °C (1,202 °F). Corrosion risks include dissolution of chromium by liquid fluoride thorium salts at greater than 700 °C (1,292 °F), hence endangering stainless steel components. Neutron radiation can transmute common alloying agents such as Co and Ni, shortening lifespan. Lithium salts such as FLiBe warrant the use of 7
    Li
    to reduce tritium generation (tritium can permeate stainless steels, cause embrittlement, and escape into the environment). ORNL developed Hastelloy N to help address these issues, while other structural steels may be acceptable, such as 316H, 800H, and inconel 617.
  • Some MSR designs can be turned into a breeder reactor to produce weapons-grade nuclear material.
  • MSRE and ARE used high enriched uranium approaching weapons-grade. These levels would be illegal in most modern power plant regulatory regimes. Most modern designs employ lower-enriched fuels.
  • Neutron damage to solid moderator materials can limit the core lifetime. For example, MSRE was designed so that its graphite moderator had loose tolerances, so neutron damage could change them without consequences. "Two fluid" MSR designs do not use graphite piping because graphite changes size when bombarded with neutrons. MSRs using fast neutrons cannot use graphite, because it moderates neutrons.
  • Thermal MSRs have lower breeding ratios than fast-neutron breeders, though their doubling time may be shorter.

Coolant

MSRs can be cooled in various ways, including using molten salts.

Molten-salt-cooled solid-fuel reactors are variously called "molten-salt reactor system" in the Generation IV proposal, molten-salt converter reactors (MSCR), advanced high-temperature reactors (AHTRs), or fluoride high-temperature reactors (FHR, preferred DOE designation).

FHRs cannot reprocess fuel easily and have fuel rods that need to be fabricated and validated, requiring up to twenty years from project inception. FHR retains the safety and cost advantages of a low-pressure, high-temperature coolant, also shared by liquid metal cooled reactors. Notably, steam is not created in the core (as is present in boiling water reactors), and no large, expensive steel pressure vessel (as required for pressurized water reactors). Since it can operate at high temperatures, the conversion of the heat to electricity can use an efficient, lightweight Brayton cycle gas turbine.

Much of the current research on FHRs is focused on small, compact heat exchangers that reduce molten salt volumes and associated costs.

Molten salts can be highly corrosive and corrosivity increases with temperature. For the primary cooling loop, a material is needed that can withstand corrosion at high temperatures and intense radiation. Experiments show that Hastelloy-N and similar alloys are suited to these tasks at operating temperatures up to about 700 °C. However, operating experience is limited. Still higher operating temperatures are desirable—at 850 °C (1,560 °F) thermochemical production of hydrogen becomes possible. Materials for this temperature range have not been validated, though carbon composites, molybdenum alloys (e.g. TZM), carbides, and refractory metal based or ODS alloys might be feasible.

Fused salt selection

Molten FLiBe

The salt mixtures are chosen to make the reactor safer and more practical.

Fluorine

Fluorine has only one stable isotope (19
F
), and does not easily become radioactive under neutron bombardment. Compared to chlorine and other halides, fluorine also absorbs fewer neutrons and slows ("moderates") neutrons better. Low-valence fluorides boil at high temperatures, though many pentafluorides and hexafluorides boil at low temperatures. They must be very hot before they break down into their constituent elements. Such molten salts are "chemically stable" when maintained well below their boiling points. Fluoride salts dissolve poorly in water, and do not form burnable hydrogen.

Chlorine

Chlorine has two stable isotopes (35
Cl
and 37
Cl
), as well as a slow-decaying isotope between them which facilitates neutron absorption by 35
Cl
.

Chlorides permit fast breeder reactors to be constructed. Much less research has been done on reactor designs using chloride salts. Chlorine, unlike fluorine, must be purified to isolate the heavier stable isotope, 37
Cl
, thus reducing production of sulfur tetrachloride that occurs when 35
Cl
absorbs a neutron to become 36
Cl
, then degrades by beta decay to 36
S
.

Lithium

Lithium must be in the form of purified 7
Li
, because 6
Li
effectively captures neutrons and produces tritium. Even if pure 7
Li
is used, salts containing lithium cause significant tritium production, comparable with heavy water reactors.

Mixtures

Reactor salts are usually close to eutectic mixtures to reduce their melting point. A low melting point simplifies melting the salt at startup and reduces the risk of the salt freezing as it is cooled in the heat exchanger.

Due to the high "redox window" of fused fluoride salts, the redox potential of the fused salt system can be changed. Fluorine-lithium-beryllium ("FLiBe") can be used with beryllium additions to lower the redox potential and nearly eliminate corrosion. However, since beryllium is extremely toxic, special precautions must be engineered into the design to prevent its release into the environment. Many other salts can cause plumbing corrosion, especially if the reactor is hot enough to make highly reactive hydrogen.

To date, most research has focused on FLiBe, because lithium and beryllium are reasonably effective moderators and form a eutectic salt mixture with a lower melting point than each of the constituent salts. Beryllium also performs neutron doubling, improving the neutron economy. This process occurs when the beryllium nucleus emits two neutrons after absorbing a single neutron. For the fuel carrying salts, generally 1% or 2% (by mole) of UF4 is added. Thorium and plutonium fluorides have also been used.

Fused salt purification

Techniques for preparing and handling molten salt were first developed at ORNL. The purpose of salt purification is to eliminate oxides, sulfur and metal impurities. Oxides could result in the deposition of solid particles in reactor operation. Sulfur must be removed because of its corrosive attack on nickel-based alloys at operational temperature. Structural metals such as chromium, nickel, and iron must be removed for corrosion control.

A water content reduction purification stage using HF and helium sweep gas was specified to run at 400 °C. Oxide and sulfur contamination in the salt mixtures were removed using gas sparging of HF/H2 mixture, with the salt heated to 600 °C. Structural metal contamination in the salt mixtures were removed using hydrogen gas sparging, at 700 °C. Solid ammonium hydrofluoride was proposed as a safer alternative for oxide removal.

Fused salt processing

The possibility of online processing can be an MSR advantage. Continuous processing would reduce the inventory of fission products, control corrosion and improve neutron economy by removing fission products with high neutron absorption cross-section, especially xenon. This makes the MSR particularly suited to the neutron-poor thorium fuel cycle. Online fuel processing can introduce risks of fuel processing accidents, which can trigger release of radio isotopes.

In some thorium breeding scenarios, the intermediate product protactinium 233
Pa
would be removed from the reactor and allowed to decay into highly pure 233
U
, an attractive bomb-making material. More modern designs propose to use a lower specific power or a separate thorium breeding blanket. This dilutes the protactinium to such an extent that few protactinium atoms absorb a second neutron or, via a (n, 2n) reaction (in which an incident neutron is not absorbed but instead knocks a neutron out of the nucleus), generate 232
U
. Because 232
U
has a short half-life and its decay chain contains hard gamma emitters, it makes the isotopic mix of uranium less attractive for bomb-making. This benefit would come with the added expense of a larger fissile inventory or a 2-fluid design with a large quantity of blanket salt.

The necessary fuel salt reprocessing technology has been demonstrated, but only at laboratory scale. A prerequisite to full-scale commercial reactor design is the R&D to engineer an economically competitive fuel salt cleaning system.

Fuel reprocessing

Changes in the composition of a MSR fast neutron (kg/GW)

Reprocessing refers to the chemical separation of fissionable uranium and plutonium from spent fuel. Such recovery could increase the risk of nuclear proliferation. In the United States the regulatory regime has varied dramatically across administrations.

Costs and economics

A systematic literature review from 2020 concludes that there is very limited information on economics and finance of MSRs, with low quality of the information and that cost estimations are uncertain.

