Search This Blog

Monday, January 20, 2025

Ocean

From Wikipedia, the free encyclopedia
Earth's ocean
Pacific Ocean of Earth seen from space in 1969

The ocean is the body of salt water that covers approximately 70.8% of Earth. In English, the term ocean also refers to any of the large bodies of water into which the world ocean is conventionally divided. The following names describe five different areas of the ocean: Pacific, Atlantic, Indian, Antarctic/Southern, and Arctic. The ocean contains 97% of Earth's water and is the primary component of Earth's hydrosphere and is thereby essential to life on Earth. The ocean influences climate and weather patterns, the carbon cycle, and the water cycle by acting as a huge heat reservoir.

Ocean scientists split the ocean into vertical and horizontal zones based on physical and biological conditions. The pelagic zone is the open ocean's water column from the surface to the ocean floor. The water column is further divided into zones based on depth and the amount of light present. The photic zone starts at the surface and is defined to be "the depth at which light intensity is only 1% of the surface value" (approximately 200 m in the open ocean). This is the zone where photosynthesis can occur. In this process plants and microscopic algae (free-floating phytoplankton) use light, water, carbon dioxide, and nutrients to produce organic matter. As a result, the photic zone is the most biodiverse and the source of the food supply which sustains most of the ocean ecosystem. Ocean photosynthesis also produces half of the oxygen in the Earth's atmosphere. Light can only penetrate a few hundred more meters; the rest of the deeper ocean is cold and dark (these zones are called mesopelagic and aphotic zones). The continental shelf is where the ocean meets dry land. It is more shallow, with a depth of a few hundred meters or less. Human activity often has negative impacts on marine life within the continental shelf.

Ocean temperatures depend on the amount of solar radiation reaching the ocean surface. In the tropics, surface temperatures can rise to over 30 °C (86 °F). Near the poles where sea ice forms, the temperature in equilibrium is about −2 °C (28 °F). In all parts of the ocean, deep ocean temperatures range between −2 °C (28 °F) and 5 °C (41 °F). Constant circulation of water in the ocean creates ocean currents. Those currents are caused by forces operating on the water, such as temperature and salinity differences, atmospheric circulation (wind), and the Coriolis effect. Tides create tidal currents, while wind and waves cause surface currents. The Gulf Stream, Kuroshio Current, Agulhas Current and Antarctic Circumpolar Current are all major ocean currents. Such currents transport massive amounts of water, gases, pollutants and heat to different parts of the world, and from the surface into the deep ocean. All this has impacts on the global climate system.

Ocean water contains dissolved gases, including oxygen, carbon dioxide and nitrogen. An exchange of these gases occurs at the ocean's surface. The solubility of these gases depends on the temperature and salinity of the water. The carbon dioxide concentration in the atmosphere is rising due to CO2 emissions, mainly from fossil fuel combustion. As the oceans absorb CO2 from the atmosphere, a higher concentration leads to ocean acidification (a drop in pH value).

The ocean provides many benefits to humans such as ecosystem services, access to seafood and other marine resources, and a means of transport. The ocean is known to be the habitat of over 230,000 species, but may hold considerably more – perhaps over two million species. Yet, the ocean faces many environmental threats, such as marine pollution, overfishing, and the effects of climate change. Those effects include ocean warming, ocean acidification and sea level rise. The continental shelf and coastal waters are most affected by human activity.

Terminology

Ocean and sea

The terms "the ocean" or "the sea" used without specification refer to the interconnected body of salt water covering the majority of Earth's surface. It includes the Pacific, Atlantic, Indian, Southern/Antarctic, and Arctic oceans. As a general term, "the ocean" and "the sea" are often interchangeable.

Strictly speaking, a "sea" is a body of water (generally a division of the world ocean) partly or fully enclosed by land. The word "sea" can also be used for many specific, much smaller bodies of seawater, such as the North Sea or the Red Sea. There is no sharp distinction between seas and oceans, though generally seas are smaller, and are often partly (as marginal seas) or wholly (as inland seas) bordered by land.

World Ocean

The contemporary concept of the World Ocean was coined in the early 20th century by the Russian oceanographer Yuly Shokalsky to refer to the continuous ocean that covers and encircles most of Earth. The global, interconnected body of salt water is sometimes referred to as the World Ocean, global ocean or the great ocean. The concept of a continuous body of water with relatively unrestricted exchange between its components is critical in oceanography.

Etymology

The word ocean comes from the figure in classical antiquity, Oceanus (/ˈsənəs/; Ancient Greek: Ὠκεανός Ōkeanós, pronounced [ɔːkeanós]), the elder of the Titans in classical Greek mythology. Oceanus was believed by the ancient Greeks and Romans to be the divine personification of an enormous river encircling the world.

The concept of Ōkeanós has an Indo-European connection. Greek Ōkeanós has been compared to the Vedic epithet ā-śáyāna-, predicated of the dragon Vṛtra-, who captured the cows/rivers. Related to this notion, the Okeanos is represented with a dragon-tail on some early Greek vases.

Natural history

Origin of water

Scientists believe that a sizable quantity of water would have been in the material that formed Earth. Water molecules would have escaped Earth's gravity more easily when it was less massive during its formation. This is called atmospheric escape.

During planetary formation, Earth possibly had magma oceans. Subsequently, outgassing, volcanic activity and meteorite impacts, produced an early atmosphere of carbon dioxide, nitrogen and water vapor, according to current theories. The gases and the atmosphere are thought to have accumulated over millions of years. After Earth's surface had significantly cooled, the water vapor over time would have condensed, forming Earth's first oceans. The early oceans might have been significantly hotter than today and appeared green due to high iron content.

Geological evidence helps constrain the time frame for liquid water existing on Earth. A sample of pillow basalt (a type of rock formed during an underwater eruption) was recovered from the Isua Greenstone Belt and provides evidence that water existed on Earth 3.8 billion years ago. In the Nuvvuagittuq Greenstone Belt, Quebec, Canada, rocks dated at 3.8 billion years old by one study and 4.28 billion years old by another show evidence of the presence of water at these ages. If oceans existed earlier than this, any geological evidence either has yet to be discovered, or has since been destroyed by geological processes like crustal recycling. However, in August 2020, researchers reported that sufficient water to fill the oceans may have always been on the Earth since the beginning of the planet's formation. In this model, atmospheric greenhouse gases kept the oceans from freezing when the newly forming Sun had only 70% of its current luminosity.

Ocean formation

The origin of Earth's oceans is unknown. Oceans are thought to have formed in the Hadean eon and may have been the cause for the emergence of life.

Plate tectonics, post-glacial rebound, and sea level rise continually change the coastline and structure of the world ocean. A global ocean has existed in one form or another on Earth for eons.

Since its formation the ocean has taken many conditions and shapes with many past ocean divisions and potentially at times covering the whole globe.

During colder climatic periods, more ice caps and glaciers form, and enough of the global water supply accumulates as ice to lessen the amounts in other parts of the water cycle. The reverse is true during warm periods. During the last ice age, glaciers covered almost one-third of Earth's land mass with the result being that the oceans were about 122 m (400 ft) lower than today. During the last global "warm spell," about 125,000 years ago, the seas were about 5.5 m (18 ft) higher than they are now. About three million years ago the oceans could have been up to 50 m (165 ft) higher.

Geography

World map of the five-ocean model with approximate boundaries

The entire ocean, containing 97% of Earth's water, spans 70.8% of Earth's surface, making it Earth's global ocean or world ocean. This makes Earth, along with its vibrant hydrosphere a "water world" or "ocean world", particularly in Earth's early history when the ocean is thought to have possibly covered Earth completely. The ocean's shape is irregular, unevenly dominating the Earth's surface. This leads to the distinction of the Earth's surface into a water and land hemisphere, as well as the division of the ocean into different oceans.

Seawater covers about 361,000,000 km2 (139,000,000 sq mi) and the ocean's furthest pole of inaccessibility, known as "Point Nemo", in a region known as spacecraft cemetery of the South Pacific Ocean, at 48°52.6′S 123°23.6′W. This point is roughly 2,688 km (1,670 mi) from the nearest land.

Oceanic divisions

Map of Earth centered on its ocean, showing the different ocean divisions

There are different customs to subdivide the ocean and are adjourned by smaller bodies of water such as, seas, gulfs, bays, bights, and straits.

The ocean is customarily divided into five principal oceans – listed below in descending order of area and volume:

Oceans by size
# Ocean Location Area
(km2)
Volume
(km3)
Avg. depth
(m)
Coastline
(km)
1 Pacific Ocean Between Asia and Australasia and the Americas 168,723,000
(46.6%)
669,880,000
(50.1%)
3,970 135,663
(35.9%)
2 Atlantic Ocean Between the Americas and Europe and Africa 85,133,000
(23.5%)
310,410,900
(23.3%)
3,646 111,866
(29.6%)
3 Indian Ocean Between southern Asia, Africa and Australia 70,560,000
(19.5%)
264,000,000
(19.8%)
3,741 66,526
(17.6%)
4 Antarctic/Southern Ocean Between Antarctica and the Pacific, Atlantic and Indian oceans
Sometimes considered an extension of those three oceans.[52][53]
21,960,000
(6.1%)
71,800,000
(5.4%)
3,270 17,968
(4.8%)
5 Arctic Ocean Between northern North America and Eurasia in the Arctic
Sometimes considered a marginal sea of the Atlantic.[54][55][56]
15,558,000
(4.3%)
18,750,000
(1.4%)
1,205 45,389
(12.0%)
Total 361,900,000
(100%)
1.335×109
(100%)
3,688 377,412
(100%)

Ocean basins

Bathymetry of the ocean floor showing the continental shelves and oceanic plateaus (red), the mid-ocean ridges (yellow-green) and the abyssal plains (blue to purple)

The ocean fills Earth's oceanic basins. Earth's oceanic basins cover different geologic provinces of Earth's oceanic crust as well as continental crust. As such it covers mainly Earth's structural basins, but also continental shelfs.

In mid-ocean, magma is constantly being thrust through the seabed between adjoining plates to form mid-oceanic ridges and here convection currents within the mantle tend to drive the two plates apart. Parallel to these ridges and nearer the coasts, one oceanic plate may slide beneath another oceanic plate in a process known as subduction. Deep trenches are formed here and the process is accompanied by friction as the plates grind together. The movement proceeds in jerks which cause earthquakes, heat is produced and magma is forced up creating underwater mountains, some of which may form chains of volcanic islands near to deep trenches. Near some of the boundaries between the land and sea, the slightly denser oceanic plates slide beneath the continental plates and more subduction trenches are formed. As they grate together, the continental plates are deformed and buckle causing mountain building and seismic activity.

Every ocean basin has a mid-ocean ridge, which creates a long mountain range beneath the ocean. Together they form the global mid-oceanic ridge system that features the longest mountain range in the world. The longest continuous mountain range is 65,000 km (40,000 mi). This underwater mountain range is several times longer than the longest continental mountain range – the Andes.

Oceanographers state that less than 20% of the oceans have been mapped.

Interaction with the coast

Lighthouse at the coast of Ocean County, New Jersey, U.S., facing the Atlantic Ocean at sunrise

The zone where land meets sea is known as the coast, and the part between the lowest spring tides and the upper limit reached by splashing waves is the shore. A beach is the accumulation of sand or shingle on the shore. A headland is a point of land jutting out into the sea and a larger promontory is known as a cape. The indentation of a coastline, especially between two headlands, is a bay, a small bay with a narrow inlet is a cove and a large bay may be referred to as a gulf. Coastlines are influenced by several factors including the strength of the waves arriving on the shore, the gradient of the land margin, the composition and hardness of the coastal rock, the inclination of the off-shore slope and the changes of the level of the land due to local uplift or submergence.

Normally, waves roll towards the shore at the rate of six to eight per minute and these are known as constructive waves as they tend to move material up the beach and have little erosive effect. Storm waves arrive on shore in rapid succession and are known as destructive waves as the swash moves beach material seawards. Under their influence, the sand and shingle on the beach is ground together and abraded. Around high tide, the power of a storm wave impacting on the foot of a cliff has a shattering effect as air in cracks and crevices is compressed and then expands rapidly with release of pressure. At the same time, sand and pebbles have an erosive effect as they are thrown against the rocks. This tends to undercut the cliff, and normal weathering processes such as the action of frost follows, causing further destruction. Gradually, a wave-cut platform develops at the foot of the cliff and this has a protective effect, reducing further wave-erosion.

