Translate

Google+ Badge

Follow by Email

Search This Blog

Thursday, June 18, 2015

Stem cell


From Wikipedia, the free encyclopedia

Stem cell
MSC high magnification.jpg
Transmission electron micrograph of an adult stem cell displaying typical ultrastructural characteristics.
Details
Latin Cellula praecursoria
Identifiers
Code TH H2.00.01.0.00001
TH H1.00.01.0.00028, H2.00.01.0.00001
FMA 63368
Anatomical terminology

Stem cells are undifferentiated biological cells that can differentiate into specialized cells and can divide (through mitosis) to produce more stem cells. They are found in multicellular organisms. In mammals, there are two broad types of stem cells: embryonic stem cells, which are isolated from the inner cell mass of blastocysts, and adult stem cells, which are found in various tissues. In adult organisms, stem cells and progenitor cells act as a repair system for the body, replenishing adult tissues. In a developing embryo, stem cells can differentiate into all the specialized cells—ectoderm, endoderm and mesoderm (see induced pluripotent stem cells)—but also maintain the normal turnover of regenerative organs, such as blood, skin, or intestinal tissues.

There are three known accessible sources of autologous adult stem cells in humans:
  1. Bone marrow, which requires extraction by harvesting, that is, drilling into bone (typically the femur or iliac crest).
  2. Adipose tissue (lipid cells), which requires extraction by liposuction.
  3. Blood, which requires extraction through apheresis, wherein blood is drawn from the donor (similar to a blood donation), and passed through a machine that extracts the stem cells and returns other portions of the blood to the donor.
Stem cells can also be taken from umbilical cord blood just after birth. Of all stem cell types, autologous harvesting involves the least risk. By definition, autologous cells are obtained from one's own body, just as one may bank his or her own blood for elective surgical procedures.

Adult stem cells are frequently used in medical therapies, for example in bone marrow transplantation. Stem cells can now be artificially grown and transformed (differentiated) into specialized cell types with characteristics consistent with cells of various tissues such as muscles or nerves. Embryonic cell lines and autologous embryonic stem cells generated through Somatic-cell nuclear transfer or dedifferentiation have also been proposed as promising candidates for future therapies.[1] Research into stem cells grew out of findings by Ernest A. McCulloch and James E. Till at the University of Toronto in the 1960s.[2][3]

Properties

The classical definition of a stem cell requires that it possess two properties:
  • Self-renewal: the ability to go through numerous cycles of cell division while maintaining the undifferentiated state.
  • Potency: the capacity to differentiate into specialized cell types. In the strictest sense, this requires stem cells to be either totipotent or pluripotent—to be able to give rise to any mature cell type, although multipotent or unipotent progenitor cells are sometimes referred to as stem cells. Apart from this it is said that stem cell function is regulated in a feed back mechanism.

Self-renewal

Two mechanisms exist to ensure that a stem cell population is maintained:
  1. Obligatory asymmetric replication: a stem cell divides into one mother cell that is identical to the original stem cell, and another daughter cell that is differentiated.
  2. Stochastic differentiation: when one stem cell develops into two differentiated daughter cells, another stem cell undergoes mitosis and produces two stem cells identical to the original.

Potency definition

Pluripotent, embryonic stem cells originate as inner cell mass (ICM) cells within a blastocyst. These stem cells can become any tissue in the body, excluding a placenta. Only cells from an earlier stage of the embryo, known as the morula, are totipotent, able to become all tissues in the body and the extraembryonic placenta.

Human embryonic stem cells

A: Stem cell colonies that are not yet differentiated.

B: Nerve cells, an example of a cell type after differentiation.