In the specific case of the stable salt reactor (SSR) where the radioactive fuel is contained as a molten salt within fuel pins and the primary circuit is not radioactive, operating costs are likely to be lower.

Types of molten-salt reactors

While many design variants have been proposed, there are three main categories regarding the role of molten salt:

Category
Examples
Molten salt fuel – externally circulating ARE • AWB • CMSR • DMSR • EVOL • LFTR • IMSR • MSFR • MSRE • MSDR • DFR • TMSR-500 • TMSR-LF
Molten salt fuel – internally circulating UNOMI
Molten salt fuel – static SSR
Molten salt coolant only FHR • TMSR-SF

The use of molten salt as fuel and as coolant are independent design choices – the original circulating-fuel-salt MSRE and the more recent static-fuel-salt SSR use salt as fuel and salt as coolant; the DFR uses salt as fuel but metal as coolant; and the FHR has solid fuel but salt as coolant.

Designs

MSRs can be burners or breeders. They can be fast or thermal or epithermal. Thermal reactors typically employ a moderator (usually graphite) to slow the neutrons down and moderate temperature. They can accept a variety of fuels (low-enriched uranium, thorium, depleted uranium, waste products) and coolants (fluoride, chloride, lithium, beryllium, mixed). Fuel cycle can be either closed or once-through. They can be monolithic or modular, large or small. The reactor can adopt a loop, modular or integral configuration. Variations include:

Molten salt fast reactor

The molten-salt fast reactor (MSFR) is a proposed design with the fuel dissolved in a fluoride salt coolant. The MSFR is one of the two variants of MSRs selected by the Generation IV International Forum (GIF) for further development, the other being the FHR or AHTR. The MSFR is based on a fast neutron spectrum and is believed to be a long-term substitute to solid-fueled fast reactors. They have been studied for almost a decade, mainly by calculations and determination of basic physical and chemical properties in the European Union and Russian Federation. A MSFR is regarded sustainable because there are no fuel shortages. Operation of a MSFR does in theory not generate or require large amounts of transuranic (TRU) elements. When steady state is achieved in a MSFR, there is no longer a need for uranium enrichment facilities.

MSFRs may be breeder reactors. They operate without a moderator in the core such as graphite, so graphite life-span is no longer a problem. This results in a breeder reactor with a fast neutron spectrum that operates in the Thorium fuel cycle. MSFRs contain relatively small initial inventories of 233
U
. MSFRs run on liquid fuel with no solid matter inside the core. This leads to the possibility of reaching specific power that is much higher than reactors using solid fuel. The heat produced goes directly into the heat transfer fluid. In the MSFR, a small amount of molten salt is set aside to be processed for fission product removal and then returned to the reactor. This gives MSFRs the capability of reprocessing the fuel without stopping the reactor. This is very different compared to solid-fueled reactors because they have separate facilities to produce the solid fuel and process spent nuclear fuel. The MSFR can operate using a large variety of fuel compositions due to its on-line fuel control and flexible fuel processing.

The standard MSFR would be a 3000 MWth reactor that has a total fuel salt volume of 18 m3 with a mean fuel temperature of 750 °C. The core's shape is a compact cylinder with a height to diameter ratio of 1 where liquid fluoride fuel salt flows from the bottom to the top. The return circulation of the salt, from top to bottom, is broken up into 16 groups of pumps and heat exchangers located around the core. The fuel salt takes approximately 3 to 4 seconds to complete a full cycle. At any given time during operation, half of the total fuel salt volume is in the core and the rest is in the external fuel circuit (salt collectors, salt-bubble separators, fuel heat exchangers, pumps, salt injectors and pipes). MSFRs contain an emergency draining system that is triggered and achieved by redundant and reliable devices such as detection and opening technology. During operation, the fuel salt circulation speed can be adjusted by controlling the power of the pumps in each sector. The intermediate fluid circulation speed can be adjusted by controlling the power of the intermediate circuit pumps. The temperature of the intermediate fluid in the intermediate exchangers can be managed through the use of a double bypass. This allows the temperature of the intermediate fluid at the conversion exchanger inlet to be held constant while its temperature is increased in a controlled way at the inlet of the intermediate exchangers. The temperature of the core can be adjusted by varying the proportion of bubbles injected in the core since it reduces the salt density. As a result, it reduces the mean temperature of the fuel salt. Usually the fuel salt temperature can be brought down by 100 °C using a 3% proportion of bubbles. MSFRs have two draining modes, controlled routine draining and emergency draining. During controlled routine draining, fuel salt is transferred to actively cooled storage tanks. The fuel temperature can be lowered before draining, this may slow down the process. This type of draining could be done every 1 to 5 years when the sectors are replaced. Emergency draining is done when an irregularity occurs during operation. The fuel salt can be drained directly into the emergency draining tank either by active devices or by passive means. The draining must be fast to limit the fuel salt heating in a loss of heat removal event.

Fluoride salt-cooled high-temperature reactor

The fluoride salt-cooled high-temperature reactor (FHR), also called advanced high temperature reactor (AHTR), is also a proposed Generation IV molten-salt reactor variant regarded promising for the long-term future. The FHR/AHTR reactor uses a solid-fuel system along with a molten fluoride salt as coolant.

One version of the Very-high-temperature reactor (VHTR) under study was the liquid-salt very-high-temperature reactor (LS-VHTR). It uses liquid salt as a coolant in the primary loop, rather than a single helium loop. It relies on "TRISO" fuel dispersed in graphite. Early AHTR research focused on graphite in the form of graphite rods that would be inserted in hexagonal moderating graphite blocks, but current studies focus primarily on pebble-type fuel. The LS-VHTR can work at very high temperatures (the boiling point of most molten salt candidates is >1400 °C); low-pressure cooling that can be used to match hydrogen production facility conditions (most thermochemical cycles require temperatures in excess of 750 °C); better electric conversion efficiency than a helium-cooled VHTR operating in similar conditions; passive safety systems and better retention of fission products in the event of an accident.

Liquid-fluoride thorium reactor

Reactors containing molten thorium salt, called liquid fluoride thorium reactors (LFTR), would tap the thorium fuel cycle. Private companies from Japan, Russia, Australia and the United States, and the Chinese government, have expressed interest in developing this technology.

Advocates estimate that five hundred metric tons of thorium could supply U.S. energy needs for one year. The U.S. Geological Survey estimates that the largest-known U.S. thorium deposit, the Lemhi Pass district on the Montana-Idaho border, contains thorium reserves of 64,000 metric tons.

Traditionally, these reactors were known as molten salt breeder reactors (MSBRs) or thorium molten-salt reactors (TMSRs), but the name LFTR was promoted as a rebrand in the early 2000s by Kirk Sorensen.

Stable salt reactor

The stable salt reactor is a relatively recent concept which holds the molten salt fuel statically in traditional LWR fuel pins. Pumping of the fuel salt, and all the corrosion/deposition/maintenance/containment issues arising from circulating a highly radioactive, hot and chemically complex fluid, are no longer required. The fuel pins are immersed in a separate, non-fissionable fluoride salt which acts as primary coolant.

Dual-fluid molten-salt reactors

A prototypical example of a dual fluid reactor is the lead-cooled, salt-fueled reactor.

History

1950s

Aircraft Reactor Experiment, US

Aircraft Reactor Experiment building at the Oak Ridge National Laboratory (ORNL). It was later retrofitted for the MSRE.

MSR research started with the U.S. Aircraft Reactor Experiment (ARE) in support of the U.S. Aircraft Nuclear Propulsion program. ARE was a 2.5 MWth nuclear reactor experiment designed to attain a high energy density for use as an engine in a nuclear-powered bomber.