Material worn from the margins of the land eventually ends up in the sea. Here it is subject to attrition as currents flowing parallel to the coast scour out channels and transport sand and pebbles away from their place of origin. Sediment carried to the sea by rivers settles on the seabed causing deltas to form in estuaries. All these materials move back and forth under the influence of waves, tides and currents. Dredging removes material and deepens channels but may have unexpected effects elsewhere on the coastline. Governments make efforts to prevent flooding of the land by the building of breakwaters, seawalls, dykes and levees and other sea defences. For instance, the Thames Barrier is designed to protect London from a storm surge, while the failure of the dykes and levees around New Orleans during Hurricane Katrina created a humanitarian crisis in the United States.

Physical properties

Color

Ocean chlorophyll concentration is a proxy for phytoplankton biomass. In this map, blue colors represent lower chlorophyll and reds represent higher chlorophyll. Satellite-measured chlorophyll is estimated based on ocean color by how green the color of the water appears from space.

Most of the ocean is blue in color, but in some places the ocean is blue-green, green, or even yellow to brown. Blue ocean color is a result of several factors. First, water preferentially absorbs red light, which means that blue light remains and is reflected back out of the water. Red light is most easily absorbed and thus does not reach great depths, usually to less than 50 meters (164 ft). Blue light, in comparison, can penetrate up to 200 meters (656 ft). Second, water molecules and very tiny particles in ocean water preferentially scatter blue light more than light of other colors. Blue light scattering by water and tiny particles happens even in the very clearest ocean water, and is similar to blue light scattering in the sky.

The main substances that affect the color of the ocean include dissolved organic matter, living phytoplankton with chlorophyll pigments, and non-living particles like marine snow and mineral sediments. Chlorophyll can be measured by satellite observations and serves as a proxy for ocean productivity (marine primary productivity) in surface waters. In long term composite satellite images, regions with high ocean productivity show up in yellow and green colors because they contain more (green) phytoplankton, whereas areas of low productivity show up in blue.

Water cycle, weather, and rainfall

The ocean is a major driver of Earth's water cycle.

Ocean water represents the largest body of water within the global water cycle (oceans contain 97% of Earth's water). Evaporation from the ocean moves water into the atmosphere to later rain back down onto land and the ocean. Oceans have a significant effect on the biosphere. The ocean as a whole is thought to cover approximately 90% of the Earth's biosphere. Oceanic evaporation, as a phase of the water cycle, is the source of most rainfall (about 90%), causing a global cloud cover of 67% and a consistent oceanic cloud cover of 72%. Ocean temperatures affect climate and wind patterns that affect life on land. One of the most dramatic forms of weather occurs over the oceans: tropical cyclones (also called "typhoons" and "hurricanes" depending upon where the system forms).

As the world's ocean is the principal component of Earth's hydrosphere, it is integral to life on Earth, forms part of the carbon cycle and water cycle, and – as a huge heat reservoir – influences climate and weather patterns.

Waves and swell

The motions of the ocean surface, known as undulations or wind waves, are the partial and alternate rising and falling of the ocean surface. The series of mechanical waves that propagate along the interface between water and air is called swell – a term used in sailing, surfing and navigation. These motions profoundly affect ships on the surface of the ocean and the well-being of people on those ships who might suffer from sea sickness.

Wind blowing over the surface of a body of water forms waves that are perpendicular to the direction of the wind. The friction between air and water caused by a gentle breeze on a pond causes ripples to form. A stronger gust blowing over the ocean causes larger waves as the moving air pushes against the raised ridges of water. The waves reach their maximum height when the rate at which they are travelling nearly matches the speed of the wind. In open water, when the wind blows continuously as happens in the Southern Hemisphere in the Roaring Forties, long, organized masses of water called swell roll across the ocean. If the wind dies down, the wave formation is reduced, but already-formed waves continue to travel in their original direction until they meet land. The size of the waves depends on the fetch, the distance that the wind has blown over the water and the strength and duration of that wind. When waves meet others coming from different directions, interference between the two can produce broken, irregular seas.

Constructive interference can lead to the formation of unusually high rogue waves. Most waves are less than 3 m (10 ft) high and it is not unusual for strong storms to double or triple that height. Rogue waves, however, have been documented at heights above 25 meters (82 ft).

The top of a wave is known as the crest, the lowest point between waves is the trough and the distance between the crests is the wavelength. The wave is pushed across the surface of the ocean by the wind, but this represents a transfer of energy and not horizontal movement of water. As waves approach land and move into shallow water, they change their behavior. If approaching at an angle, waves may bend (refraction) or wrap around rocks and headlands (diffraction). When the wave reaches a point where its deepest oscillations of the water contact the ocean floor, they begin to slow down. This pulls the crests closer together and increases the waves' height, which is called wave shoaling. When the ratio of the wave's height to the water depth increases above a certain limit, it "breaks", toppling over in a mass of foaming water. This rushes in a sheet up the beach before retreating into the ocean under the influence of gravity.

Earthquakes, volcanic eruptions or other major geological disturbances can set off waves that can lead to tsunamis in coastal areas which can be very dangerous.

Sea level and surface

The ocean's surface is an important reference point for oceanography and geography, particularly as mean sea level. The ocean surface has globally little, but measurable topography, depending on the ocean's volumes.

The ocean surface is a crucial interface for oceanic and atmospheric processes. Allowing interchange of particles, enriching the air and water, as well as grounds by some particles becoming sediments. This interchange has fertilized life in the ocean, on land and air. All these processes and components together make up ocean surface ecosystems.

Tides

High tide and low tide in the Bay of Fundy, Canada

Tides are the regular rise and fall in water level experienced by oceans, primarily driven by the Moon's gravitational tidal forces upon the Earth. Tidal forces affect all matter on Earth, but only fluids like the ocean demonstrate the effects on human timescales. (For example, tidal forces acting on rock may produce tidal locking between two planetary bodies.) Though primarily driven by the Moon's gravity, oceanic tides are also substantially modulated by the Sun's tidal forces, by the rotation of the Earth, and by the shape of the rocky continents blocking oceanic water flow. (Tidal forces vary more with distance than the "base" force of gravity: the Moon's tidal forces on Earth are more than double the Sun's, despite the latter's much stronger gravitational force on Earth. Earth's tidal forces upon the Moon are 20x stronger than the Moon's tidal forces on the Earth.)

The primary effect of lunar tidal forces is to bulge Earth matter towards the near and far sides of the Earth, relative to the moon. The "perpendicular" sides, from which the Moon appears in line with the local horizon, experience "tidal troughs". Since it takes nearly 25 hours for the Earth to rotate under the Moon (accounting for the Moon's 28 day orbit around Earth), tides thus cycle over a course of 12.5 hours. However, the rocky continents pose obstacles for the tidal bulges, so the timing of tidal maxima may not actually align with the Moon in most localities on Earth, as the oceans are forced to "dodge" the continents. Timing and magnitude of tides vary widely across the Earth as a result of the continents. Thus, knowing the Moon's position does not allow a local to predict tide timings, instead requiring precomputed tide tables which account for the continents and the Sun, among others.

During each tidal cycle, at any given place the tidal waters rise to maximum height, high tide, before ebbing away again to the minimum level, low tide. As the water recedes, it gradually reveals the foreshore, also known as the intertidal zone. The difference in height between the high tide and low tide is known as the tidal range or tidal amplitude. When the sun and moon are aligned (full moon or new moon), the combined effect results in the higher "spring tides", while the sun and moon misaligning (half moons) result in lesser tidal ranges.

In the open ocean tidal ranges are less than 1 meter, but in coastal areas these tidal ranges increase to more than 10 meters in some areas. Some of the largest tidal ranges in the world occur in the Bay of Fundy and Ungava Bay in Canada, reaching up to 16 meters. Other locations with record high tidal ranges include the Bristol Channel between England and Wales, Cook Inlet in Alaska, and the Río Gallegos in Argentina.

Tides are not to be confused with storm surges, which can occur when high winds pile water up against the coast in a shallow area and this, coupled with a low pressure system, can raise the surface of the ocean dramatically above a typical high tide.

Depth

The average depth of the oceans is about 4 km. More precisely the average depth is 3,688 meters (12,100 ft). Nearly half of the world's marine waters are over 3,000 meters (9,800 ft) deep. "Deep ocean," which is anything below 200 meters (660 ft), covers about 66% of Earth's surface. This figure does not include seas not connected to the World Ocean, such as the Caspian Sea.

The deepest region of the ocean is at the Mariana Trench, located in the Pacific Ocean near the Northern Mariana Islands. The maximum depth has been estimated to be 10,971 meters (35,994 ft). The British naval vessel Challenger II surveyed the trench in 1951 and named the deepest part of the trench the "Challenger Deep". In 1960, the Trieste successfully reached the bottom of the trench, manned by a crew of two men.

Oceanic zones

Drawing showing divisions according to depth and distance from shore
The major oceanic zones, based on depth and biophysical conditions

Oceanographers classify the ocean into vertical and horizontal zones based on physical and biological conditions. The pelagic zone consists of the water column of the open ocean, and can be divided into further regions categorized by light abundance and by depth.

Grouped by light penetration

The ocean zones can be grouped by light penetration into (from top to bottom): the photic zone, the mesopelagic zone and the aphotic deep ocean zone:

  • The photic zone is defined to be "the depth at which light intensity is only 1% of the surface value". This is usually up to a depth of approximately 200 m in the open ocean. It is the region where photosynthesis can occur and is, therefore, the most biodiverse. Photosynthesis by plants and microscopic algae (free floating phytoplankton) allows the creation of organic matter from chemical precursors including water and carbon dioxide. This organic matter can then be consumed by other creatures. Much of the organic matter created in the photic zone is consumed there but some sinks into deeper waters. The pelagic part of the photic zone is known as the epipelagic. The actual optics of light reflecting and penetrating at the ocean surface are complex.
  • Below the photic zone is the mesopelagic or twilight zone where there is a very small amount of light. The basic concept is that with that little light photosynthesis is unlikely to achieve any net growth over respiration.
  • Below that is the aphotic deep ocean to which no surface sunlight at all penetrates. Life that exists deeper than the photic zone must either rely on material sinking from above (see marine snow) or find another energy source. Hydrothermal vents are a source of energy in what is known as the aphotic zone (depths exceeding 200 m).

Grouped by depth and temperature

The pelagic part of the aphotic zone can be further divided into vertical regions according to depth and temperature:

  • The mesopelagic is the uppermost region. Its lowermost boundary is at a thermocline of 12 °C (54 °F) which generally lies at 700–1,000 meters (2,300–3,300 ft) in the tropics. Next is the bathypelagic lying between 10 and 4 °C (50 and 39 °F), typically between 700–1,000 meters (2,300–3,300 ft) and 2,000–4,000 meters (6,600–13,100 ft). Lying along the top of the abyssal plain is the abyssopelagic, whose lower boundary lies at about 6,000 meters (20,000 ft). The last and deepest zone is the hadalpelagic which includes the oceanic trench and lies between 6,000–11,000 meters (20,000–36,000 ft).
  • The benthic zones are aphotic and correspond to the three deepest zones of the deep-sea. The bathyal zone covers the continental slope down to about 4,000 meters (13,000 ft). The abyssal zone covers the abyssal plains between 4,000 and 6,000 m. Lastly, the hadal zone corresponds to the hadalpelagic zone, which is found in oceanic trenches.

Distinct boundaries between ocean surface waters and deep waters can be drawn based on the properties of the water. These boundaries are called thermoclines (temperature), haloclines (salinity), chemoclines (chemistry), and pycnoclines (density). If a zone undergoes dramatic changes in temperature with depth, it contains a thermocline, a distinct boundary between warmer surface water and colder deep water. In tropical regions, the thermocline is typically deeper compared to higher latitudes. Unlike polar waters, where solar energy input is limited, temperature stratification is less pronounced, and a distinct thermocline is often absent. This is due to the fact that surface waters in polar latitudes are nearly as cold as deeper waters. Below the thermocline, water everywhere in the ocean is very cold, ranging from −1 °C to 3 °C. Because this deep and cold layer contains the bulk of ocean water, the average temperature of the world ocean is 3.9 °C. If a zone undergoes dramatic changes in salinity with depth, it contains a halocline. If a zone undergoes a strong, vertical chemistry gradient with depth, it contains a chemocline. Temperature and salinity control ocean water density. Colder and saltier water is denser, and this density plays a crucial role in regulating the global water circulation within the ocean. The halocline often coincides with the thermocline, and the combination produces a pronounced pycnocline, a boundary between less dense surface water and dense deep water.