Potency specifies the differentiation potential (the potential to differentiate into different cell types) of the stem cell.[4]
  • Totipotent (a.k.a. omnipotent) stem cells can differentiate into embryonic and extraembryonic cell types. Such cells can construct a complete, viable organism.[4] These cells are produced from the fusion of an egg and sperm cell. Cells produced by the first few divisions of the fertilized egg are also totipotent.[5]
  • Pluripotent stem cells are the descendants of totipotent cells and can differentiate into nearly all cells,[4] i.e. cells derived from any of the three germ layers.[6]
  • Multipotent stem cells can differentiate into a number of cell types, but only those of a closely related family of cells.[4]
  • Oligopotent stem cells can differentiate into only a few cell types, such as lymphoid or myeloid stem cells.[4]
  • Unipotent cells can produce only one cell type, their own,[4] but have the property of self-renewal, which distinguishes them from non-stem cells (e.g. progenitor cells, muscle stem cells).

Identification

In practice, stem cells are identified by whether they can regenerate tissue. For example, the defining test for bone marrow or hematopoietic stem cells (HSCs) is the ability to transplant the cells and save an individual without HSCs. This demonstrates that the cells can produce new blood cells over a long term. It should also be possible to isolate stem cells from the transplanted individual, which can themselves be transplanted into another individual without HSCs, demonstrating that the stem cell was able to self-renew.

Properties of stem cells can be illustrated in vitro, using methods such as clonogenic assays, in which single cells are assessed for their ability to differentiate and self-renew.[7][8] Stem cells can also be isolated by their possession of a distinctive set of cell surface markers. However, in vitro culture conditions can alter the behavior of cells, making it unclear whether the cells will behave in a similar manner in vivo. There is considerable debate as to whether some proposed adult cell populations are truly stem cells.

Embryonic

Embryonic stem (ES) cells are stem cells derived from the inner cell mass of a blastocyst, an early-stage embryo.[9] Human embryos reach the blastocyst stage 4–5 days post fertilization, at which time they consist of 50–150 cells. ES cells are pluripotent and give rise during development to all derivatives of the three primary germ layers: ectoderm, endoderm and mesoderm. In other words, they can develop into each of the more than 200 cell types of the adult body when given sufficient and necessary stimulation for a specific cell type. They do not contribute to the extra-embryonic membranes or the placenta.
Nearly all research to date has made use of mouse embryonic stem cells (mES) or human embryonic stem cells (hES). Both have the essential stem cell characteristics, yet they require very different environments in order to maintain an undifferentiated state. Mouse ES cells are grown on a layer of gelatin as an extracellular matrix (for support) and require the presence of leukemia inhibitory factor (LIF). Human ES cells are grown on a feeder layer of mouse embryonic fibroblasts (MEFs) and require the presence of basic fibroblast growth factor (bFGF or FGF-2).[10] Without optimal culture conditions or genetic manipulation,[11] embryonic stem cells will rapidly differentiate.

A human embryonic stem cell is also defined by the expression of several transcription factors and cell surface proteins. The transcription factors Oct-4, Nanog, and Sox2 form the core regulatory network that ensures the suppression of genes that lead to differentiation and the maintenance of pluripotency.[12] The cell surface antigens most commonly used to identify hES cells are the glycolipids stage specific embryonic antigen 3 and 4 and the keratan sulfate antigens Tra-1-60 and Tra-1-81. The molecular definition of a stem cell includes many more proteins and continues to be a topic of research.[13]

There are currently no approved treatments using embryonic stem cells. The first human trial was approved by the US Food and Drug Administration in January 2009.[14] However, the human trial was not initiated until October 13, 2010 in Atlanta for spinal injury victims. On November 14, 2011 the company conducting the trial announced that it will discontinue further development of its stem cell programs.[15] ES cells, being pluripotent cells, require specific signals for correct differentiation—if injected directly into another body, ES cells will differentiate into many different types of cells, causing a teratoma. Differentiating ES cells into usable cells while avoiding transplant rejection are just a few of the hurdles that embryonic stem cell researchers still face.[16] Many nations currently have moratoria on either ES cell research or the production of new ES cell lines. Because of their combined abilities of unlimited expansion and pluripotency, embryonic stem cells remain a theoretically potential source for regenerative medicine and tissue replacement after injury or disease.