The project included experiments, including high temperature and engine tests collectively called the Heat Transfer Reactor Experiments: HTRE-1, HTRE-2 and HTRE-3 at the National Reactor Test Station (now Idaho National Laboratory) as well as an experimental high-temperature molten-salt reactor at Oak Ridge National Laboratory – the ARE.

ARE used molten fluoride salt NaF/ZrF4/UF4 (53-41-6 mol%) as fuel, moderated by beryllium oxide (BeO). Liquid sodium was a secondary coolant.

The experiment had a peak temperature of 860 °C. It produced 100 MWh over nine days in 1954. This experiment used Inconel 600 alloy for the metal structure and piping.

An MSR was operated at the Critical Experiments Facility of the Oak Ridge National Laboratory in 1957. It was part of the circulating-fuel reactor program of the Pratt & Whitney Aircraft Company (PWAC). This was called Pratt and Whitney Aircraft Reactor-1 (PWAR-1). The experiment was run for a few weeks and at essentially zero power, although it reached criticality. The operating temperature was held constant at approximately 675 °C (1,250 °F). The PWAR-1 used NaF/ZrF4/UF4 as the primary fuel and coolant. It was one of three critical MSRs ever built.

1960s and 1970s

MSRE at Oak Ridge, US

MSRE plant diagram

Oak Ridge National Laboratory (ORNL) took the lead in researching MSRs through the 1960s. Much of their work culminated with the Molten-Salt Reactor Experiment (MSRE). MSRE was a 7.4 MWth test reactor simulating the neutronic "kernel" of a type of epithermal thorium molten salt breeder reactor called the liquid fluoride thorium reactor (LFTR). The large (expensive) breeding blanket of thorium salt was omitted in favor of neutron measurements.

MSRE's piping, core vat and structural components were made from Hastelloy-N, moderated by pyrolytic graphite. It went critical in 1965 and ran for four years. Its fuel was LiF/BeF2/ZrF4/UF4 (65-29-5-1)mol%. The graphite core moderated it. Its secondary coolant was FLiBe (2LiF·BeF2). It reached temperatures as high as 650 °C (1,202 °F) and achieved the equivalent of about 1.5 years of full power operation.

Theoretical designs at Oak Ridge, US

Molten salt breeder reactor

From 1970 to 1976 ORNL researched during the 1970–1976 a molten salt breeder reactor (MSBR) design. Fuel was to be LiF/BeF2/ThF4/UF4 (72-16-12-0.4) mol% with graphite moderator. The secondary coolant was to be NaF/Na[BF4]. Its peak operating temperature was to be 705 °C (1,301 °F). It would follow a 4-year replacement schedule. The MSR program closed down in the early 1970s in favor of the liquid metal fast-breeder reactor (LMFBR), after which research stagnated in the United States. As of 2011, ARE and MSRE remained the only molten-salt reactors ever operated.

The MSBR project received funding from 1968 to 1976 of (in 2023 dollars) $77.6 million.

Officially, the program was cancelled because:

  • The political and technical support for the program in the United States was too thin geographically. Within the United States the technology was well understood only in Oak Ridge.
  • The MSR program was in competition with the fast breeder program at the time, which got an early start and had copious government development funds with contracts that benefited many parts of the country. When the MSR development program had progressed far enough to justify an expanded program leading to commercial development, the United States Atomic Energy Commission (AEC) could not justify the diversion of substantial funds from the LMFBR to a competing program.
Denatured molten-salt reactor

The denatured molten-salt reactor (DMSR) was an Oak Ridge theoretical design that was never built.

Engel et al. 1980 said the project "examined the conceptual feasibility of a molten-salt power reactor fueled with denatured uranium-235 (i.e. with low-enriched uranium) and operated with a minimum of chemical processing." The main design priority was proliferation resistance. Although the DMSR can theoretically be fueled partially by thorium or plutonium, fueling solely with low enriched uranium (LEU) helps maximize proliferation resistance.

Other goals of the DMSR were to minimize research and development and to maximize feasibility. The Generation IV international Forum (GIF) includes "salt processing" as a technology gap for molten-salt reactors. The DMSR design theoretically requires minimal chemical processing because it is a burner rather than a breeder.

United Kingdom

The UK's Atomic Energy Research Establishment (AERE) was developing an alternative MSR design across its National Laboratories at Harwell, Culham, Risley and Winfrith. AERE opted to focus on a lead-cooled 2.5 GWe Molten Salt Fast Reactor (MSFR) concept using a chloride. They also researched helium gas as a coolant.

The UK MSFR would have been fuelled by plutonium, a fuel considered to be 'free' by the program's research scientists, because of the UK's plutonium stockpile.

Despite their different designs, ORNL and AERE maintained contact during this period with information exchange and expert visits. Theoretical work on the concept was conducted between 1964 and 1966, while experimental work was ongoing between 1968 and 1973. The program received annual government funding of around £100,000–£200,000 (equivalent to £2m–£3m in 2005). This funding came to an end in 1974, partly due to the success of the Prototype Fast Reactor at Dounreay which was considered a priority for funding as it went critical in the same year.

Soviet Union

In the USSR, a molten-salt reactor research program was started in the second half of the 1970s at the Kurchatov Institute. It included theoretical and experimental studies, particularly the investigation of mechanical, corrosion and radiation properties of the molten salt container materials. The main findings supported the conclusion that no physical nor technological obstacles prevented the practical implementation of MSRs.

Twenty-first century

MSR interest resumed in the new millennium due to continuing delays in fusion power and other nuclear power programs and increasing demand for energy sources that would incur minimal greenhouse gas (GHG) emissions.

Commercial/national/international projects

Canada

Terrestrial Energy, a Canadian-based company, is developing a DMSR design called the Integral Molten Salt Reactor (IMSR). The IMSR is designed to be deployable as a small modular reactor (SMR). Their design currently undergoing licensing is 400MW thermal (190MW electrical). With high operating temperatures, the IMSR has applications in industrial heat markets as well as traditional power markets. The main design features include neutron moderation from graphite, fueling with low-enriched uranium and a compact and replaceable Core-unit. Decay heat is removed passively using nitrogen (with air as an emergency alternative). The latter feature permits the operational simplicity necessary for industrial deployment.

Terrestrial completed the first phase of a prelicensing review by the Canadian Nuclear Safety Commission in 2017, which provided a regulatory opinion that the design features are generally safe enough to eventually obtain a license to construct the reactor.

Moltex Energy Canada, a subsidiary of UK-based Moltex Energy Ltd, has obtained support from New Brunswick Power for the development of a pilot plant in Point Lepreau, Canada, and financial backing from IDOM (an international engineering firm) and is currently engaged in the Canadian Vendor Design Review process. The plant will employ the waste-burning version of the company's stable salt reactor design.

China

China initiated a thorium research project in January 2011, and spent about 3 billion yuan (US$500 million) on it by 2021. A 100 MW demonstrator of the solid fuel version (TMSR-SF), based on pebble bed technology, was planned to be ready by 2024. A 10 MW pilot and a larger demonstrator of the liquid fuel (TMSR-LF) variant were targeted for 2024 and 2035, respectively. China then accelerated its program to build two 12 MW reactors underground at Wuwei research facilities by 2020, beginning with the 2 megawatt TMSR-LF1 prototype. The project sought to test new corrosion-resistant materials. In 2017, ANSTO/Shanghai Institute Of Applied Physics announced the creation of a NiMo-SiC alloy for use in MSRs.

In 2021, China stated that Wuwei prototype operation could start power generation from thorium in September, with a prototype providing energy for around 1,000 homes. It is the world's first nuclear molten-salt reactor after the Oak Ridge project. The 100 MW successor was expected to be 3 meters tall and 2.5 meters wide, capable of providing energy to 100,000 homes.