Grouped by distance from land

The pelagic zone can be further subdivided into two sub regions based on distance from land: the neritic zone and the oceanic zone. The neritic zone covers the water directly above the continental shelves, including coastal waters. On the other hand, the oceanic zone includes all the completely open water.

The littoral zone covers the region between low and high tide and represents the transitional area between marine and terrestrial conditions. It is also known as the intertidal zone because it is the area where tide level affects the conditions of the region.

Volumes

The combined volume of water in all the oceans is roughly 1.335 billion cubic kilometers (1.335 sextillion liters, 320.3 million cubic miles).

It has been estimated that there are 1.386 billion cubic kilometres (333 million cubic miles) of water on Earth. This includes water in gaseous, liquid and frozen forms as soil moisture, groundwater and permafrost in the Earth's crust (to a depth of 2 km); oceans and seas, lakes, rivers and streams, wetlands, glaciers, ice and snow cover on Earth's surface; vapour, droplets and crystals in the air; and part of living plants, animals and unicellular organisms of the biosphere. Saltwater accounts for 97.5% of this amount, whereas fresh water accounts for only 2.5%. Of this fresh water, 68.9% is in the form of ice and permanent snow cover in the Arctic, the Antarctic and mountain glaciers; 30.8% is in the form of fresh groundwater; and only 0.3% of the fresh water on Earth is in easily accessible lakes, reservoirs and river systems.

The total mass of Earth's hydrosphere is about 1.4 × 1018 tonnes, which is about 0.023% of Earth's total mass. At any given time, about 2 × 1013 tonnes of this is in the form of water vapor in the Earth's atmosphere (for practical purposes, 1 cubic metre of water weighs 1 tonne). Approximately 71% of Earth's surface, an area of some 361 million square kilometres (139.5 million square miles), is covered by ocean. The average salinity of Earth's oceans is about 35 grams of salt per kilogram of sea water (3.5%).

Temperature

Ocean temperatures depends on the amount of solar radiation falling on its surface. In the tropics, with the Sun nearly overhead, the temperature of the surface layers can rise to over 30 °C (86 °F) while near the poles the temperature in equilibrium with the sea ice is about −2 °C (28 °F). There is a continuous circulation of water in the oceans. Warm surface currents cool as they move away from the tropics, and the water becomes denser and sinks. The cold water moves back towards the equator as a deep sea current, driven by changes in the temperature and density of the water, before eventually welling up again towards the surface. Deep ocean water has a temperature between −2 °C (28 °F) and 5 °C (41 °F) in all parts of the globe.

The temperature gradient over the water depth is related to the way the surface water mixes with deeper water or does not mix (a lack of mixing is called ocean stratification). This depends on the temperature: in the tropics the warm surface layer of about 100 m is quite stable and does not mix much with deeper water, while near the poles winter cooling and storms makes the surface layer denser and it mixes to great depth and then stratifies again in summer. The photic depth is typically about 100 m (but varies) and is related to this heated surface layer.

It is clear that the ocean is warming as a result of climate change, and this rate of warming is increasing. The global ocean was the warmest it had ever been recorded by humans in 2022. This is determined by the ocean heat content, which exceeded the previous 2021 maximum in 2022. The steady rise in ocean temperatures is an unavoidable result of the Earth's energy imbalance, which is primarily caused by rising levels of greenhouse gases. Between pre-industrial times and the 2011–2020 decade, the ocean's surface has heated between 0.68 and 1.01 °C.

Temperature and salinity by region

The temperature and salinity of ocean waters vary significantly across different regions. This is due to differences in the local water balance (precipitation vs. evaporation) and the "sea to air" temperature gradients. These characteristics can vary widely from one ocean region to another. The table below provides an illustration of the sort of values usually encountered.

General characteristics of ocean surface waters by region
Characteristic Polar regions Temperate regions Tropical regions
Precipitation vs. evaporation Precip > Evap Precip > Evap Evap > Precip
Sea surface temperature in winter −2 °C 5 to 20 °C 20 to 25 °C
Average salinity 28‰ to 32‰ 35‰ 35‰ to 37‰
Annual variation of air temperature ≤ 40 °C 10 °C < 5 °C
Annual variation of water temperature < 5 °C 10 °C < 5 °C

Sea ice

Seawater with a typical salinity of 35‰ has a freezing point of about −1.8 °C (28.8 °F). Because sea ice is less dense than water, it floats on the ocean's surface (as does fresh water ice, which has an even lower density). Sea ice covers about 7% of the Earth's surface and about 12% of the world's oceans. Sea ice usually starts to freeze at the very surface, initially as a very thin ice film. As further freezing takes place, this ice film thickens and can form ice sheets. The ice formed incorporates some sea salt, but much less than the seawater it forms from. As the ice forms with low salinity this results in saltier residual seawater. This in turn increases density and promotes vertical sinking of the water.

Ocean currents and global climate

Ocean surface currents
World map with colored, directed lines showing how water moves through the oceans. Cold deep water rises and warms in the central Pacific and in the Indian, whereas warm water sinks and cools near Greenland in the North Atlantic and near Antarctica in the South Atlantic.
A map of the global thermohaline circulation; blue represents deep-water currents, whereas red represents surface currents.

Types of ocean currents

An ocean current is a continuous, directed flow of seawater caused by several forces acting upon the water. These include wind, the Coriolis effect, temperature and salinity differences. Ocean currents are primarily horizontal water movements that have different origins such as tides for tidal currents, or wind and waves for surface currents.

Tidal currents are in phase with the tide, hence are quasiperiodic; associated with the influence of the moon and sun pull on the ocean water. Tidal currents may form various complex patterns in certain places, most notably around headlands. Non-periodic or non-tidal currents are created by the action of winds and changes in density of water. In littoral zones, breaking waves are so intense and the depth measurement so low, that maritime currents reach often 1 to 2 knots.

The wind and waves create surface currents (designated as "drift currents"). These currents can decompose in one quasi-permanent current (which varies within the hourly scale) and one movement of Stokes drift under the effect of rapid waves movement (which vary on timescales of a couple of seconds). The quasi-permanent current is accelerated by the breaking of waves, and in a lesser governing effect, by the friction of the wind on the surface.

This acceleration of the current takes place in the direction of waves and dominant wind. Accordingly, when the ocean depth increases, the rotation of the earth changes the direction of currents in proportion with the increase of depth, while friction lowers their speed. At a certain ocean depth, the current changes direction and is seen inverted in the opposite direction with current speed becoming null: known as the Ekman spiral. The influence of these currents is mainly experienced at the mixed layer of the ocean surface, often from 400 to 800 meters of maximum depth. These currents can considerably change and are dependent on the yearly seasons. If the mixed layer is less thick (10 to 20 meters), the quasi-permanent current at the surface can adopt quite a different direction in relation to the direction of the wind. In this case, the water column becomes virtually homogeneous above the thermocline.

The wind blowing on the ocean surface will set the water in motion. The global pattern of winds (also called atmospheric circulation) creates a global pattern of ocean currents. These are driven not only by the wind but also by the effect of the circulation of the earth (coriolis force). These major ocean currents include the Gulf Stream, Kuroshio current, Agulhas current and Antarctic Circumpolar Current. The Antarctic Circumpolar Current encircles Antarctica and influences the area's climate, connecting currents in several oceans.

Relationship of currents and climate

Map of the Gulf Stream, a major ocean current that transports heat from the equator to northern latitudes and moderates the climate of Europe

Collectively, currents move enormous amounts of water and heat around the globe influencing climate. These wind driven currents are largely confined to the top hundreds of meters of the ocean. At greater depth, the thermohaline circulation drives water motion. For example, the Atlantic meridional overturning circulation (AMOC) is driven by the cooling of surface waters in the polar latitudes in the north and south, creating dense water which sinks to the bottom of the ocean. This cold and dense water moves slowly away from the poles which is why the waters in the deepest layers of the world ocean are so cold. This deep ocean water circulation is relatively slow and water at the bottom of the ocean can be isolated from the ocean surface and atmosphere for hundreds or even a few thousand years. This circulation has important impacts on the global climate system and on the uptake and redistribution of pollutants and gases such as carbon dioxide, for example by moving contaminants from the surface into the deep ocean.

Ocean currents greatly affect Earth's climate by transferring heat from the tropics to the polar regions. This affects air temperature and precipitation in coastal regions and further inland. Surface heat and freshwater fluxes create global density gradients, which drive the thermohaline circulation that is a part of large-scale ocean circulation. It plays an important role in supplying heat to the polar regions, and thus in sea ice regulation.

Oceans moderate the climate of locations where prevailing winds blow in from the ocean. At similar latitudes, a place on Earth with more influence from the ocean will have a more moderate climate than a place with more influence from land. For example, the cities San Francisco (37.8 N) and New York (40.7 N) have different climates because San Francisco has more influence from the ocean. San Francisco, on the west coast of North America, gets winds from the west over the Pacific Ocean. New York, on the east coast of North America gets winds from the west over land, so New York has colder winters and hotter, earlier summers than San Francisco. Warmer ocean currents yield warmer climates in the long term, even at high latitudes. At similar latitudes, a place influenced by warm ocean currents will have a warmer climate overall than a place influenced by cold ocean currents.

Changes in the thermohaline circulation are thought to have significant impacts on Earth's energy budget. Because the thermohaline circulation determines the rate at which deep waters reach the surface, it may also significantly influence atmospheric carbon dioxide concentrations. Modern observations, climate simulations and paleoclimate reconstructions suggest that the Atlantic Meridional Overturning Circulation (AMOC) has weakened since the preindustrial era. The latest climate change projections in 2021 suggest that the AMOC is likely to weaken further over the 21st century. Such a weakening could cause large changes to global climate, with the North Atlantic particularly vulnerable.

Chemical properties

Salinity

Annual mean sea surface salinity in practical salinity units (psu) from the World Ocean Atlas

Salinity is a measure of the total amounts of dissolved salts in seawater. It was originally measured via measurement of the amount of chloride in seawater and hence termed chlorinity. It is now standard practice to gauge it by measuring electrical conductivity of the water sample. Salinity can be calculated using the chlorinity, which is a measure of the total mass of halogen ions (includes fluorine, chlorine, bromine, and iodine) in seawater. According to an international agreement, the following formula is used to determine salinity:

Salinity (in ‰) = 1.80655 × Chlorinity (in ‰)

The average ocean water chlorinity is about 19.2‰, and, thus, the average salinity is around 34.7‰.

Salinity has a major influence on the density of seawater. A zone of rapid salinity increase with depth is called a halocline. As seawater's salt content increases, so does the temperature at which its maximum density occurs. Salinity affects both the freezing and boiling points of water, with the boiling point increasing with salinity. At atmospheric pressure, normal seawater freezes at a temperature of about −2 °C.

Salinity is higher in Earth's oceans where there is more evaporation and lower where there is more precipitation. If precipitation exceeds evaporation, as is the case in polar and some temperate regions, salinity will be lower. Salinity will be higher if evaporation exceeds precipitation, as is sometimes the case in tropical regions. For example, evaporation is greater than precipitation in the Mediterranean Sea, which has an average salinity of 38‰, more saline than the global average of 34.7‰. Thus, oceanic waters in polar regions have lower salinity content than oceanic waters in tropical regions. However, when sea ice forms at high latitudes, salt is excluded from the ice as it forms, which can increase the salinity in the residual seawater in polar regions such as the Arctic Ocean.

Due to the effects of climate change on oceans, observations of sea surface salinity between 1950 and 2019 indicate that regions of high salinity and evaporation have become more saline while regions of low salinity and more precipitation have become fresher. It is very likely that the Pacific and Antarctic/Southern Oceans have freshened while the Atlantic has become more saline.

Dissolved gases

Sea surface oxygen concentration in moles per cubic meter from the World Ocean Atlas

Ocean water contains large quantities of dissolved gases, including oxygen, carbon dioxide and nitrogen. These dissolve into ocean water via gas exchange at the ocean surface, with the solubility of these gases depending on the temperature and salinity of the water. The four most abundant gases in earth's atmosphere and oceans are nitrogen, oxygen, argon, and carbon dioxide. In the ocean by volume, the most abundant gases dissolved in seawater are carbon dioxide (including bicarbonate and carbonate ions, 14 mL/L on average), nitrogen (9 mL/L), and oxygen (5 mL/L) at equilibrium at 24 °C (75 °F). All gases are more soluble – more easily dissolved – in colder water than in warmer water. For example, when salinity and pressure are held constant, oxygen concentration in water almost doubles when the temperature drops from that of a warm summer day 30 °C (86 °F) to freezing 0 °C (32 °F). Similarly, carbon dioxide and nitrogen gases are more soluble at colder temperatures, and their solubility changes with temperature at different rates.