Fetal

The primitive stem cells located in the organs of fetuses are referred to as fetal stem cells.[17] There are two types of fetal stem cells:
  1. Fetal proper stem cells come from the tissue of the fetus proper, and are generally obtained after an abortion. These stem cells are not immortal but have a high level of division and are multipotent.
  2. Extraembryonic fetal stem cells come from extraembryonic membranes, and are generally not distinguished from adult stem cells. These stem cells are acquired after birth, they are not immortal but have a high level of cell division, and are pluripotent.[18]

Adult

Stem cell division and differentiation. A: stem cell; B: progenitor cell; C: differentiated cell; 1: symmetric stem cell division; 2: asymmetric stem cell division; 3: progenitor division; 4: terminal differentiation

Adult stem cells, also called somatic (from Greek Σωματικóς, "of the body") stem cells, are stem cells which maintain and repair the tissue in which they are found.[19] They can be found in children, as well as adults.[20]
Pluripotent adult stem cells are rare and generally small in number, but they can be found in umbilical cord blood and other tissues.[21] Bone marrow is a rich source of adult stem cells,[22] which have been used in treating several conditions including spinal cord injury,[23] liver cirrhosis,[24] chronic limb ischemia [25] and end stage heart failure.[26] The quantity of bone marrow stem cells declines with age and is greater in males than females during reproductive years.[27] Much adult stem cell research to date has aimed to characterize their potency and self-renewal capabilities.[28] DNA damage accumulates with age in both stem cells and the cells that comprise the stem cell environment. This accumulation is considered to be responsible, at least in part, for increasing stem cell dysfunction with aging (see DNA damage theory of aging).[29]

Most adult stem cells are lineage-restricted (multipotent) and are generally referred to by their tissue origin (mesenchymal stem cell, adipose-derived stem cell, endothelial stem cell, dental pulp stem cell, etc.).[30][31]

Adult stem cell treatments have been successfully used for many years to treat leukemia and related bone/blood cancers through bone marrow transplants.[32] Adult stem cells are also used in veterinary medicine to treat tendon and ligament injuries in horses.[33]

The use of adult stem cells in research and therapy is not as controversial as the use of embryonic stem cells, because the production of adult stem cells does not require the destruction of an embryo. Additionally, in instances where adult stem cells are obtained from the intended recipient (an autograft), the risk of rejection is essentially non-existent. Consequently, more US government funding is being provided for adult stem cell research.[34]

Amniotic

Multipotent stem cells are also found in amniotic fluid. These stem cells are very active, expand extensively without feeders and are not tumorigenic. Amniotic stem cells are multipotent and can differentiate in cells of adipogenic, osteogenic, myogenic, endothelial, hepatic and also neuronal lines.[35] Amniotic stem cells are a topic of active research.

Use of stem cells from amniotic fluid overcomes the ethical objections to using human embryos as a source of cells. Roman Catholic teaching forbids the use of embryonic stem cells in experimentation; accordingly, the Vatican newspaper "Osservatore Romano" called amniotic stem cells "the future of medicine".[36]

It is possible to collect amniotic stem cells for donors or for autologuous use: the first US amniotic stem cells bank [37][38] was opened in 2009 in Medford, MA, by Biocell Center Corporation[39][40][41] and collaborates with various hospitals and universities all over the world.[42]

Cord blood

A certain kind of cord blood stem cell (CB-SC) is multipotent and displays embryonic and hematopoietic characteristics. Phenotypic characterization demonstrates that (CB-SCs) display embryonic cell markers (e.g., transcription factors OCT-4 and Nanog, stage-specific embryonic antigen (SSEA)-3, and SSEA-4) and leukocyte common antigen CD45, but that they are negative for blood cell lineage markers (e.g., CD1a, CD3, CD4, CD8, CD11b, CD11c, CD13, CD14, CD19, CD20, CD34, CD41a, CD41b, CD83, CD90, CD105, and CD133).[43][44]
Additionally, CB-SCs display very low immunogenicity as indicated by expression of a very low level of major histocompatibility complex (MHC) antigens and failure to stimulate the proliferation of allogeneic lymphocytes.[43][45] They can give rise to three embryonic layer-derived cells in the presence of different inducers.[43][46]

More specifically, CB-SCs tightly adhere to culture dishes with a large rounded morphology and are resistant to common detaching methods (trypsin/EDTA).[43][45][46] CB-SCs are the active agent in stem cell educator therapy, which has therapeutic potential against autoimmune diseases like type 1 diabetes according to studies by Yong Zhao et al.[44][47][48][49][unreliable medical source?]