Further work on commercial reactors was announced with the target completion date of 2030. Chinese government plans to realize similar reactors in deserts and plains of western China as well as up to 30 in countries involved in China's "Belt and Road" initiative.

In 2022, Shanghai Institute of Applied Physics (SINAP) was given approval by the Ministry of Ecology and Environment to commission an experimental thorium-powered MSR.

Denmark

Copenhagen Atomics is a Danish molten salt technology company developing mass manufacturable molten salt reactors. The Copenhagen Atomics Waste Burner is a single-fluid, heavy water moderated, fluoride-based, thermal spectrum and autonomously controlled molten-salt reactor. This is designed to fit inside of a leak-tight, 40-foot, stainless steel shipping container. The heavy water moderator is thermally insulated from the salt and continuously drained and cooled to below 50 °C (122 °F). A molten lithium-7 deuteroxide (7
LiOD
) moderator version is also being researched. The reactor utilizes the thorium fuel cycle using separated plutonium from spent nuclear fuel as the initial fissile load for the first generation of reactors, eventually transitioning to a thorium breeder. Copenhagen Atomics is actively developing and testing valves, pumps, heat exchangers, measurement systems, salt chemistry and purification systems, and control systems and software for molten salt applications.

Seaborg Technologies is developing the core for a compact molten-salt reactor (CMSR). The CMSR is a high temperature, single salt, thermal MSR designed to go critical on commercially available low enriched uranium. The CMSR design is modular, and uses proprietary NaOH moderator. The reactor core is estimated to be replaced every 12 years. During operation, the fuel will not be replaced and will burn for the entire 12-year reactor lifetime. The first version of the Seaborg core is planned to produce 250 MWth power and 100 MWe power. As a power plant, the CMSR will be able to deliver electricity, clean water and heating/cooling to around 200,000 households.

France

The CNRS project EVOL (Evaluation and viability of liquid fuel fast reactor system) project, with the objective of proposing a design of the molten salt fast reactor (MSFR), released its final report in 2014. Various MSR projects like FHR, MOSART, MSFR, and TMSR have common research and development themes.

The EVOL project will be continued by the EU-funded Safety Assessment of the Molten Salt Fast Reactor (SAMOFAR) project, in which several European research institutes and universities collaborate.

Germany

The German Institute for Solid State Nuclear Physics in Berlin has proposed the dual fluid reactor as a concept for a fast breeder lead-cooled MSR. The original MSR concept used the fluid salt to provide the fission materials and also to remove the heat. Thus it had problems with the needed flow speed. Using 2 different fluids in separate circles is thought to solve the problem.

India

In 2015, Indian researchers published a MSR design, as an alternative path to thorium-based reactors, according to India's three-stage nuclear power programme.

Indonesia

Thorcon is developing the TMSR-500 molten-salt reactor for the Indonesian market. National Research and Innovation Agency, through its Research Organization for Nuclear Energy announced its renewal of interest on MSR reactor research on 29 March 2022 and planned to study and develop MSR for thorium-fueled nuclear reactors.

Japan

The Fuji Molten-Salt Reactor is a 100 to 200 MWe LFTR, using technology similar to the Oak Ridge project. A consortium including members from Japan, the U.S. and Russia are developing the project. The project would likely take 20 years to develop a full size reactor, but the project seems to lack funding.

The UNOMI Molten-Salt Reactor is a small reactor up to 10 MWe, which eliminates external primary fuel circuit causing loss of delayed neutron, mass transfer phenomenon and corrosion on metallic surface. 

Russia

In 2020, Rosatom announced plans to build a 10 MWth FLiBe burner MSR. It would be fueled by plutonium from reprocessed VVER spent nuclear fuel and fluorides of minor actinides. It is expected to launch in 2031 at Mining and Chemical Combine.

United Kingdom

The Alvin Weinberg Foundation is a British non-profit organization founded in 2011, dedicated to raising awareness about the potential of thorium energy and LFTR. It was formally launched at the House of Lords on 8 September 2011. It is named after American nuclear physicist Alvin M. Weinberg, who pioneered thorium MSR research.

Moltex Energy's stable-salt reactor design was selected as the most suitable of six MSR designs for UK implementation in a 2015 study commissioned by the UK's innovation agency, Innovate UK.[89] UK government support has been weak, but the company's UK arm, MoltexFLEX, launched its FLEX small modular design in October 2022.

United States

Idaho National Laboratory designed  a molten-salt-cooled, molten-salt-fuelled reactor with a prospective output of 1000 MWe.

Kirk Sorensen, former NASA scientist and chief nuclear technologist at Teledyne Brown Engineering, is a long-time promoter of the thorium fuel cycle, coining the term liquid fluoride thorium reactor. In 2011, Sorensen founded Flibe Energy, a company aimed at developing 20–50 MW LFTR reactor designs to power military bases. (It is easier to approve novel military designs than civilian power station designs in the US nuclear regulatory environment).

Transatomic Power pursued what it termed a waste-annihilating molten-salt reactor (WAMSR), intended to consume existing spent nuclear fuel, from 2011 until ceasing operation in 2018 and open-sourcing their research.

In January 2016, the United States Department of Energy announced a $80m award fund to develop Generation IV reactor designs. One of the two beneficiaries, Southern Company will use the funding to develop a molten chloride fast reactor (MCFR), a type of MSR developed earlier by British scientists.

In 2021, Tennessee Valley Authority (TVA) and Kairos Power announced a TRISO-fueled, low-pressure fluoride salt-cooled 140 MWe test reactor to be built in Oak Ridge, Tennessee. A construction permit for the project was issued by the US Nuclear Regulatory Commission (NCR) in 2023. The design is expected to operate at 45% efficiency. The outlet temperature is 650 °C (1,202 °F). The main steam pressure is 19 MPa. The reactor structure is 316 stainless steel. The fuel is enriched to 19.75%. Loss-of-power cooling is passive. In February 2024 DOE and Kairos Power signed a $303M Technology Investment Agreement to support the design, construction, and commissioning of the reactor. The company is to receive fixed payments upon completing project milestones.

Also in 2021, Southern Company, in collaboration with TerraPower and the U.S. Department of Energy announced plans to build the Molten Chloride Reactor Experiment, the first fast-spectrum salt reactor at the Idaho National Laboratory.

Abilene Christian University (ACU) has applied to the NRC for a construction licence for a 1MWt molten-salt research reactor (MSRR), to be built on its campus in Abilene, Texas, as part of the Nuclear Energy eXperimental Testing (NEXT) laboratory. ACU plans for the MSRR to achieve criticality by December 2025.

Nuclear power in Canada

From Wikipedia, the free encyclopedia
https://en.wikipedia.org/wiki/Nuclear_power_in_Canada

Nuclear power in Canada is provided by 19 commercial reactors with a net capacity of 13.5 gigawatt (GW), producing a total of 95.6 terawatt-hours (TWh) of electricity, which accounted for 16.6% of the country's total electric energy generation in 2015. All but one of these reactors are located in Ontario, where they produced 61% of the province's electricity in 2019 (90.4 TWh). Seven smaller reactors are used for research and to produce radiopharmaceuticals for use in nuclear medicine.

All currently operating Canadian nuclear reactors are a type of pressurized heavy-water reactor (PHWR) of domestic design, the CANDU reactor. CANDU reactors have been exported to India, Pakistan, Argentina, South Korea, Romania, and China. While there are (as of 2022) no plans for new CANDUs in Canada or elsewhere, Canada remains a technology leader in heavy water reactors and natural uranium fueled reactors more broadly. The Indian IPHWR-line is an indigenized derivative of the CANDU while only a small number of pressurized heavy water reactors were built independent of the CANDU-line, mainly Atucha nuclear power plant in Argentina.