Oxygen, photosynthesis and carbon cycling

Diagram of the ocean carbon cycle showing the relative size of stocks (storage) and fluxes

Photosynthesis in the surface ocean releases oxygen and consumes carbon dioxide. Phytoplankton, a type of microscopic free-floating algae, controls this process. After the plants have grown, oxygen is consumed and carbon dioxide released, as a result of bacterial decomposition of the organic matter created by photosynthesis in the ocean. The sinking and bacterial decomposition of some organic matter in deep ocean water, at depths where the waters are out of contact with the atmosphere, leads to a reduction in oxygen concentrations and increase in carbon dioxide, carbonate and bicarbonate. This cycling of carbon dioxide in oceans is an important part of the global carbon cycle.

The oceans represent a major carbon sink for carbon dioxide taken up from the atmosphere by photosynthesis and by dissolution (see also carbon sequestration). There is also increased attention on carbon dioxide uptake in coastal marine habitats such as mangroves and saltmarshes. This process is often referred to as "Blue carbon". The focus is on these ecosystems because they are strong carbon sinks as well as ecologically important habitats under threat from human activities and environmental degradation.

As deep ocean water circulates throughout the globe, it contains gradually less oxygen and gradually more carbon dioxide with more time away from the air at the surface. This gradual decrease in oxygen concentration happens as sinking organic matter continuously gets decomposed during the time the water is out of contact with the atmosphere. Most of the deep waters of the ocean still contain relatively high concentrations of oxygen sufficient for most animals to survive. However, some ocean areas have very low oxygen due to long periods of isolation of the water from the atmosphere. These oxygen deficient areas, called oxygen minimum zones or hypoxic waters, will generally be made worse by the effects of climate change on oceans.

pH

The pH value at the surface of oceans (global mean surface pH) is currently approximately in the range of 8.05 to 8.08. This makes it slightly alkaline. The pH value at the surface used to be about 8.2 during the past 300 million years. However, between 1950 and 2020, the average pH of the ocean surface fell from approximately 8.15 to 8.05. Carbon dioxide emissions from human activities are the primary cause of this process called ocean acidification, with atmospheric carbon dioxide (CO2) levels exceeding 410 ppm (in 2020). CO2 from the atmosphere is absorbed by the oceans. This produces carbonic acid (H2CO3) which dissociates into a bicarbonate ion (HCO3) and a hydrogen ion (H+). The presence of free hydrogen ions (H+) lowers the pH of the ocean.

There is a natural gradient of pH in the ocean which is related to the breakdown of organic matter in deep water which slowly lowers the pH with depth: The pH value of seawater is naturally as low as 7.8 in deep ocean waters as a result of degradation of organic matter there. It can be as high as 8.4 in surface waters in areas of high biological productivity.

The definition of global mean surface pH refers to the top layer of the water in the ocean, up to around 20 or 100 m depth. In comparison, the average depth of the ocean is about 4 km. The pH value at greater depths (more than 100 m) has not yet been affected by ocean acidification in the same way. There is a large body of deeper water where the natural gradient of pH from 8.2 to about 7.8 still exists and it will take a very long time to acidify these waters, and equally as long to recover from that acidification. But as the top layer of the ocean (the photic zone) is crucial for its marine productivity, any changes to the pH value and temperature of the top layer can have many knock-on effects, for example on marine life and ocean currents (see also effects of climate change on oceans).

The key issue in terms of the penetration of ocean acidification is the way the surface water mixes with deeper water or does not mix (a lack of mixing is called ocean stratification). This in turn depends on the water temperature and hence is different between the tropics and the polar regions (see ocean#Temperature).

The chemical properties of seawater complicate pH measurement, and several distinct pH scales exist in chemical oceanography. There is no universally accepted reference pH-scale for seawater and the difference between measurements based on multiple reference scales may be up to 0.14 units.

Alkalinity

Alkalinity is the balance of base (proton acceptors) and acids (proton donors) in seawater, or indeed any natural waters. The alkalinity acts as a chemical buffer, regulating the pH of seawater. While there are many ions in seawater that can contribute to the alkalinity, many of these are at very low concentrations. This means that the carbonate, bicarbonate and borate ions are the only significant contributors to seawater alkalinity in the open ocean with well oxygenated waters. The first two of these ions contribute more than 95% of this alkalinity.

The chemical equation for alkalinity in seawater is:

AT = [HCO3-] + 2[CO32-] + [B(OH)4-]

The growth of phytoplankton in surface ocean waters leads to the conversion of some bicarbonate and carbonate ions into organic matter. Some of this organic matter sinks into the deep ocean where it is broken down back into carbonate and bicarbonate. This process is related to ocean productivity or marine primary production. Thus alkalinity tends to increase with depth and also along the global thermohaline circulation from the Atlantic to the Pacific and Indian Ocean, although these increases are small. The concentrations vary overall by only a few percent.

The absorption of CO2 from the atmosphere does not affect the ocean's alkalinity. It does lead to a reduction in pH value though (termed ocean acidification).

Residence times of chemical elements and ions

Residence time of elements in the ocean depends on supply by processes like rock weathering and rivers vs. removal by processes like evaporation and sedimentation.

The ocean waters contain many chemical elements as dissolved ions. Elements dissolved in ocean waters have a wide range of concentrations. Some elements have very high concentrations of several grams per liter, such as sodium and chloride, together making up the majority of ocean salts. Other elements, such as iron, are present at tiny concentrations of just a few nanograms (10−9 grams) per liter.

The concentration of any element depends on its rate of supply to the ocean and its rate of removal. Elements enter the ocean from rivers, the atmosphere and hydrothermal vents. Elements are removed from ocean water by sinking and becoming buried in sediments or evaporating to the atmosphere in the case of water and some gases. By estimating the residence time of an element, oceanographers examine the balance of input and removal. Residence time is the average time the element would spend dissolved in the ocean before it is removed. Heavily abundant elements in ocean water such as sodium, have high input rates. This reflects high abundance in rocks and rapid rock weathering, paired with very slow removal from the ocean due to sodium ions being comparatively unreactive and highly soluble. In contrast, other elements such as iron and aluminium are abundant in rocks but very insoluble, meaning that inputs to the ocean are low and removal is rapid. These cycles represent part of the major global cycle of elements that has gone on since the Earth first formed. The residence times of the very abundant elements in the ocean are estimated to be millions of years, while for highly reactive and insoluble elements, residence times are only hundreds of years.

Residence times of elements and ions
Chemical element or ion Residence time (years)
Chloride (Cl) 100,000,000
Sodium (Na+) 68,000,000
Magnesium (Mg2+) 13,000,000
Potassium (K+) 12,000,000
Sulfate (SO42−) 11,000,000
Calcium (Ca2+) 1,000,000
Carbonate (CO32−) 110,000
Silicon (Si) 20,000
Water (H2O) 4,100
Manganese (Mn) 1,300
Aluminum (Al) 600
Iron (Fe) 200

Nutrients

Map showing 5 circles. The first is between western Australia and eastern Africa. The second is between eastern Australia and western South America. The third is between Japan and western North America. Of the two in the Atlantic, one is in hemisphere.
North Atlantic
gyre
North Atlantic
gyre
North Atlantic
gyre
Indian
Ocean
gyre
North
Pacific
gyre
South
Pacific
gyre
South Atlantic
        gyre
Ocean gyres rotate clockwise in the north and counterclockwise in the south.

A few elements such as nitrogen, phosphorus, iron, and potassium essential for life, are major components of biological material, and are commonly known as "nutrients". Nitrate and phosphate have ocean residence times of 10,000 and 69,000 years, respectively, while potassium is a much more abundant ion in the ocean with a residence time of 12 million years. The biological cycling of these elements means that this represents a continuous removal process from the ocean's water column as degrading organic material sinks to the ocean floor as sediment.

Phosphate from intensive agriculture and untreated sewage is transported via runoff to rivers and coastal zones to the ocean where it is metabolized. Eventually, it sinks to the ocean floor and is no longer available to humans as a commercial resource. Production of rock phosphate, an essential ingredient in inorganic fertilizer, is a slow geological process that occurs in some of the world's ocean sediments, rendering mineable sedimentary apatite (phosphate) a non-renewable resource (see peak phosphorus). This continual net deposition loss of non-renewable phosphate from human activities, may become a resource issue for fertilizer production and food security in future.

Marine life

Some representative ocean animals (not drawn to scale) within their approximate depth-defined ecological habitats. Marine microorganisms also exist on the surfaces and within the tissues and organs of the diverse life inhabiting the ocean, across all ocean habitats. The animals rooted to or living on the ocean floor are not pelagic but are benthic animals.

Life within the ocean evolved 3 billion years prior to life on land. Both the depth and the distance from shore strongly influence the biodiversity of the plants and animals present in each region. The diversity of life in the ocean is immense, including:

General characteristics of a large marine ecosystem (Gulf of Alaska)
Killer whales (orcas) are highly visible marine apex predators that hunt many large species. But most biological activity in the ocean takes place with microscopic marine organisms that cannot be seen individually with the naked eye, such as marine bacteria and phytoplankton.

Marine life, sea life or ocean life is the collective ecological communities that encompass all aquatic animals, plants, algae, fungi, protists, single-celled microorganisms and associated viruses living in the saline water of marine habitats, either the sea water of marginal seas and oceans, or the brackish water of coastal wetlands, lagoons, estuaries and inland seas. As of 2023, more than 242,000 marine species have been documented, and perhaps two million marine species are yet to be documented. An average of 2,332 new species per year are being described. Marine life is studied scientifically in both marine biology and in biological oceanography.

Today, marine species range in size from the microscopic phytoplankton, which can be as small as 0.02–micrometres; to huge cetaceans like the blue whale, which can reach 33 m (108 ft) in length.Marine microorganisms have been variously estimated as constituting about 70% or about 90% of the total marine biomass. Marine primary producers, mainly cyanobacteria and chloroplastic algae, produce oxygen and sequester carbon via photosynthesis, which generate enormous biomass and significantly influence the atmospheric chemistry. Migratory species, such as oceanodromous and anadromous fish, also create biomass and biological energy transfer between different regions of Earth, with many serving as keystone species of various ecosystems. At a fundamental level, marine life affects the nature of the planet, and in part, shape and protect shorelines, and some marine organisms (e.g. corals) even help create new land via accumulated reef-building.
A marine habitat is a habitat that supports marine life. Marine life depends in some way on the saltwater that is in the sea (the term marine comes from the Latin mare, meaning sea or ocean). A habitat is an ecological or environmental area inhabited by one or more living species. The marine environment supports many kinds of these habitats.
Coral reefs form complex marine ecosystems with tremendous biodiversity.
Marine ecosystems are the largest of Earth's aquatic ecosystems and exist in waters that have a high salt content. These systems contrast with freshwater ecosystems, which have a lower salt content. Marine waters cover more than 70% of the surface of the Earth and account for more than 97% of Earth's water supply and 90% of habitable space on Earth. Seawater has an average salinity of 35 parts per thousand of water. Actual salinity varies among different marine ecosystems. Marine ecosystems can be divided into many zones depending upon water depth and shoreline features. The oceanic zone is the vast open part of the ocean where animals such as whales, sharks, and tuna live. The benthic zone consists of substrates below water where many invertebrates live. The intertidal zone is the area between high and low tides. Other near-shore (neritic) zones can include mudflats, seagrass meadows, mangroves, rocky intertidal systems, salt marshes, coral reefs, lagoons. In the deep water, hydrothermal vents may occur where chemosynthetic sulfur bacteria form the base of the food web.

Human uses of the oceans

Global map of all exclusive economic zones

The ocean has been linked to human activity throughout history. These activities serve a wide variety of purposes, including navigation and exploration, naval warfare, travel, shipping and trade, food production (e.g. fishing, whaling, seaweed farming, aquaculture), leisure (cruising, sailing, recreational boat fishing, scuba diving), power generation (see marine energy and offshore wind power), extractive industries (offshore drilling and deep sea mining), freshwater production via desalination.