Induced pluripotent

These are not adult stem cells, but rather adult cells (e.g. epithelial cells) reprogrammed to give rise to pluripotent capabilities. Using genetic reprogramming with protein transcription factors, pluripotent stem cells equivalent to embryonic stem cells have been derived from human adult skin tissue.[50][51][52] Shinya Yamanaka and his colleagues at Kyoto University used the transcription factors Oct3/4, Sox2, c-Myc, and Klf4[50] in their experiments on cells from human faces. Junying Yu, James Thomson, and their colleagues at the University of Wisconsin–Madison used a different set of factors, Oct4, Sox2, Nanog and Lin28,[50] and carried out their experiments using cells from human foreskin.
As a result of the success of these experiments, Ian Wilmut, who helped create the first cloned animal Dolly the Sheep, has announced that he will abandon somatic cell nuclear transfer as an avenue of research.[53]

Frozen blood samples can be used as a source of induced pluripotent stem cells, opening a new avenue for obtaining the valued cells.[54]

Lineage

To ensure self-renewal, stem cells undergo two types of cell division (see Stem cell division and differentiation diagram). Symmetric division gives rise to two identical daughter cells both endowed with stem cell properties. Asymmetric division, on the other hand, produces only one stem cell and a progenitor cell with limited self-renewal potential. Progenitors can go through several rounds of cell division before terminally differentiating into a mature cell. It is possible that the molecular distinction between symmetric and asymmetric divisions lies in differential segregation of cell membrane proteins (such as receptors) between the daughter cells.[55]
An alternative theory is that stem cells remain undifferentiated due to environmental cues in their particular niche. Stem cells differentiate when they leave that niche or no longer receive those signals. Studies in Drosophila germarium have identified the signals decapentaplegic and adherens junctions that prevent germarium stem cells from differentiating.[56][57]

Treatments

Diseases and conditions where stem cell treatment is being investigated.

Diseases and conditions where stem cell treatment is being investigated include:
Stem cell therapy is the use of stem cells to treat or prevent a disease or condition. Bone marrow transplant is a crude form of stem cell therapy that has been used clinically for many years without controversy. No stem cell therapies other than bone marrow transplant are widely used.[71][72]

Research is underway to develop various sources for stem cells, and to apply stem cell treatments for neurodegenerative diseases and conditions, diabetes, heart disease, and other conditions.[73]

In more recent years, with the ability of scientists to isolate and culture embryonic stem cells, and with scientists' growing ability to create stem cells using somatic cell nuclear transfer and techniques to created induced pluripotent stem cells, controversy has crept in, both related to abortion politics and to human cloning.

Disadvantages

Stem cell treatments may require immunosuppression because of a requirement for radiation before the transplant to remove the patient's previous cells, or because the patient's immune system may target the stem cells. One approach to avoid the second possibility is to use stem cells from the same patient who is being treated.

Pluripotency in certain stem cells could also make it difficult to obtain a specific cell type. It is also difficult to obtain the exact cell type needed, because not all cells in a population differentiate uniformly. Undifferentiated cells can create tissues other than desired types.[74]

Some stem cells form tumors after transplantation; pluripotency is linked to tumor formation especially in embryonic stem cells, fetal proper stem cells, induced pluripotent stem cells. Fetal proper stem cells form tumors despite multipotency.[citation needed]

Hepatotoxicity and drug-induced liver injury account for a substantial number of failures of new drugs in development and market withdrawal, highlighting the need for screening assays such as stem cell-derived hepatocyte-like cells, that are capable of detecting toxicity early in the drug development process.[75]