History

The nuclear industry (as distinct from the uranium industry) in Canada dates back to 1942 when a joint British-Canadian laboratory, the Montreal Laboratory, was set up in Montreal, Quebec, under the administration of the National Research Council of Canada, to develop a design for a heavy-water nuclear reactor. This reactor was called the National Research Experimental (NRX) reactor and would be the most powerful research reactor in the world when completed.

Experimental reactors

ZEEP (left), NRX (right) and NRU (back) reactors at Chalk River, 1954

In 1944, approval was given to proceed with the construction of the smaller ZEEP (Zero Energy Experimental Pile) test reactor at Chalk River Nuclear Laboratories in Ontario and on September 5, 1945, at 3:45 p.m., the 10-watt ZEEP achieved the first self-sustained nuclear reaction outside the United States.

In 1946, the Montreal Laboratory was closed, and the work continued at the Chalk River Nuclear Laboratories. Building partly on the experimental data obtained from ZEEP, the National Research Experimental (NRX)—a natural uranium, heavy water moderated research reactor—started up on July 22, 1947. It operated for 43 years, producing radioisotopes, undertaking fuels and materials development work for CANDU reactors, and providing neutrons for physics experiments. It was eventually joined in 1957 by the larger 200 megawatt (MW) National Research Universal reactor (NRU).

From 1967 to 1970, Canada also developed an experimental miniature nuclear reactor named SLOWPOKE (acronym for Safe LOW-POwer Kritical Experiment). The first prototype was assembled at Chalk River and many SLOWPOKEs were built, mainly for research. Two SLOWPOKEs are still in use in Canada and one in Kingston, Jamaica; the one in Canada has been running at École Polytechnique de Montréal since 1976.

Nuclear power plants

In 1952, the Canadian government formed Atomic Energy of Canada Limited (AECL), a Crown corporation with the mandate to develop peaceful uses of nuclear energy. A partnership was formed between AECL, Ontario Hydro and Canadian General Electric to build Canada's first nuclear power plant, Nuclear Power Demonstration (NPD). The 20 MWe NPD started operation in June 1962 and demonstrated the unique concepts of on-power refuelling using natural uranium fuel, and heavy water moderator and coolant. These features formed the basis of a fleet of CANDU power reactors (CANDU is an acronym for CANada Deuterium Uranium) built and operated in Canada and elsewhere. Starting in 1961, AECL led the construction of 24 commercial CANDU reactors in Ontario, Quebec, and New Brunswick.

Bruce B (front) and Douglas Point (white dome) nuclear power plants

The first full-scale CANDU reactor entered service on September 26, 1968, at Douglas Point on the shore of Lake Huron in Ontario. Two years later a reactor of comparable power but of a different design became operational along the Saint Lawrence River in Quebec. Gentilly-1 was a prototype CANDU-BWR reactor with features intended to reduce its cost and complexity. After the equivalent of only 180 on-power days over nearly seven years (a 5.7% lifetime capacity factor), Gentilly-1 was closed in June 1977. Douglas Point, also suffering from unreliability with a lifetime capacity factor of 55.6%, was deemed a financial failure and shut down in May 1984.

In August 1964, Ontario Hydro decided to build the first large-scale nuclear power plant in Canada at Pickering on Lake Ontario, only 30 kilometres from downtown Toronto to save on transmission costs. To reduce cost the reactors share safety systems including containment and the emergency core cooling system. Pickering A station started operations in 1971 at a cost of $716 million (1965). It was followed by the Bruce A station, built in 1977 at a cost of $1.8 billion on the same site as the Douglas Point reactor. Beginning in 1983 four B reactors were added to the existing Pickering units, with all of them sharing the same common infrastructure as the A reactors. The final cost for these four new reactors was $3.84 billion (1986). Likewise for $6 billion, four new reactors were added to the Bruce site starting in 1984, but in a separate building with their own set of shared infrastructure for the new reactors. After a loss of coolant accident occurred at Pickering reactor A2 in August 1983, four of the reactors had their pressure tubes replaced between 1983 and 1993 at a cost of $1 billion (1983).

Gentilly-1 (right) and 2 (left) nuclear reactors

As most of the development of nuclear energy was taking place in Ontario, Quebec nationalists were eager to benefit from a promising technology. Hydro-Quebec initially planned to build as many as 40 reactors in the province, but the government chose to pursue hydroelectric mega-projects instead (see the James Bay Project). At the end of the 1970s, public opinion about nuclear energy shifted, and only one new reactor at Gentilly was operational by 1983. The same year, another reactor began operation at Point Lepreau, New Brunswick, a province longing to diversify its energy sources since the oil crisis of 1973.

In 1977, a new plant close to Toronto, Darlington, was approved for completion in 1988 at an estimated cost of $3.9 billion (1978). After much controversy the last unit came into service five years late. By then the cost had ballooned to $14.4 billion (1993). In the wake of this cost, a Darlington B plant was cancelled. At this point, the operating Canadian reactors fleet consisted of eight units at the Pickering site, eight units at the Bruce site, four units at the Darlington site, one unit at Gentilly in Quebec, and one unit at Point Lepreau in New Brunswick for a 14.7 GWe net total operational installed capacity.

Refurbishment or closure

By 1995 the Pickering and Bruce A units needed refurbishment as after 25 years effective full power years of operation, the embrittled fuel channels face an increased risk of rupture and must be replaced. The first reactor to close was Bruce A unit 2 in November 1995 because of a maintenance accident. After criticism of Ontario Hydro plants management and a series of incidents, on December 31, 1997, the four A reactors at Pickering and unit 1 at Bruce A were abruptly shut down. They were followed by the remaining two Bruce A units three months later. Over 5 GW of Ontario's electric capacity was abruptly shut down, but at this point, the reactors were supposed to restart at six-month intervals starting in June 2000.

In 1999, indebted Ontario Hydro was replaced by Ontario Power Generation (OPG). The next year, OPG leased its Bruce A and B nuclear stations to Bruce Power, a consortium led by British Energy. Pickering's A4 and A1 reactors were refurbished from 1999 to 2003 and from 2004 to 2005, respectively. To prevent a power shortage while phasing out Ontario's coal-burning plants, Bruce A units 3 and 4 were returned to service in January 2004 and October 2003 respectively, and then units 1 and 2 were completely refurbished for $4.8 billion (2010). Of the eight units laid down, four were refurbished, two were restarted without refurbishment, and two (Pickering A2 and A3) were definitively shut down.

In April 2008, refurbishment began at Point Lepreau and had been estimated to be completed in September 2009 at a cost of $1.4 billion. Plagued by delays, the work was finalized three years late and largely over budget. Hydro-Quebec had decided in August 2008 to similarly refurbish Gentilly-2 starting in 2011. Because of delays with the Point Lepreau rebuild, and for economic reasons in a province with hydroelectricity surpluses, the plant was permanently shut down in December 2012. It should remain dormant 40 more years before being dismantled.

Following the 2011 Japanese nuclear accidents, the Canadian Nuclear Safety Commission (CNSC) ordered all reactor operators to revisit their safety plans and report on potential improvements by the end of April 2011. The International Atomic Energy Agency (IAEA) later conducted a review of the CNSC's response to the events at Japan's Fukushima Daiichi Nuclear Power Plant, and concluded that it was "prompt, robust and comprehensive, and is a good practice that should be used by other regulatory bodies".