Many of the world's goods are moved by ship between the world's seaports. Large quantities of goods are transported across the ocean, especially across the Atlantic and around the Pacific Rim. Many types of cargo including manufactured goods, are typically transported in standard sized, lockable containers that are loaded on purpose-built container ships at dedicated terminals. Containerization greatly boosted the efficiency and reduced the cost of shipping products by sea. This was a major factor in the rise of globalization and exponential increases in international trade in the mid-to-late 20th century.

Oceans are also the major supply source for the fishing industry. Some of the major harvests are shrimp, fish, crabs, and lobster. The biggest global commercial fishery is for anchovies, Alaska pollock and tuna. A report by FAO in 2020 stated that "in 2017, 34 percent of the fish stocks of the world's marine fisheries were classified as overfished". Fish and other fishery products from both wild fisheries and aquaculture are among the most widely consumed sources of protein and other essential nutrients. Data in 2017 showed that "fish consumption accounted for 17 percent of the global population's intake of animal proteins". To fulfill this need, coastal countries have exploited marine resources in their exclusive economic zone. Fishing vessels are increasingly venturing out to exploit stocks in international waters.

The ocean has a vast amount of energy carried by ocean waves, tides, salinity differences, and ocean temperature differences which can be harnessed to generate electricity. Forms of sustainable marine energy include tidal power, ocean thermal energy and wave power. Offshore wind power is captured by wind turbines placed out on the ocean; it has the advantage that wind speeds are higher than on land, though wind farms are more costly to construct offshore. There are large deposits of petroleum, as oil and natural gas, in rocks beneath the ocean floor. Offshore platforms and drilling rigs extract the oil or gas and store it for transport to land.

"Freedom of the seas" is a principle in international law dating from the seventeenth century. It stresses freedom to navigate the oceans and disapproves of war fought in international waters. Today, this concept is enshrined in the United Nations Convention on the Law of the Sea (UNCLOS).

The International Maritime Organization (IMO), which was ratified in 1958, is mainly responsible for maritime safety, liability and compensation, and has held some conventions on marine pollution related to shipping incidents. Ocean governance is the conduct of the policy, actions and affairs regarding the world's oceans.

Threats from human activities

Global cumulative human impact on the ocean

Human activities affect marine life and marine habitats through many negative influences, such as marine pollution (including marine debris and microplastics) overfishing, ocean acidification and other effects of climate change on oceans.

Climate change

There are many effects of climate change on oceans. One of the most important is an increase in ocean temperatures. More frequent marine heatwaves are linked to this. The rising temperature contributes to a rise in sea levels due to the expansion of water as it warms and the melting of ice sheets on land. Other effects on oceans include sea ice decline, reducing pH values and oxygen levels, as well as increased ocean stratification. All this can lead to changes of ocean currents, for example a weakening of the Atlantic meridional overturning circulation (AMOC). The main cause of these changes are the emissions of greenhouse gases from human activities, mainly burning of fossil fuels and deforestation. Carbon dioxide and methane are examples of greenhouse gases. The additional greenhouse effect leads to ocean warming because the ocean takes up most of the additional heat in the climate system. The ocean also absorbs some of the extra carbon dioxide that is in the atmosphere. This causes the pH value of the seawater to drop. Scientists estimate that the ocean absorbs about 25% of all human-caused CO2 emissions.

The various layers of the oceans have different temperatures. For example, the water is colder towards the bottom of the ocean. This temperature stratification will increase as the ocean surface warms due to rising air temperatures. Connected to this is a decline in mixing of the ocean layers, so that warm water stabilises near the surface. A reduction of cold, deep water circulation follows. The reduced vertical mixing makes it harder for the ocean to absorb heat. So a larger share of future warming goes into the atmosphere and land. One result is an increase in the amount of energy available for tropical cyclones and other storms. Another result is a decrease in nutrients for fish in the upper ocean layers. These changes also reduce the ocean's capacity to store carbon. At the same time, contrasts in salinity are increasing. Salty areas are becoming saltier and fresher areas less salty.

Warmer water cannot contain the same amount of oxygen as cold water. As a result, oxygen from the oceans moves to the atmosphere. Increased thermal stratification may reduce the supply of oxygen from surface waters to deeper waters. This lowers the water's oxygen content even more. The ocean has already lost oxygen throughout its water column. Oxygen minimum zones are increasing in size worldwide.

These changes harm marine ecosystems, and this can lead to biodiversity loss or changes in species distribution. This in turn can affect fishing and coastal tourism. For example, rising water temperatures are harming tropical coral reefs. The direct effect is coral bleaching on these reefs, because they are sensitive to even minor temperature changes. So a small increase in water temperature could have a significant impact in these environments. Another example is loss of sea ice habitats due to warming. This will have severe impacts on polar bears and other animals that rely on it. The effects of climate change on oceans put additional pressures on ocean ecosystems which are already under pressure by other impacts from human activities.

Marine pollution

Marine pollution occurs when substances used or spread by humans, such as industrial, agricultural and residential waste, particles, noise, excess carbon dioxide or invasive organisms enter the ocean and cause harmful effects there. The majority of this waste (80%) comes from land-based activity, although marine transportation significantly contributes as well. It is a combination of chemicals and trash, most of which comes from land sources and is washed or blown into the ocean. This pollution results in damage to the environment, to the health of all organisms, and to economic structures worldwide. Since most inputs come from land, either via the rivers, sewage or the atmosphere, it means that continental shelves are more vulnerable to pollution. Air pollution is also a contributing factor by carrying off iron, carbonic acid, nitrogen, silicon, sulfur, pesticides or dust particles into the ocean. The pollution often comes from nonpoint sources such as agricultural runoff, wind-blown debris, and dust. These nonpoint sources are largely due to runoff that enters the ocean through rivers, but wind-blown debris and dust can also play a role, as these pollutants can settle into waterways and oceans. Pathways of pollution include direct discharge, land runoff, ship pollution, bilge pollution, dredging (which can create dredge plumes), atmospheric pollution and, potentially, deep sea mining.

The types of marine pollution can be grouped as pollution from marine debris, plastic pollution, including microplastics, ocean acidification, nutrient pollution, toxins and underwater noise. Plastic pollution in the ocean is a type of marine pollution by plastics, ranging in size from large original material such as bottles and bags, down to microplastics formed from the fragmentation of plastic material. Marine debris is mainly discarded human rubbish which floats on, or is suspended in the ocean. Plastic pollution is harmful to marine life.

Another concern is the runoff of nutrients (nitrogen and phosphorus) from intensive agriculture, and the disposal of untreated or partially treated sewage to rivers and subsequently oceans. These nitrogen and phosphorus nutrients (which are also contained in fertilizers) stimulate phytoplankton and macroalgal growth, which can lead to harmful algal blooms (eutrophication) which can be harmful to humans as well as marine creatures. Excessive algal growth can also smother sensitive coral reefs and lead to loss of biodiversity and coral health. A second major concern is that the degradation of algal blooms can lead to consumption of oxygen in coastal waters, a situation that may worsen with climate change as warming reduces vertical mixing of the water column.

Many potentially toxic chemicals adhere to tiny particles which are then taken up by plankton and benthic animals, most of which are either deposit feeders or filter feeders. In this way, the toxins are concentrated upward within ocean food chains. When pesticides are incorporated into the marine ecosystem, they quickly become absorbed into marine food webs. Once in the food webs, these pesticides can cause mutations, as well as diseases, which can be harmful to humans as well as the entire food web. Toxic metals can also be introduced into marine food webs. These can cause a change to tissue matter, biochemistry, behavior, reproduction, and suppress growth in marine life. Also, many animal feeds have a high fish meal or fish hydrolysate content. In this way, marine toxins can be transferred to land animals, and appear later in meat and dairy products.

Overfishing

Overfishing is the removal of a species of fish (i.e. fishing) from a body of water at a rate greater than that the species can replenish its population naturally (i.e. the overexploitation of the fishery's existing fish stock), resulting in the species becoming increasingly underpopulated in that area. Overfishing can occur in water bodies of any sizes, such as ponds, wetlands, rivers, lakes or oceans, and can result in resource depletion, reduced biological growth rates and low biomass levels. Sustained overfishing can lead to critical depensation, where the fish population is no longer able to sustain itself. Some forms of overfishing, such as the overfishing of sharks, has led to the upset of entire marine ecosystems. Types of overfishing include growth overfishing, recruitment overfishing, and ecosystem overfishing. Overfishing not only causes negative impacts on biodiversity and ecosystem functioning, but also reduces fish production, which subsequently leads to negative social and economic consequences.

Protection

Ocean protection serves to safeguard the ecosystems in the oceans upon which humans depend. Protecting these ecosystems from threats is a major component of environmental protection. One of protective measures is the creation and enforcement of marine protected areas (MPAs). Marine protection may need to be considered within a national, regional and international context. Other measures include supply chain transparency requirement policies, policies to prevent marine pollution, ecosystem-assistance (e.g. for coral reefs) and support for sustainable seafood (e.g. sustainable fishing practices and types of aquaculture). There is also the protection of marine resources and components whose extraction or disturbance would cause substantial harm, engagement of broader publics and impacted communities, and the development of ocean clean-up projects (removal of marine plastic pollution). Examples of the latter include Clean Oceans International and The Ocean Cleanup.

In 2021, 43 expert scientists published the first scientific framework version that – via integration, review, clarifications and standardization – enables the evaluation of levels of protection of marine protected areas and can serve as a guide for any subsequent efforts to improve, plan and monitor marine protection quality and extents. Examples are the efforts towards the 30%-protection-goal of the "Global Deal For Nature" and the UN's Sustainable Development Goal 14 ("life below water").

In March 2023 a High Seas Treaty was signed. It is legally binding. The main achievement is the new possibility to create marine protected areas in international waters. By doing so the agreement now makes it possible to protect 30% of the oceans by 2030 (part of the 30 by 30 target). The treaty has articles regarding the principle "polluter-pays", and different impacts of human activities including areas beyond the national jurisdiction of the countries making those activities. The agreement was adopted by the 193 United Nations Member States.

Ocean acidification in the Arctic Ocean

Arctic drift ice, with a popular arctic organism, the polar bear

The Arctic Ocean covers an area of 14,056,000 square kilometers, and supports a diverse and important socioeconomic food web of organisms, despite its average water temperature being 32 degrees Fahrenheit. Over the last three decades, the Arctic Ocean has experienced drastic changes due to climate change. One of the changes is in the acidity levels of the ocean, which have been consistently increasing at twice the rate of the Pacific and Atlantic oceans. Arctic Ocean acidification is a result of feedback from climate system mechanisms, and is having negative impacts on Arctic Ocean ecosystems and the organisms that live within them.

Process

Ocean acidification is caused by the equilibration of the atmosphere with the ocean, a process that occurs worldwide. Carbon dioxide in the atmosphere equilibrates and dissolves into the ocean. During this reaction, carbon dioxide reacts with water to form carbonic acid. The carbonic acid then dissociates into bicarbonate ions and hydrogen ions. This reaction causes the pH of the water to lower, effectively acidifying it. Ocean acidification is occurring in every ocean across the world. Since the beginning of the Industrial Revolution, the World's oceans have absorbed approximately 525 billion tons of carbon dioxide. During this time, world ocean pH has collectively decreased from 8.2 to 8.1, with climatic modeling predicting a further decrease of pH by 0.3 units by 2100. However, the Arctic Ocean has been affected more due to the cold water temperatures and increased solubility of gases as water temperature decreases. The cold Arctic water is able to absorb higher amounts of carbon dioxide compared to the warmer Pacific and Atlantic Oceans.

The chemical changes caused by the acidification of the Arctic Ocean are having negative ecological and socioeconomic repercussions. With the changes in the chemistry of their environment, arctic organisms are challenged with new stressors. These stressors can have damaging effects on these organisms, with some being affected more than others. Calcifying organisms specifically appear to be the most impacted by this changing water composition, as they rely on carbonate availability to survive. Dissolved carbonate concentrations decrease with increasing carbon dioxide and lowered pH in the water.