Research patents


Some of the fundamental patents covering human embryonic stem cells are owned by the Wisconsin Alumni Research Foundation (WARF) - they are patents 5,843,780, 6,200,806, and 7,029,913 invented by James A. Thomson. WARF does not enforce these patents against academic scientists, but does enforce them against companies.[76]

In 2006, a request for the US Patent and Trademark Office (USPTO) to re-examine the three patents was filed by the Public Patent Foundation on behalf of its client, the non-profit patent-watchdog group Consumer Watchdog (formerly the Foundation for Taxpayer and Consumer Rights).[76] In the re-examination process, which involves several rounds of discussion between the USTPO and the parties, the USPTO initially agreed with Consumer Watchdog and rejected all the claims in all three patents,[77] however in response, WARF amended the claims of all three patents to make them more narrow, and in 2008 the USPTO found the amended claims in all three patents to be patentable. The decision on one of the patents (7,029,913) was appealable, while the decisions on the other two were not.[78][79] Consumer Watchdog appealed the granting of the '913 patent to the USTPO's Board of Patent Appeals and Interferences (BPAI) which granted the appeal, and in 2010 the BPAI decided that the amended claims of the '913 patent were not patentable.[80] However, WARF was able to re-open prosecution of the case and did so, amending the claims of the '913 patent again to make them more narrow, and in January 2013 the amended claims were allowed.[81]

In July 2013, Consumer Watchdog announced that it would appeal the decision to allow the claims of the '913 patent to the US Court of Appeals for the Federal Circuit (CAFC), the federal appeals court that hears patent cases.[82] At a hearing in December 2013, the CAFC raised the question of whether Consumer Watchdog had legal standing to appeal; the case could not proceed until that issue was resolved.[83]

Key research events

  • 1908: The term "stem cell" was proposed for scientific use by the Russian histologist Alexander Maksimov (1874–1928) at congress of hematologic society in Berlin. It postulated existence of haematopoietic stem cells.
  • 1960s: Joseph Altman and Gopal Das present scientific evidence of adult neurogenesis, ongoing stem cell activity in the brain; their reports contradict Cajal's "no new neurons" dogma and are largely ignored.
  • 1963: Becker, McCulloch and Till illustrate the presence of self-renewing cells in mouse bone marrow.
  • 1968: Bone marrow transplant between two siblings successfully treats SCID.
  • 1978: Haematopoietic stem cells are discovered in human cord blood.
  • 1981: Mouse embryonic stem cells are derived from the inner cell mass by scientists Martin Evans, Matthew Kaufman, and Gail R. Martin. Gail Martin is attributed for coining the term "Embryonic Stem Cell".[84]
  • 1992: Neural stem cells are cultured in vitro as neurospheres.
  • 1995: Indian scientist Dr. B.G. Matapurkar pioneers in adult stem-cell research with clinical utilization of research in the body and neo-regeneration of tissues and organs in the body. Received International Patent from US Patent Office (USA) in 2001 (effective from 1995). Clinical utilization in human body also demonstrated and patented in 60 patients (World Journal of Surgery-1999[85] and 1991[86]).
  • 1997: Dr. B.G. Matapurkar's surgical technique on regeneration of tissues and organs is published.[87] Regeneration of fallopian tube and uterus is published.[88]
  • 1997: Leukemia is shown to originate from a haematopoietic stem cell, the first direct evidence for cancer stem cells.
  • 1998: James Thomson and coworkers derive the first human embryonic stem cell line at the University of Wisconsin–Madison.[89]
  • 1998: John Gearhart (Johns Hopkins University) extracted germ cells from fetal gonadal tissue (primordial germ cells) before developing pluripotent stem cell lines from the original extract.
  • 2000s: Several reports of adult stem cell plasticity are published.
  • 2001: Scientists at Advanced Cell Technology clone first early (four- to six-cell stage) human embryos for the purpose of generating embryonic stem cells.[90]
  • 2003: Dr. Songtao Shi of NIH discovers new source of adult stem cells in children's primary teeth.[91]
  • 2004–2005: Korean researcher Hwang Woo-Suk claims to have created several human embryonic stem cell lines from unfertilised human oocytes. The lines were later shown to be fabricated.
  • 2005: Researchers at Kingston University in England claim to have discovered a third category of stem cell, dubbed cord-blood-derived embryonic-like stem cells (CBEs), derived from umbilical cord blood. The group claims these cells are able to differentiate into more types of tissue than adult stem cells.
  • 2005: Researchers at UC Irvine's Reeve-Irvine Research Center are able to partially restore the ability of rats with paralyzed spines to walk through the injection of human neural stem cells.[92]