Massive refurbishments

As of 2022, OPG are planning to shut down the 2 Pickering A units by 2024 and keep the Pickering B units operating through to 2026. However, OPG reviewed its operational plan and decided that Pickering B could continue operations through to 2026 and are reassesing the feasibility of refurbishing the four Pickering B units and adding another 30 years of operation to their life. Meanwhile, the Darlington reactors are gradually undergoing a $12.8 billion complete refurbishment currently underway on Units 1 and 3 while Unit 2 successfully completed its refurbishment in 2020. Bruce Power will follow the same plan for its 8 CANDU-750 units. This even more massive undertaking started in January 2020 and should cost $13 billion. The newly refurbished Darlington and Bruce reactors should then be operating until at least 2050 and through to 2064. To compensate for the programmed shut down of numerous reactors, the Government of Ontario decided in January 2016 to push the retirement date of the Pickering A plant to 2024 while reviewing the possibility of refurbishing Pickering B.

New reactor proposals

Rising fossil fuel prices, an aging reactors fleet, and new concerns about reducing greenhouse gas combined to promote the building of new reactors throughout Canada during the early 2000s. However, what was seen as a nuclear renaissance petered, no new construction has started.

Ontario

Bruce site

In August 2006, Bruce Power applied for a licence to prepare its Bruce site for the construction of up to four new nuclear power units. In July 2009, the plan was shelved as a declining demand for electricity did not justify expanding production capacity. Bruce Power prioritized refurbishing its A and B plants instead.

Darlington site

In September 2006, OPG applied for a licence to prepare its Darlington site for the construction of up to four new nuclear power units. The reactor designs being first considered for this project were AECL's ACR-1000, Westinghouse's AP1000 and Areva's EPR. In 2011, the Enhanced CANDU 6 entered the competition and soon became OPG's favourite. On August 17, 2012, after environmental assessments, OPG received a Licence to Prepare Site from the CNSC. In 2013, the project was put on hold as OPG decided to concentrate on refurbishing the existing Darlington units.

In October 2013, the Ontario government declared that the Darlington new build project would not be a part of Ontario's long term energy plan, citing the high capital cost estimates and energy surplus in the province at the time of the announcement.

In November 2020, OPG resumed licensing activities, this time for the construction of a small modular reactor (SMR).

Alberta

Energy Alberta Corporation announced August 27, 2007, that they had applied for a licence to build a new nuclear plant in Northern Alberta at Lac Cardinal (30 km west of the town of Peace River), for two ACR-1000 reactors going online in 2017 as steam and electricity sources for the energy-intensive oil sands extraction process, which uses natural gas. However, a parliamentary review suggested placing the development efforts on hold as it would be inadequate for oil sands extraction.

Three months after the announcement, the company was purchased by Bruce Power who proposed expanding the plant to four units for a total 4 GWe. These plans were upset and Bruce withdrew its application for the Lac Cardinal in January 2009, proposing instead a new site 30 km north of Peace River. Finally, in December 2011, the controversial project was abandoned.

On January 15, 2024, Alberta's Capital Power Corporation entered an agreement with Ontario Power Generation to jointly assess the feasibility of deploying Small Modular Reactors (SMRs) in Alberta. Assessments will take place over 2 years, and includes assessing scalability, and ownership & operating structures.

Saskatchewan

The Government of Saskatchewan was in talks with Hitachi Limited's Power Systems about building a small nuclear plant in the province involving a five-year study beginning in 2011.

A study in 2014 showed public support for nuclear power and highlighted a reliable supply of uranium ore in the province, but the province has not been eager moving forward and no site has been identified since 2011.

New Brunswick

In August 2007, a consortium named Team CANDU began a feasibility study regarding the installation of an Advanced CANDU Reactor at Point Lepreau, to supply power to the eastern seaboard. July 2010, the Government of New Brunswick and NB Power signed an agreement with Areva to study the feasibility of a new light water nuclear unit at Point Lepreau but a newly elected government two months later shelved the plan.

Other technologies

A number of Canadian startups are developing new commercial nuclear reactor designs. In March 2016, the Oakville, Ontario-based company Terrestrial Energy was awarded a $5.7 million grant by the Government of Canada to pursue development of its small IMSR Molten Salt Reactor. Thorium Power Canada Inc., from Toronto, is seeking regulatory approvals for a thorium-fuelled compact demonstration reactor to be built in Chile that could be used to power a 20 million-litre/day desalination plant. Since 2002, General Fusion, from Burnaby, British Columbia, has raised $100 million from public and private investors to build a fusion reactor prototype based on magnetized target fusion starting in 2017.

Generation

Nuclear electricity production, nationally and by province, per year

1980 1985 1990 1995 2000 2005 2010 2015 2020
TWh %Total TWh %Total TWh %Total TWh %Total TWh %Total TWh %Total TWh %Total TWh %Total TWh %Total
 Canada 35.8 9.8% 57.1 12.8% 68.8 14.8% 92.3 17.2% 68.6 11.8% 86.8 14.5% 85.5 14.5% 95.6 16.6%

 Ontario 35.8 32.6% 48.5 40% 59.3 45.9% 86.2 58.5% 59.8 39% 77.9 49.2% 82.9 55% 92.3 60% 87.8 60%
 Quebec 0 0% 3.21 2.3% 4.14 3.1% 4.51 2.6% 4.88 2.7% 4.48 2.5% 3.76 2% 0 0% 0 0%
 New Brunswick 0 0% 5.43 47.5% 5.33 32% 1.57 12.5% 3.96 21.1% 4.37 21.6% 0 0% 3.3


Power reactors

Nuclear power in Canada is located in Canada

Beginning in 1958, Canada built 25 nuclear power reactors over the course of 35 years, with only three of them located outside of Ontario. This made the southern part of the province one of the most nuclearized areas in the world with 12 to 20 operating reactors at any given time since 1987 inside a 120-kilometre radius.

All of the Canadian reactors are concentrated in only seven different sites, with two of them (Pickering and Bruce) being the largest nuclear generating stations in the world by total reactor count. The Bruce site, with eight active reactors and one shut down (Douglas Point) has been the largest operating nuclear power station in the world by total reactor count, the number of operational reactors, and total output between 2012 and 2020.

All of the reactors are of the PHWR type. Because CANDU reactors can be refuelled while operating, Pickering unit 3 achieved the then highest capacity factor in the world in 1977 and Pickering unit 7 held the world record for continuous operation without a shutdown (894 days) from 1994 to 2016. In 2021, a new world record (1106 days) was established by Darlington unit 1. Overall, PHWR reactors had the best lifetime average load factor of all western generation II reactors until being superseded by the PWR in the early 2000s.

Canada's nuclear power reactors Timeline

Darlington Nuclear Generating StationDarlington Nuclear Generating StationDarlington Nuclear Generating StationDarlington Nuclear Generating StationPoint Lepreau Nuclear Generating StationBruce Nuclear Generating StationBruce Nuclear Generating StationBruce Nuclear Generating StationBruce Nuclear Generating StationBruce Nuclear Generating StationBruce Nuclear Generating StationBruce Nuclear Generating StationBruce Nuclear Generating StationPickering Nuclear Generating StationPickering Nuclear Generating StationPickering Nuclear Generating StationPickering Nuclear Generating StationPickering Nuclear Generating StationPickering Nuclear Generating StationPickering Nuclear Generating StationPickering Nuclear Generating StationGentilly Nuclear Generating StationGentilly Nuclear Generating StationDouglas Point Nuclear Generating StationNuclear Power DemonstrationShippingport Atomic Power StationDarlington Nuclear Generating StationPoint Lepreau Nuclear Generating StationBruce Nuclear Generating StationPickering Nuclear Generating StationGentilly Nuclear Generating StationDouglas Point Nuclear Generating StationNuclear Power Demonstration