Ecological food webs are also altered by the acidification. Acidification lowers the ability of many fish to grow, which not only impacts food webs but humans that rely on these fisheries as well. Economic effects are resulting from shifting food webs that decrease popular fish populations. These fish populations provide jobs to people who work in the fisheries industry. As is apparent, ocean acidification lacks any positive benefits, and as a result has been placed high on a priority list within the United States and other organizations such as the Scientific Committee on Oceanic Research, UNESCO's Intergovernmental Oceanographic Commission, the Ocean Carbon and Biogeochemistry Program, the Integrated Marine Biogeochemistry and Ecosystem Research Project, and the Consortium for Ocean Leadership.

Causes

Annual Arctic Sea Ice Minimum

Decreased sea ice

Arctic sea ice has experienced an extreme reduction over the past few decades, with the minimum area of sea ice being 4.32 million km2 in 2019, a sharp 38% decrease from 1980, when the minimum area was 7.01 million km2. Sea ice plays an important role in the health of the Arctic Ocean, and its decline has had detrimental effects on Arctic Ocean chemistry. All oceans equilibrate with the atmosphere by pulling carbon dioxide out of the atmosphere and into the ocean, which lowers the pH of the water. Sea ice limits the air-sea gas exchange with carbon dioxide by protecting the water from being completely exposed to the atmosphere. Low carbon dioxide levels are important to the Arctic Ocean due to intense cooling, fresh water runoff, and photosynthesis from marine organisms. Reductions in sea ice have allowed more carbon dioxide to equilibrate with the arctic water, resulting in increased acidification. The decrease in sea ice has also allowed more Pacific Ocean water to flow into in the Arctic Ocean during the winter, called Pacific winter water. Pacific Ocean water is high in carbon dioxide, and with decreased amounts of sea ice, more Pacific Ocean water has been able to enter the Arctic Ocean, carrying carbon dioxide with it. This Pacific winter water has further acidified the Arctic Ocean, as well as increased the depth of acidified water.

Melting methane hydrates

Climate change is causing destabilization of multiple climate systems within the Arctic Ocean. One system that climate change is impacting is methane hydrates. Methane hydrates are located along the continental margins, and are stabilized by high pressure, as well as uniformly low temperatures. Climate change has begun to destabilize these methane hydrates within the Arctic Ocean by decreasing pressure and increasing temperatures, allowing methane hydrates to melt and release methane into the arctic waters. When methane is released into the water, it can either be used via anaerobic metabolism or aerobic metabolism by microorganisms in the ocean sediment, or be released from sea into the atmosphere. Most impactful to ocean acidification is aerobic oxidation by microorganisms in the water column. Carbon dioxide is produced by the reaction of methane and oxygen in water. Carbon dioxide then equilibrates with water, producing carbonic acid, which then equilibrates to release hydrogen ions and bicarbonate and further contributes to ocean acidification.

Effects on Arctic organisms

Organisms in Arctic waters are under high environmental stress such as extremely cold water. It is believed that this high stress environment will cause ocean acidification factors to have a stronger effect on these organisms. It could also cause these effects to appear in the Arctic before it appears in other parts of the ocean. There is a significant variation in the sensitivity of marine organisms to increased ocean acidification. Calcifying organisms generally exhibit larger negative responses from ocean acidification than non-calcifying organisms across numerous response variables, with the exception of crustaceans, which calcify but don't seem to be negatively affected. This is due, mainly, to the process of marine biogenic calcification, that calcifying organisms utilize.

Calcifying organisms

Carbonate ions (CO32-) are essential in marine calcifying organisms, like plankton and shellfish, as they are required to produce their calcium carbonate (CaCO3) shells and skeletons. As the ocean acidifies, the increased uptake of CO2 by seawater increases the concentration of hydrogen ions, which lowers the pH of the water. This change in the chemical equilibrium of the inorganic carbon system reduces the concentration of these carbonate ions. This reduces the ability of these organisms to create their shells and skeletons.

Pterapod shell dissolved in seawater adjusted to an ocean chemistry projected for the year 2100

The two polymorphs of calcium carbonate that are produced by marine organisms are aragonite and calcite. These are the materials that makes up most of the shells and skeletons of these calcifying organisms. Aragonite, for example, makes up nearly all mollusc shells, as well as the exoskeleton of corals. The formation of these materials is dependent on the saturation state of CaCO3 in ocean water. Waters which are saturated in CaCO3 are favorable to precipitation and formation of CaCO3 shells and skeletons, but waters which are undersaturated are corrosive to CaCO3 shells. In the absence of protective mechanisms, dissolution of calcium carbonate will occur. As colder arctic water absorbs more CO2, the concentration of CO32- is reduced, therefore the saturation of calcium carbonate is lower in high-latitude oceans than it is in tropical or temperate oceans.

The undersaturation of CaCO3 causes the shells of calcifying organisms to dissolve, which can have devastating consequences to the ecosystem. As the shells dissolve, the organisms struggle to maintain proper health, which can lead to mass mortality. The loss of many of these species can lead to intense consequences on the marine food web in the Arctic Ocean, as many of these marine calcifying organisms are keystone species. Laboratory experiments on various marine biota in an elevated CO2 environment show that changes in aragonite saturation cause substantial changes in overall calcification rates for many species of marine organisms, including coccolithophore, foraminifera, pteropods, mussels, and clams.

Although the undersaturation of arctic water has been proven to have an effect on the ability of organisms to precipitate their shells, recent studies have shown that the calcification rate of calcifiers, such as corals, coccolithophores, foraminiferans and bivalves, decrease with increasing pCO2, even in seawater supersaturated with respect to CaCO3. Additionally, increased pCO2 has been found to have complex effects on the physiology, growth and reproductive success of various marine calcifiers.

Life cycle

A sea urchin, cracked open to reveal its eggs inside. These eggs hold the embryo stage of this organism.

CO2 tolerance seems to differ between various marine organisms, as well as CO2 tolerance at different life cycle stages (e.g. larva and adult). The first stage in the life cycle of marine calcifiers at serious risk from high CO2 content is the planktonic larval stage. The larval development of several marine species, primarily sea urchins and bivalves, are highly affected by elevations of seawater pCO2. In laboratory tests, numerous sea urchin embryos were reared under different CO2 concentrations until they developed to the larval stage. It was found that once they reached this stage, larval and arm sizes were significantly smaller, as well as abnormal skeleton morphology was noted with increasing pCO2. Similar findings have been found in CO2 treated-mussel larvae, which showed a larval size decrease of about 20% and showed morphological abnormalities such as convex hinges, weaker and thinner shells and protrusion of mantle. The larval body size also impacts the encounter and clearance rates of food particles, and if larval shells are smaller or deformed, these larvae are more prone to starvation. CaCO3 structures also serve vital functions for calcified larvae, such as defense against predation, as well as roles in feeding, buoyancy control and pH regulation.

Another example of a species which may be seriously impacted by ocean acidification is Pteropods, which are shelled pelagic molluscs which play an important role in the food-web of various ecosystems. Since they harbour an aragonitic shell, they could be very sensitive to ocean acidification driven by the increase of anthropogenic CO2 emissions. Laboratory tests showed that calcification exhibits a 28% decrease of the pH value of the Arctic ocean expected for the year 2100, compared to the present pH value. This 28% decline of calcification in the lower pH condition is within the range reported for other calcifying organisms such as corals. In contrast with sea urchin and bivalve larvae, corals and marine shrimps are more severely impacted by ocean acidification after settlement, while they developed into the polyp stage. From laboratory tests, the morphology of the CO2-treated polyp endoskeleton of corals was disturbed and malformed compared to the radial pattern of control polyps.

This variability in the impact of ocean acidification on different life cycle stages of different organisms can be partially explained by the fact that most echinoderms and mollusks start shell and skeleton synthesis at their larval stage, while corals start at the settlement stage. Hence, these stages are highly susceptible to the potential effects of ocean acidification. Most calcifiers, such as corals, echinoderms, bivalves and crustaceans, play important roles in coastal ecosystems as keystone species, bioturbators and ecosystem engineers. The food web in the arctic ocean is somewhat truncated, meaning it is short and simple. Any impacts to key species in the food web can cause exponentially devastating effects on the rest of the food chain as a whole, as they will no longer have a reliable food source. If these larger organisms no longer have any source of nutrients, they too will eventually die off, and the entire Arctic ocean ecosystem will be affected. This would have a huge impact on the arctic people who catch arctic fish for a living, as well as the economic repercussions which would follow such a major shortage of food and living income for these families.

Effects on Local Communities

Ocean acidification not only has impacts on aquatic life, but also on human communities and the overall livelihood of people living near these waters. For example, as a result of crustaceans being unable to produce their shells and skeletons due to reduced amounts of carbonate ions, populations such as crabs have significantly decreased in some areas in the Northern hemisphere. This has resulted in numerous fisheries in these areas to close down as a result of multi-million dollar losses. In addition, increased temperatures have caused a swift increase in toxic algal blooms, which are known to produce a neurotoxin called domoic acid that can accumulate inside the bodies of certain shellfish. If ingested by humans this toxin can cause severe health issues, which has forced many additional fisheries to close down.

Methods to Reduce Acidification

Since the carbon cycle is tightly connected to the issue of ocean acidification, the most effective method for minimizing the effects of ocean acidification is to slow climate change. Anthropogenic inputs of CO2 can be reduced through methods such as limiting the use of fossil fuels and employing renewable energies. This will ultimately lower the amount of CO2 in the atmosphere and reduce the amount dissolved into the oceans. More intrusive methods to mitigate acidification involve a technique called enhanced weathering where powdered minerals like silicate are applied to the land or ocean surface. The powdered minerals enable accelerated dissolution, releasing cations, converting CO2 to bicarbonate and increasing the pH of the oceans. Other mitigation methods, like ocean iron fertilization, still need more experimentation and evaluation in order to be deemed effective. Ocean iron fertilization in particular has been shown to increase acidification in the deep ocean while only slightly reducing acidification at the surface.

Sunday, January 19, 2025

Thought disorder

From Wikipedia, the free encyclopedia
 
Thought disorder
Other namesFormal thought disorder (FTD), thinking disorder
Textile art embroidered by a person diagnosed with schizophrenia, showing non-linear text with multiple colors of thread
Cloth embroidered by a person diagnosed with schizophrenia; non-linear text has multiple colors of thread.
SpecialtyPsychiatry, clinical psychology

A thought disorder (TD) is a disturbance in cognition which affects language, thought and communication. Psychiatric and psychological glossaries in 2015 and 2017 identified thought disorders as encompassing poverty of ideas, paralogia (a reasoning disorder characterized by expression of illogical or delusional thoughts), word salad, and delusions—all disturbances of thought content and form. Two specific terms have been suggested—content thought disorder (CTD) and formal thought disorder (FTD). CTD has been defined as a thought disturbance characterized by multiple fragmented delusions, and the term thought disorder is often used to refer to an FTD: a disruption of the form (or structure) of thought. Also known as disorganized thinking, FTD results in disorganized speech and is recognized as a major feature of schizophrenia and other psychoses (including mood disorders, dementia, mania, and neurological diseases). Disorganized speech leads to an inference of disorganized thought. Thought disorders include derailment, pressured speech, poverty of speech, tangentiality, verbigeration, and thought blocking. One of the first known cases of thought disorders, or specifically OCD as it is known today, was in 1691. John Moore, who was a bishop, had a speech in front of Queen Mary II, about "religious melancholy."

Formal thought disorder affects the form (rather than the content) of thought. Unlike hallucinations and delusions, it is an observable, objective sign of psychosis. FTD is a common core symptom of a psychotic disorder, and may be seen as a marker of severity and as an indicator of prognosis. It reflects a cluster of cognitive, linguistic, and affective disturbances that have generated research interest in the fields of cognitive neuroscience, neurolinguistics, and psychiatry.

Eugen Bleuler, who named schizophrenia, said that TD was its defining characteristic. Disturbances of thinking and speech, such as clanging or echolalia, may also be present in Tourette syndrome; other symptoms may be found in delirium. A clinical difference exists between these two groups. Patients with psychoses are less likely to show awareness or concern about disordered thinking, and those with other disorders are aware and concerned about not being able to think clearly.

Content thought disorder

Thought content is the subject of an individual's thoughts, or the types of ideas expressed by the individual. Mental health professionals define normal thought content as the absence of significant abnormalities, distortions, or harmful thoughts. Normal thought content aligns with reality, is appropriate to the situation, and does not cause significant distress or impair functioning.

A person's cultural background must be considered when assessing thought content. Abnormalities in thought content differ across cultures. Specific types of abnormal thought content can be features of different psychiatric illnesses.