Yong Zhao, University of Illinois at Chicago
  • April 2006 Scientists at the University of Illinois at Chicago identified novel stem cells from the umbilical cord blood with embryonic and hematopoietic characteristics.[43]
  • August 2006: Kazutoshi Takahashi and Shinya Yamanaka publish evidence of Induced pluripotent stem cells in mice in the journal Cell.[93]
  • November 2006: Yong Zhao et al. revealed the immune regulation of T lymphocytes by Cord Blood-Derived Multipotent Stem Cells (CB-SCs).[45]
  • October 2006: Scientists at Newcastle University in England create the first ever artificial liver cells using umbilical cord blood stem cells.[94][95]
  • January 2007: Scientists at Wake Forest University led by Dr. Anthony Atala and Harvard University report discovery of a new type of stem cell in amniotic fluid.[96] This may potentially provide an alternative to embryonic stem cells for use in research and therapy.[97]
  • June 2007: Research reported by three different groups shows that normal skin cells can be reprogrammed to an embryonic state in mice.[98] In the same month, scientist Shoukhrat Mitalipov reports the first successful creation of a primate stem cell line through somatic cell nuclear transfer[99]

    Martin Evans, a co-winner of the Nobel Prize in recognition of his gene targeting work.
  • October 2007: Mario Capecchi, Martin Evans, and Oliver Smithies win the 2007 Nobel Prize for Physiology or Medicine for their work on embryonic stem cells from mice using gene targeting strategies producing genetically engineered mice (known as knockout mice) for gene research.[100]
  • November 2007: Human induced pluripotent stem cells: Two similar papers released by their respective journals prior to formal publication: in Cell by Kazutoshi Takahashi and Shinya Yamanaka, "Induction of pluripotent stem cells from adult human fibroblasts by defined factors",[101] and in Science by Junying Yu, et al., from the research group of James Thomson, "Induced pluripotent stem cell lines derived from human somatic cells":[102] pluripotent stem cells generated from mature human fibroblasts. It is possible now to produce a stem cell from almost any other human cell instead of using embryos as needed previously, albeit the risk of tumorigenesis due to c-myc and retroviral gene transfer remains to be determined.
  • January 2008: Robert Lanza and colleagues at Advanced Cell Technology and UCSF create the first human embryonic stem cells without destruction of the embryo.[103]
  • January 2008: Development of human cloned blastocysts following somatic cell nuclear transfer with adult fibroblasts[104]
  • February 2008: Generation of pluripotent stem cells from adult mouse liver and stomach: these iPS cells seem to be more similar to embryonic stem cells than the previously developed iPS cells and not tumorigenic, moreover genes that are required for iPS cells do not need to be inserted into specific sites, which encourages the development of non-viral reprogramming techniques.[105]
  • March 2008-The first published study of successful cartilage regeneration in the human knee using autologous adult mesenchymal stem cells is published by clinicians from Regenerative Sciences[106]
  • October 2008: Sabine Conrad and colleagues at Tübingen, Germany generate pluripotent stem cells from spermatogonial cells of adult human testis by culturing the cells in vitro under leukemia inhibitory factor (LIF) supplementation.[107]
  • 30 October 2008: Embryonic-like stem cells from a single human hair.[108]
  • January 2009: Yong Zhao and colleagues confirmed the reversal of autoimmune-caused type 1 diabetes by Cord Blood-Derived Multipotent Stem Cells (CB-SCs) in an animal experiment.[44][47]
  • 1 March 2009: Andras Nagy, Keisuke Kaji, et al. discover a way to produce embryonic-like stem cells from normal adult cells by using a novel "wrapping" procedure to deliver specific genes to adult cells to reprogram them into stem cells without the risks of using a virus to make the change.[109][110][111] The use of electroporation is said to allow for the temporary insertion of genes into the cell.[112][112][113][114]