Active nuclear reactors in Canada
Station
Name
Unit
Name
No. Type Model Capacity Operator Builder Construction
start
date
Grid
connection
date
Commercial
operation
date
Thermal (MWth) Electric (MWe)
Gross Net
Bruce A1 8 PHWR CANDU 791 2620 830 760 Bruce Power OH/AECL June 1971 Jan 1977 Sept 1977
A2 9 2620 830 760 Dec 1970 Sept 1976 Sept 1977
A3 10 CANDU 750A 2550 830 750 July 1972 Dec 1977 Feb 1978
A4 11 2550 830 750 Sept 1972 Dec 1978 Jan 1979
B5 18 CANDU 750B 2832 872 817 June 1978 Dec 1984 Mar 1985
B6 19 2690 891 817 Jan 1978 June 1984 Sept 1984
B7 20 2832 872 817 May 1979 Feb 1986 April 1986
B8 21 2690 872 817 Aug 1979 March 1987 May 1987
Darlington 1 22 CANDU 850 2776 934 878 OPG April 1982 Dec 1990 Nov 1992
2 23 2776 934 878 Sept 1981 Jan 1990 Oct 1990
3 24 2776 934 878 Sept 1984 Dec 1992 Feb 1993
4 25 2776 934 878 July 1985 April 1993 June 1993
Pickering A1 4 CANDU 500A 1744 542 515 OPG June 1966 April 1971 July 1971
A4 7 1744 542 515 May 1968 May 1973 June 1973
B5 13 CANDU 500B 1744 540 516 Nov 1974 Dec 1982 May 1983
B6 14 1744 540 516 Oct 1975 Nov 1983 Feb 1984
B7 15 1744 540 516 Mar 1976 Nov 1984 Jan 1985
B8 16 1744 540 516 Sept 1976 Jan 1986 Feb 1986
Point Lepreau 1 17 CANDU 6 2180 705 660 NB Power AECL May 1975 Sept 1982 Feb 1983

Permanently shut down

Permanently shut down nuclear reactors in Canada
Station
Name
Unit
Name
No. Type Model Capacity Operator Builder Construction
start
date
Grid
connection
date
Commercial
operation
date
Shutdown
date
Thermal (MWth) Electric (MWe)
Gross Net
Gentilly 1 3 SGHWR CANDU BLW-250 792 266 250 HQ HQ/AECL Sept 1966 Apr 1971 May 1972 June 1977
2 12 PHWR CANDU 6 2156 675 635 April 1974 Dec 1982 Oct 1983 Dec 2012
Pickering A2 5 CANDU 500A 1744 542 515 OH OH/AECL Sept 1966 Oct 1971 Dec 1971 May 2007
A3 6 1744 542 515 Dec 1967 May 1972 June 1972 Oct 2008
Douglas Point 1 2 CANDU 200 704 218 206 OH Feb 1960 Jan 1967 Sept 1968 May 1984
Nuclear Power Demonstration NPD 1 CANDU prototype 92 25 22 OH CGE Jan 1958 June 1962 Oct 1962 Aug 1987

Research reactors

Research reactors in Canada
Place Reactor Name Reactor Type Thermal Power (kWt) Const. start First critical Status Notes
Chalk River Laboratories - Chalk River, Ontario ZEEP Heavy Water 0.001 1945 1945-09-05 Decommissioned

1973

First nuclear reactor in Canada, and first outside the United States.
NRX Heavy Water 42 000 1944 1947-07-22 Shut down

1993-03-30

One of the highest flux reactors in the world. Research and medical isotope production.
NRU Heavy Water 135 000 1952 1957-11-03 Shut down

2018-03-31

Research and medical isotope production.
PTR Pool 0.1 1956-05-01 1957-11-29 Shut down

1990-10-05

Pool Test Reactor. Research.
ZED-2 Tank 0.2 1958-12-01 1960-09-07 Operational Zero-power research reactor.

SLOWPOKE 5
1970 Moved 1971 Prototype. Moved to University of Toronto.
MAPLE I Tank in pool 10 000 1997-12-01 2000 Cancelled 2008 Medical isotope production reactors.

Program terminated before operations.

MAPLE II
2003
McMaster University - Hamilton, Ontario MNR MTR 5 000 1957-09-01 1959-04-04 Operational Operating at 3 MWt. The highest-flux research reactor in Canada since the closing of the National Research Universal (NRU) reactor in Chalk River in 2018.
Whiteshell Laboratories - Pinawa, Manitoba WR-1 CANDU 60 000 1962-11-01 1965-11-01 Shut down

1985-05-17

Organic cooled prototype. Plant had coolant leak of 2,739 litres in November 1978.
SDR SLOWPOKE-3 2 000 1985 1987-07-15 Shut down 1989 Slowpoke Demonstration Reactor for district heating.
Tunney's Pasture - 20 Goldenrod Driveway, Ottawa, Ontario
SLOWPOKE 20 1970 1971-05-14 Shut down 1984 Prototype.
University of Toronto Haultin Building - Toronto, Ontario
SLOWPOKE 5 1971 1971-06-05 Dismantled 1976 Power increased to 20kWt in 1973.

SLOWPOKE-2 20 1976 1976 Shut down 2001
École Polytechnique de Montréal - Montreal, Quebec
SLOWPOKE-2 20 1975 1976-05-01 Operational Converted to Low-Enriched Uranium (LEU) fuel.
Dalhousie University Trace Analysis Research Centre - Halifax, Nova Scotia
SLOWPOKE-2 20 1976-04-15 1976-07-08 Dismantled 2011
University of Alberta - Edmonton
SLOWPOKE-2 20 1976 1977-04-22 Dismantled August 5, 2017
Saskatchewan Research Council - Saskatoon
SLOWPOKE-2 16 1980 1981-03-01 Shut down in December 2017 Decommissioning was expected to be completed sometime in 2020.
Kanata - original AECL and later MDS Nordion
SLOWPOKE-2 20 1984-05-14 1984-06-06 Shut down 1989
Royal Military College - Kingston, Ontario
SLOWPOKE-2 20 1985-08-20 1985-09-06 Operational First Low-Enriched Uranium (LEU) fuelled.

Notable accidents

Chalk River

  • On December 12, 1952, the world's first major nuclear reactor accident (INES level 5) happened at Chalk River Laboratories, 180 kilometres north-west of Ottawa. A power excursion and partial loss of coolant led to severe damages to the NRX reactor core resulting in fission products being released through the reactor stack and 4.5 tonnes of contaminated water collecting in the basement of the building. The future US president Jimmy Carter, at the time a U.S. Navy lieutenant, was among the 1,202 people involved in the two-year-long clean-up;
  • May 24, 1958, a fuel rod caught fire and ruptured as it was being removed from the NRU reactor leading to the complete contamination of the building. As in 1952, the military was called in to aid and approximately 679 people were employed in the clean-up.

Pinawa

In November 1978 a loss of coolant accident affected the experimental WR-1 reactor at Whitshell Laboratories in Pinawa, Manitoba. 2,739 litres of coolant oil (terphenyl isomer) leaked, most of it into the Winnipeg River, and three fuel elements broke with some fission products being released. The repair took several weeks for workers to complete.

Pickering

  • On August 1, 1983, pressure tubes—which hold fuel rods—ruptured due to hydriding at the Pickering reactor 2. Some coolant escaped, but was recovered before it left the plant, and there was no release of radioactive material from the containment building. All four reactors were re-tubed with new materials (Zr-2.5%Nb) over ten years;
  • On August 2, 1992, a heavy water leak at Pickering reactor 1 heat exchanger released 2.3 petabecquerel (PBq) of radioactive tritium into Lake Ontario, resulting in increased levels of tritium in drinking water along the lake shoreline;
  • On December 10, 1994, a pipe break at Pickering reactor 2 resulted in a major loss of coolant accident and a spill of 185 tonnes of heavy water. The Emergency Core Cooling System had to be used to prevent a core meltdown. It has been called "the most serious nuclear accident in Canada" by The Standing Senate Committee on Energy, the Environment and Natural Resources in 2001.
  • On January 12, 2020, a nuclear incident alert was sent out via the Alert Ready system at 07:23 EST (UTC -5), to all residents of Ontario. The alert stated that "An incident was reported at Pickering Nuclear Generating Station" and that "people near the Pickering Nuclear Generating Station DO NOT need to take any protective actions at this time." It was later revealed that, in a statement by MPP Sylvia Jones, "The cause of the alert was revealed to be an error during a 'routine training exercise' being conducted by the Provincial Emergency Operations Center (PEOC)".