Examples of disordered thought content include:

  • Suicidal thinking: thoughts of ending one's own life.
  • Homicidal thinking: thoughts of ending the life of another.
  • Delusion: A fixed, false belief that a person holds despite contrary evidence and that is not a shared cultural belief.
  • Paranoid ideation: thoughts, not severe enough to be considered delusions, involving excessive suspicion or the belief that one is being harassed, persecuted, or unfairly treated.
  • Preoccupation: excessive and/or distressing thoughts that are stressor-related and associated with negative emotions.
  • Obsession: a repetitive thought that is intrusive or inappropriate and distressing or upsetting.
  • Compulsion: A repeated behavior or mental act done in response to an obsession. It aims to reduce anxiety or distress. But, it is not feasibly related to the anxiety-provoking stimulus. It is excessive and distressing.
  • Magical thinking: A false belief in a causal link between actions and events. The mistaken belief that one's thoughts, words, or actions can cause or prevent an outcome in a way that violates the laws of cause and effect.
  • Overvalued ideas: false or exaggerated belief held with conviction, but without delusional intensity.
  • Phobias: irrational fears of objects or circumstances that are persistent.
  • Poverty of thought: abnormally few thoughts and ideas expressed.
  • Overabundance of thought: abnormally many thoughts and ideas expressed.

Formal thought disorder

Thought process is a person's form, flow, and coherence of thinking. This is how they use language and put ideas together. A normal thought process is logical, linear, meaningful, and goal-directed. A logical, linear thought process is one that demonstrates rational connections between thoughts in a way that is sequential that allows others to understand. Thought process is not what a person thinks, rather it is how a person expresses their thoughts.

Formal thought disorder (FTD), also known as disorganized speech or disorganized thinking, is a disorder of a person's thought process in which they are unable to express their thoughts in a logical and linear fashion. To be considered FTD, disorganized thinking must be severe enough that it impairs effective communication. Disorganized speech is a core symptom of psychosis, and therefore can be a feature of any condition that has a potential to cause psychosis, including schizophrenia, mania, major depressive disorder, delirium, postpartum psychosis, major neurocognitive disorder, and substance induced psychosis. FTD reflects a cluster of cognitive, linguistic, and affective disturbances, and has generated research interest from the fields of cognitive neuroscience, neurolinguistics, and psychiatry.

It can be subdivided into clusters of positive and negative symptoms and objective (rather than subjective) symptoms. On the scale of positive and negative symptoms, they have been grouped into positive formal thought disorder (posFTD) and negative formal thought disorder (negFTD). Positive subtypes were pressure of speech, tangentiality, derailment, incoherence, and illogicality; negative subtypes were poverty of speech and poverty of content. The two groups were posited to be at either end of a spectrum of normal speech, but later studies showed them to be poorly correlated. A comprehensive measure of FTD is the Thought and Language Disorder (TALD) Scale. The Kiddie Formal Thought Disorder Rating Scale (K-FTDS) can be used to assess the presence of formal thought disorder in children and their childhood. Although it is very extensive and time-consuming, its results are in great detail and reliable.

Nancy Andreasen preferred to identify TDs as thought-language-communication disorders (TLC disorders). Up to seven domains of FTD have been described on the Thought, Language, Communication (TLC) Scale, with most of the variance accounted for by two or three domains. Some TLC disorders are more suggestive of severe disorder, and are listed with the first 11 items.

Diagnoses

The DSM-V categorizes FTD as "a psychotic symptom, manifested as bizarre speech and communication." FTD may include incoherence, peculiar words, disconnected ideas, or a lack of unprompted content expected from normal speech. Clinical psychologists typically assess FTD by initiating an exploratory conversation with patients and observing the patient's verbal responses.

FTD is often used to establish a diagnosis of schizophrenia; in cross-sectional studies, 27 to 80 percent of patients with schizophrenia present with FTD. A hallmark feature of schizophrenia, it is also widespread amongst other psychiatric disorders; up to 60 percent of those with schizoaffective disorder and 53 percent of those with clinical depression demonstrate FTD, suggesting that it is not exclusive to schizophrenia. About six percent of healthy subjects exhibit a mild form of FTD. The DSM-V-TR mentions that less severe FTD may happen during the initial (prodromal) and residual periods of schizophrenia.

The characteristics of FTD vary amongst disorders. A number of studies indicate that FTD in mania is marked by irrelevant intrusions and pronounced combinatory thinking, usually with a playfulness and flippancy absent from patients with schizophrenia. The FTD present in patients with schizophrenia was characterized by disorganization, neologism, and fluid thinking, and confusion with word-finding difficulty.

There is limited data on the longitudinal course of FTD. The most comprehensive longitudinal study of FTD by 2023 found a distinction in the longitudinal course of thought-disorder symptoms between schizophrenia and other psychotic disorders. The study also found an association between pre-index assessments of social, work and educational functioning and the longitudinal course of FTD.

Possible causes

Several theories have been developed to explain the causes of formal thought disorder. It has been proposed that FTD relates to neurocognition via semantic memory. Semantic network impairment in people with schizophrenia—measured by the difference between fluency (e.g. the number of animals' names produced in 60 seconds) and phonological fluency (e.g. the number of words beginning with "F" produced in 60 seconds)—predicts the severity of formal thought disorder, suggesting that verbal information (through semantic priming) is unavailable. Other hypotheses include working memory deficit (being confused about what has already been said in a conversation) and attentional focus.

FTD in schizophrenia has been found to be associated with structural and functional abnormalities in the language network, where structural studies have found bilateral grey matter deficits; deficits in the bilateral inferior frontal gyrus, bilateral inferior parietal lobule and bilateral superior temporal gyrus are FTD correlates. Other studies did not find an association between FTD and structural aberrations of the language network, however, and regions not included in the language network have been associated with FTD. Future research is needed to clarify whether there is an association with FTD in schizophrenia and neural abnormalities in the language network.

Transmitter systems which might cause FTD have also been investigated. Studies have found that glutamate dysfunction, due to a rarefaction of glutamatergic synapses in the superior temporal gyrus in patients with schizophrenia, is a major cause of positive FTD.

The heritability of FTD has been demonstrated in a number of family and twin studies. Imaging genetics studies, using a semantic verbal-fluency task performed by the participants during functional MRI scanning, revealed that alleles linked to glutamatergic transmission contribute to functional aberrations in typical language-related brain areas. FTD is not solely genetically determined, however; environmental influences, such as allusive thinking in parents during childhood, and environmental risk factors for schizophrenia (including childhood abuse, migration, social isolation, and cannabis use) also contribute to the pathophysiology of FTD.

The origins of FTD have been theorised from a social-learning perspective. Singer and Wynne said that familial communication patterns play a key role in shaping the development of FTD; dysfunctional social interactions undermine a child's development of cohesive, stable mental representations of the world, increasing their risk of developing FTD.

Treatments

Antipsychotic medication is often used to treat FTD. Although the vast majority of studies of the efficacy of antipsychotic treatment do not report effects on syndromes or symptoms, six older studies report the effects of antipsychotic treatment on FTD. These studies and clinical experience indicate that antipsychotics are often an effective treatment for patients with positive or negative FTD, but not all patients respond to them.

Cognitive behavioural therapy (CBT) is another treatment for FTD, but its effectiveness has not been well-studied. Large randomised controlled trials evaluating the effectiveness of CBT for treating psychosis often exclude individuals with severe FTD because it reduces the therapeutic alliance required by the therapy. However, provisional evidence suggests that FTD may not preclude the effectiveness of CBT. Kircher and colleagues have suggested that the following methods should be used in CBT for patients with FTD:

  • Practice structuring, summarizing, and feedback methods
  • Repeat and clarify the core issues and main emotions that the patient is trying to communicate
  • Gently encourage patients to clarify what they are trying to communicate
  • Ask patients to clearly state their communication goal
  • Ask patients to slow down and explain how one point leads to another
  • Help patients identify the links between ideas
  • Identify the main affect linked to the thought disorder
  • Normalize problems with thinking

Signs and symptoms

Language abnormalities exist in the general population, and do not necessarily indicate a condition. They can occur in schizophrenia and other disorders (such as mania or depression), or in anyone who may be tired or stressed. To distinguish thought disorder, patterns of speech, severity of symptoms, their frequency, and any resulting functional impairment can be considered.

Symptoms of FTD include derailment, pressured speech, poverty of speech, tangentiality, and thought blocking. The most common forms of FTD observed are tangentiality and circumstantiality. FTD is a hallmark feature of schizophrenia, but is also associated with other conditions that can cause psychosis (including mood disorders, dementia, mania, and neurological diseases). Impaired attention, poor memory, and difficulty formulating abstract concepts may also reflect TD, and can be observed and assessed with mental-status tests such as serial sevens or memory tests.

Types

Thirty symptoms (or features) of TD have been described, including:

  • Alogia: A poverty of speech in amount or content, it is classified as a negative symptom of schizophrenia. When further classifying symptoms, poverty of speech content (little meaningful content with a normal amount of speech) is a disorganization symptom. Under SANS, thought blocking is considered a part of alogia, and so is increased latency in response.
  • Circumstantial speech (also known as circumstantial thinking): An inability to answer a question without excessive, unnecessary or irrelevant detail. The point of the conversation is eventually reached, unlike in tangential speech. A patient may answer the question "How have you been sleeping lately?" with "Oh, I go to bed early, so I can get plenty of rest. I like to listen to music or read before bed. Right now I'm reading a good mystery. Maybe I'll write a mystery someday. But it isn't helping, reading I mean. I have been getting only 2 or 3 hours of sleep at night."
  • Clanging: An instance where ideas are related only by phonetics (similar or rhyming sounds) rather than actual meaning. This may be heard as excessive rhyming or alliteration ("Many moldy mushrooms merge out of the mildewy mud on Mondays", or "I heard the bell. Well, hell, then I fell"). It is most commonly seen in the manic phase of bipolar disorder, although it is also often observed in patients with schizophrenia and schizoaffective disorder.
  • Derailment (also known as loosening of associations and knight's move thinking): Thought frequently moves from one idea to another which is obliquely related or unrelated, often appearing in speech but also in writing ("The next day when I'd be going out you know, I took control, like uh, I put bleach on my hair in California"),
  • Distractible speech: In mid-speech, the subject is changed in response to a nearby stimulus ("Then I left San Francisco and moved to ... Where did you get that tie?")
  • Echolalia: Echoing of another's speech, once or in repetition. It may involve repeating only the last few words (or the last word) of another person's sentences, and is common on the autism spectrum and in Tourette syndrome.
  • Evasion: The next logical idea in a sequence is replaced with another idea closely (but not accurately or appropriately) related to it; also known as paralogia and perverted logic.
  • Flight of ideas: A form of FTD marked by abrupt leaps from one topic to another, possibly with discernible links between successive ideas, perhaps governed by similarities between subjects or by rhyming, puns, wordplay, or innocuous environmental stimuli (such as the sound of birds chirping). It is most characteristic of the manic phase of bipolar disorder.
  • Illogicality: Conclusions are reached which do not follow logically (non sequiturs or faulty inferences). "Do you think this will fit in the box?" is answered with, "Well of course; it's brown, isn't it?"
  • Incoherence (word salad): Speech which is unintelligible because the individual words are real, but the manner in which they are strung together results in gibberish. The question "Why do people comb their hair?" elicits a response like "Because it makes a twirl in life, my box is broken help me blue elephant. Isn't lettuce brave? I like electrons, hello please!"
  • Neologisms: Completely new words (or phrases) whose origins and meanings are usually unrecognizable ("I got so angry I picked up a dish and threw it at the geshinker"). They may also involve elisions of two words which are similar in meaning or sound. Although neologisms may refer to words formed incorrectly whose origins are understandable (such as "headshoe" for "hat"), these can be more clearly referred to as word approximations.
  • Overinclusion: The failure to eliminate ineffective, inappropriate, irrelevant, extraneous details associated with a particular stimulus.
  • Perseveration: Persistent repetition of words or ideas, even when another person tries to change the subject. ("It's great to be here in Nevada, Nevada, Nevada, Nevada, Nevada.") It may also involve repeatedly giving the same answer to different questions ("Is your name Mary?" "Yes." "Are you in the hospital?" "Yes." "Are you a table?" "Yes"). Perseveration can include palilalia and logoclonia, and may indicate an organic brain disease such as Parkinson's disease.
  • Phonemic paraphasia: Mispronunciation; syllables out of sequence ("I slipped on the lice and broke my arm").
  • Pressured speech: Rapid speech without pauses, which is difficult to interrupt.
  • Referential thinking: Viewing innocuous stimuli as having a specific meaning for the self ("What's the time?" "It's 7 o'clock. That's my problem").
  • Semantic paraphasia: Substitution of inappropriate words ("I slipped on the coat, on the ice I mean, and broke my book").
  • Stilted speech: Speech characterized by words or phrases which are flowery, excessive, and pompous ("The attorney comported himself indecorously").
  • Tangential speech: Wandering from the topic and never returning to it, or providing requested information ("Where are you from?" "My dog is from England. They have good fish and chips there. Fish breathe through gills").
  • Thought blocking (also known as deprivation of thought and obstructive thought): An abrupt stop in the middle of a train of thought which may not be able to be continued.
  • Verbigeration: Meaningless, stereotyped repetition of words or phrases which replace understandable speech; seen in schizophrenia.

Terminology

Psychiatric and psychological glossaries in 2015 and 2017 defined thought disorder' as disturbed thinking or cognition which affects communication, language, or thought content including poverty of ideas, neologisms, paralogia, word salad, and delusions (disturbances of thought content and form), and suggested the more-specific terms content thought disorder (CTD) and formal thought disorder (FTD). CTD was defined as a TD characterized by multiple fragmented delusions, and FTD was defined as a disturbance in the form or structure of thinking. The 2013 DSM-5 only used the term FTD, primarily as a synonym for disorganized thinking and speech. This contrasts with the 1992 ICD-10 (which only used the word "thought disorder", always accompanied with "delusion" and "hallucination") and a 2002 medical dictionary which generally defined thought disorders similarly to the psychiatric glossaries and used the word in other entries as the ICD-10 did.

A 2017 psychiatric text describing thought disorder as a "disorganization syndrome" in the context of schizophrenia:

"Thought disorder" here refers to disorganization of the form of thought and not content. An older use of the term "thought disorder" included the phenomena of delusions and sometimes hallucinations, but this is confusing and ignores the clear differences in the relationships between symptoms that have become apparent over the past 30 years. Delusions and hallucinations should be identified as psychotic symptoms, and thought disorder should be taken to mean formal thought disorders or a disorder of verbal cognition.

— Phenomenology of Schizophrenia (2017), THE SYMPTOMS OF SCHIZOPHRENIA

The text said that some clinicians use the term "formal thought disorder" broadly, referring to abnormalities in thought form with psychotic cognitive signs or symptoms, and studies of cognition and subsyndromes in schizophrenia may refer to FTD as conceptual disorganization or disorganization factor.

Some disagree:

Unfortunately, "thought disorder" is often involved rather loosely to refer to both FTD and delusional content. For the sake of clarity, the unqualified use of the phrase "thought disorder" should be discarded from psychiatric communication. Even the designation "formal thought disorder" covers too wide a territory. It should always be made clear whether one is referring to derailment or loose associations, flight of ideas, or circumstantiality.

— The Mental Status Examination, The Medical Basis of Psychiatry (2016)

Course, diagnosis, and prognosis

It was believed that TD occurred only in schizophrenia, but later findings indicate that it may occur in other psychiatric conditions (including mania) and in people without mental illness. Not all people with schizophrenia have a TD; the condition is not specific to the disease.

When defining thought-disorder subtypes and classifying them as positive or negative symptoms, Nancy Andreasen found that different subtypes of TD occur at different frequencies in those with mania, depression, and schizophrenia. People with mania have pressured speech as the most prominent symptom, and have rates of derailment, tangentiality, and incoherence as prominent as in those with schizophrenia. They are likelier to have pressured speech, distractibility, and circumstantiality.

People with schizophrenia have more negative TD, including poverty of speech and poverty of content of speech, but also have relatively high rates of some positive TD. Derailment, loss of goal, poverty of content of speech, tangentiality and illogicality are particularly characteristic of schizophrenia. People with depression have relatively-fewer TDs; the most prominent are poverty of speech, poverty of content of speech, and circumstantiality. Andreasen noted the diagnostic usefulness of dividing the symptoms into subtypes; negative TDs without full affective symptoms suggest schizophrenia.

She also cited the prognostic value of negative-positive-symptom divisions. In manic patients, most TDs resolve six months after evaluation; this suggests that TDs in mania, although as severe as in schizophrenia, tend to improve. In people with schizophrenia, however, negative TDs remain after six months and sometimes worsen; positive TDs somewhat improve. A negative TD is a good predictor of some outcomes; patients with prominent negative TDs are worse in social functioning six months later. More prominent negative symptoms generally suggest a worse outcome; however, some people may do well, respond to medication, and have normal brain function. Positive symptoms vary similarly.

A prominent TD at illness onset suggests a worse prognosis, including:

  • illness begins earlier
  • increased risk of hospitalization
  • decreased functional outcomes
  • increased disability rates
  • increased inappropriate social behaviors

TD which is unresponsive to treatment predicts a worse illness course. In schizophrenia, TD severity tends to be more stable than hallucinations and delusions. Prominent TDs are more unlikely to diminish in middle age, compared with positive symptoms. Less-severe TD may occur during the prodromal and residual periods of schizophrenia. Treatment for thought disorder may include psychotherapy, such as cognitive behavior therapy (CBT), and psychotropic medications.

The DSM-5 includes delusions, hallucinations, disorganized thought process (formal thought disorder), and disorganized or abnormal motor behavior (including catatonia) as key symptoms of psychosis. Schizophrenia-spectrum disorders such as schizoaffective disorder and schizophreniform disorder typically consist of prominent hallucinations, delusions and FTD; the latter presents as severely disorganized, bizarre, and catatonic behavior. Psychotic disorders due to medical conditions and substance use typically consist of delusions and hallucinations. The rarer delusional disorder and shared psychotic disorder typically present with persistent delusions. FTDs are commonly found in schizophrenia and mood disorders, with poverty of speech content more common in schizophrenia.

Psychoses such as schizophrenia and bipolar mania are distinguishable from malingering, when an individual fakes illness for other gains, by clinical presentations; malingerers feign thought content with no irregularities in form such as derailment or looseness of association. Negative symptoms, including alogia, may be absent, and chronic thought disorder is typically distressing.

Autism spectrum disorders (ASD) whose diagnosis requires the onset of symptoms before three years of age can be distinguished from early-onset schizophrenia; schizophrenia under age 10 is extremely rare, and ASD patients do not display FTDs. However, it has been suggested that individuals with ASD display language disturbances like those found in schizophrenia; a 2008 study found that children and adolescents with ASD showed significantly more illogical thinking and loose associations than control subjects. The illogical thinking was related to cognitive functioning and executive control; the loose associations were related to communication symptoms and parent reports of stress and anxiety.

Rorschach tests have been useful for assessing TD in disturbed patients. A series of inkblots are shown, and patient responses are analyzed to determine disturbances of thought. The nature of the assessment offers insight into the cognitive processes of another, and how they respond to equivocal stimuli. Hermann Rorschach developed this test to diagnose schizophrenia after realizing that people with schizophrenia gave drastically different interpretations of Klecksographie inkblots from others whose thought processes were considered normal, and it has become one of the most widely used assessment tools for diagnosing TDs.

The Thought Disorder Index (TDI), also known as the Delta Index, was developed to help further determine the severity of TD in verbal responses. TDI scores are primarily derived from verbally-expressed interpretations of the Rorschach test, but TDI can also be used with other verbal samples (including the Wechsler Adult Intelligence Scale). TDI has a twenty-three-category scoring index; each category scores the level of severity on a scale from 0 to 1, with .25 being mild and 1.00 being most severe (0.25, 0.50, 0.75, 1.00).

Criticism

TD has been criticized as being based on circular or incoherent definitions. Symptoms of TD are inferred from disordered speech, based on the assumption that disordered speech arises from disordered thought. Although TD is typically associated with psychosis, similar phenomena can appear in different disorders and leading to misdiagnosis.

A criticism related to the separation of symptoms of schizophrenia into negative or positive symptoms, including TD, is that it oversimplifies the complexity of TD and its relationship to other positive symptoms. Factor analysis has found that negative symptoms tend to correlate with one another, but positive symptoms tend to separate into two groups. The three clusters became known as negative symptoms, psychotic symptoms, and disorganization symptoms. Alogia, a TD traditionally classified as a negative symptom, can be separated into two types: poverty of speech content (a disorganization symptom) and poverty of speech, response latency, and thought blocking (negative symptoms). Positive-negative-symptom diametrics, however, may enable a more accurate characterization of schizophrenia.

Atavism

From Wikipedia, the free encyclopedia
Early embryos of various species display some ancestral features, like the tail on this human embryo. These features normally disappear in later development, but it may not happen if the animal has an atavism.

In biology, an atavism is a modification of a biological structure whereby an ancestral genetic trait reappears after having been lost through evolutionary change in previous generations. Atavisms can occur in several ways, one of which is when genes for previously existing phenotypic features are preserved in DNA, and these become expressed through a mutation that either knocks out the dominant genes for the new traits or makes the old traits dominate the new one. A number of traits can vary as a result of shortening of the fetal development of a trait (neoteny) or by prolongation of the same. In such a case, a shift in the time a trait is allowed to develop before it is fixed can bring forth an ancestral phenotype. Atavisms are often seen as evidence of evolution.

In social sciences, atavism is the tendency of reversion: for example, people in the modern era reverting to the ways of thinking and acting of a former time.

The word atavism is derived from the Latin atavus—a great-great-great-grandfather or, more generally, an ancestor.

Biology

Evolutionarily traits that have disappeared phenotypically do not necessarily disappear from an organism's DNA. The gene sequence often remains, but is inactive. Such an unused gene may remain in the genome for many generations. As long as the gene remains intact, a fault in the genetic control suppressing the gene can lead to it being expressed again. Sometimes, the expression of dormant genes can be induced by artificial stimulation.

Atavisms have been observed in humans, such as with infants born with vestigial tails (called a "coccygeal process", "coccygeal projection", or "caudal appendage"). Atavism can also be seen in humans who possess large teeth, like those of other primates. In addition, a case of "snake heart", the presence of "coronary circulation and myocardial architecture [that closely] resemble those of the reptilian heart", has also been reported in medical literature. Atavism has also recently been induced in avian dinosaur (bird) fetuses to express dormant ancestral non-avian dinosaur (non-bird) features, including teeth.

Other examples of observed atavisms include:

Culture

Atavism is a term in Joseph Schumpeter's explanation of World War I in twentieth-century liberal Europe. He defends the liberal international relations theory that an international society built on commerce will avoid war because of war's destructiveness and comparative cost. His reason for World War I is termed "atavism", in which he asserts that senescent governments in Europe (those of the German Empire, Russian Empire, Ottoman Empire, and Austro-Hungarian Empire) pulled the liberal Europe into war, and that the liberal regimes of the other continental powers did not cause it. He used this idea to say that liberalism and commerce would continue to have a soothing effect in international relations, and that war would not arise between nations which are connected by commercial ties. This latter idea is very similar to the later Golden Arches theory.

University of London professor Guy Standing has identified three distinct sub-groups of the precariat, one of which he refers to as "atavists", who long for what they see as a lost past.

Social Darwinism

During the interval between the acceptance of evolution in the mid-1800s and the rise of the modern understanding of genetics in the early 1900s, atavism was used to account for the reappearance in an individual of a trait after several generations of absence—often called a "throw-back".The idea that atavisms could be made to accumulate by selective breeding, or breeding back, led to breeds such as Heck cattle. This had been bred from ancient landraces with selected primitive traits, in an attempt of "reviving" the aurochs, an extinct species of wild cattle. The same notions of atavisms were used by social Darwinists, who claimed that "inferior" races displayed atavistic traits, and represented more primitive traits than other races. Both atavism's and Ernst Haeckel's recapitulation theory are related to evolutionary progress, as development towards a greater complexity and a superior ability.

In addition, the concept of atavism as part of an individualistic explanation of the causes of criminal deviance was popularised by the Italian criminologist Cesare Lombroso in the 1870s. He attempted to identify physical characteristics common to criminals and labeled those he found as atavistic, 'throw-back' traits that determined 'primitive' criminal behavior. His statistical evidence and the closely related idea of eugenics have long since been abandoned by the scientific community, but the concept that physical traits may affect the likelihood of criminal or unethical behavior in a person still has some scientific support.

Knockout mouse

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Knockout_mouse   ...