Darlington

In 2009, more than 200,000 litres of water containing trace amounts of tritium and hydrazine spilled into Lake Ontario after workers accidentally filled the wrong tank with tritiated water. However the level of the isotope in the lake was not enough to pose harm to residents.

Point Lepreau

On December 13, 2011, a radioactive spill happened at New Brunswick's Point Lepreau nuclear generating station during refurbishment. Up to six litres of heavy water splashed to the floor, forcing an evacuation of the reactor building and halt of operations. Then, on December 14, NB Power issued a news release, admitting there had been another type of spill three weeks earlier.

Fuel cycle

CANDU type reactors operating in Canada have the particularity of being able to use natural uranium as fuel because of their high neutron economy. Therefore, the costly fuel enrichment step required by the more prevalent light-water reactor types can be avoided. However this comes at the cost of heavy water usage which, for example, represented 11% ($1.5 billion) of the capital costs of the Darlington plant.

The low uranium-235 density in natural uranium (0.7% 235U) compared with enriched uranium (3-5% 235U) implies that less fuel can be consumed before the fission rate drops too low to sustain criticality, explaining why fuel burn-up in CANDU reactors (7.5 to 9 GW.day/tonnes) is far lower than in PWR reactors (50 GW.d/t). Therefore, a lot more fuel is used and consequently a lot more spent fuel is produced by CANDUs for a given quantity of energy produced (140 t.GWe/year for a CANDU vs 20 t.GWe/year for a PWR). Yet mined uranium utilization is lower by almost 30% in a CANDU because there is no wasteful enrichment step during the ore processing into fuel. Paradoxically heavy-water reactors in Canada use less uranium but produce more spent fuel than their light water counterparts.

Uranium mining

In 2009, Canada had the 4th largest recoverable uranium reserves in the world (at a cost of less than 130 USD/kg) and was up until that date the world's largest producer. The only currently active mines and most prominent uranium reserves are in the Athabasca Basin of northern Saskatchewan. Cameco's McArthur River mine, opened in 2000, is both the largest high-grade uranium deposit and the largest producer in the world.

Approximately 15% of Canada's uranium production is used to fuel domestic reactors, the rest being exported.

Fuel production

CANDU fuel bundles

Uranium ore concentrate (yellowcake) from mines in Canada and elsewhere is processed into uranium trioxide (UO3) at Cameco's Blind River plant, the world's largest commercial uranium refinery. This purer form of uranium is the raw material for the next stage of processing happening in Port Hope, Ontario. There, Cameco's conversion facility produces uranium hexafluoride (UF6) for foreign uranium enrichment facilities and uranium dioxide (UO2) for local fuel manufacturers. Cameco's Port Hope and BWXT's Peterborough and Toronto fuel manufacturing facilities turns uranium dioxide powder into ceramic pellets before sealing these into zirconium tubes to form fuel rods assembled into bundles for CANDU reactors in Canada and elsewhere.

Waste disposal

Like in the USA or Finland, the policy of Canada is not to reprocess spent nuclear fuel but to directly dispose of it for economic reasons.

In 1978, the government of Canada launched a nuclear fuel waste management program. In 1983, an underground laboratory was constructed at Whiteshell Laboratories in Manitoba to study the geological conditions associated with the storage of spent nuclear fuel. The 420-metre deep facility was decommissioned and deliberately flooded in 2010 to perform one final experiment. In 2002 the Nuclear Waste Management Organization (NWMO) was founded by the industry to develop a permanent waste strategy.

Low- and intermediate-level waste

Canadian Nuclear Laboratories (CNL) plans to build a 1 million m³ Near Surface Disposal Facility (NSDF) at the Chalk River site to dispose of its low-level radioactive waste beginning in 2021.

Low-level and intermediate-level radioactive waste produced by the three Ontario nuclear power plants in operation are managed by the Western Waste Management Facility (WWMF) located at the Bruce nuclear site in Tiverton, Ontario. OPG proposed to build a deep geological repository adjacent to the WWMF to serve as a long-term storage solution for about 200,000 m³ of this waste. However, the project was not approved in a vote by the Saugeen Ojibway Nation in January 2020. OPG had previously promised not to proceed without the nation's approval. The project was cancelled in June 2020. OPG will look for alternative waste disposal solutions.

Spent fuel

As of June 2019, Canadian reactors had produced 2.9 million spent fuel bundles or around 52,000 tonnes of high-level waste, the second largest amount in the world behind the US. This number could grow to 5.5 million bundles (103,000 tonnes) at the end of the planned life of the current reactors fleet.

Spent fuel is stored at each reactor sites either in fuel pools (58% of the total) or dry cask storage (42%) when it is cool enough. Although more spent fuel is produced by CANDU reactors, dry storage costs for a given electricity production are comparable with costs for PWR reactors because the spent fuel is more easily handled (no fuel criticality). The same is true with the cost and space requirements for the permanent disposal of the waste.

In 2005, the NWMO decided to build a deep repository dedicated to store the spent nuclear fuel underground. The $24 billion price tag of this 500- to 1000-metre underground vault is to be paid by a trust fund backed by the nuclear production companies. The spent fuel bundles would be placed in steel baskets wrapped together 3 by 3 (324 fuel bundles total) in corrosion resistant copper to form containers designed to last at least a 100,000 years. The containers would be encased in the tunnels of the repository by swelling bentonite clay but remain retrievable for approximately 240 years. Since 2010, the process of identifying a proper place for such a long-term facility has been ongoing. Out of 22 interested communities, two, located around Ignace in Northwestern Ontario and South Bruce in Southwestern Ontario, are being studied as potential sites.

Public opinion

According to a 2012 poll by Innovative Research Group, on behalf of the Canadian Nuclear Association, 37% of Canadians are in favour of nuclear power, while 53% oppose it. Both of these figures represent a drop from 2011 (38% and 56% respectively), and the population that neither supports nor opposes or did not know their opinion has grown to 9%. Support ranges from a high of 54% in Ontario to a low of 12% in Quebec. Other notable demographic details include men being generally more supportive of nuclear power than women, and older populations being slightly more supportive than younger populations. There was not a significant change in opposition to nuclear power in Canada following the March 2011 events at Japan's Fukushima Daiichi Nuclear Power Station (from 54% to 56%), and the issue was followed at least somewhat closely by 70% of Canadians polled.

Anti-nuclear movement

Canada has an active anti-nuclear movement, which includes major campaigning organizations like Greenpeace and the Sierra Club. Greenpeace was founded in Vancouver by former Sierra Club members to protest nuclear weapons tests on Amchitka Island. Over 300 public interest groups across Canada have endorsed the mandate of the Campaign for Nuclear Phaseout (CNP). Some environmental organizations such as Energy Probe, the Pembina Institute and the Canadian Coalition for Nuclear Responsibility (CCNR) are reported to have developed considerable expertise on nuclear power and energy issues. There is also a long-standing tradition of indigenous opposition to uranium mining.

The province of British Columbia firmly maintains a strict no-nuclear policy. The Crown corporation, BC Hydro, upholds this principle by "rejecting consideration of nuclear power in implementing B.C.'s clean energy strategy."

East Asian studies

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/East_Asian_studies East Asian studies is a...