  • 28 May 2009 Kim et al. announced that they had devised a way to manipulate skin cells to create patient specific "induced pluripotent stem cells" (iPS), claiming it to be the 'ultimate stem cell solution'.[115]
  • 11 October 2010 First trial of embryonic stem cells in humans.[116]
  • 25 October 2010: Ishikawa et al. write in the Journal of Experimental Medicine that research shows that transplanted cells that contain their new host's nuclear DNA could still be rejected by the individual's immune system due to foreign mitochondrial DNA. Tissues made from a person's stem cells could therefore be rejected, because mitochondrial genomes tend to accumulate mutations.[117]
  • 2011: Israeli scientist Inbar Friedrich Ben-Nun led a team which produced the first stem cells from endangered species, a breakthrough that could save animals in danger of extinction.[118]
  • January 2012: The human clinical trial of treating type 1 diabetes with lymphocyte modification using Cord Blood-Derived Multipotent Stem Cells (CB-SCs) achieved an improvement of C-peptide levels, reduced the median glycated hemoglobin A1C (HbA1c) values, and decreased the median daily dose of insulin in both human patient groups with and without residual beta cell function.[48][49] Yong Zhao's Stem Cell Educator Therapy appears "so simple and so safe"[119]
  • October 2012: Positions of nucleosomes in mouse embryonic stem cells and the changes in their positions during differentiation to neural progenitor cells and embryonic fibroblasts are determined with single-nucleotide resolution.[120]
  • 2012: Katsuhiko Hayashi used mouse skin cells to create stem cells and then used these stem cells to create mouse eggs. These eggs were then fertilized and produced healthy baby offspring. These latter mice were able to have their own babies.[121]
  • 2013: First time lab grown meat made from muscle stem-cells has been cooked and tasted.[122]
  • 2013: First time mice adult cells were reprogrammed into stem cells in vivo.[123]
  • 2013: Scientists at Scotland's Heriot-Watt University developed a 3D printer that can produce clusters of living human embryonic stem cells, potentially allowing complete organs to be printed on demand in the future.[124]
  • 2014: Adult mouse cells reprogrammed to pluripotent stem cells using stimulus-triggered acquisition of pluripotency (STAP);[125] a process which involved bathing blood cells in an acid bath (pH 5.7) for 30minutes at 37 °C.[126] A little over a month after the publication of these findings, errors were discovered and the quality of the research has been widely questioned.[127] Further irregularities regarding the mice used have emerged as recently as June 2014.[128]

Wednesday, June 17, 2015

Arachnid


From Wikipedia, the free encyclopedia
 
Arachnids

Arachnids is a class (Arachnida) of joint-legged invertebrate animals (arthropods), in the subphylum Chelicerata. All arachnids have eight legs, although the front pair of legs in some species has converted to a sensory function, while in other species, different appendages can grow large enough to take on the appearance of extra pairs of legs. The term is derived from the Greek word ἀράχνη (aráchnē), meaning "spider".[1]

Almost all extant arachnids are terrestrial. However, some inhabit freshwater environments and, with the exception of the pelagic zone, marine environments as well. They comprise over 100,000 named species, including spiders, scorpions, harvestmen, ticks, mites, and solifuges.[2]

Morphology


Basic characteristics of arachnids include four pairs of legs (1) and a body divided into two tagmata: the cephalothorax (2) and the abdomen (3)

Almost all adult arachnids have eight legs, and arachnids may be easily distinguished from insects by this fact, since insects have six legs. However, arachnids also have two further pairs of appendages that have become adapted for feeding, defense, and sensory perception. The first pair, the chelicerae, serve in feeding and defense. The next pair of appendages, the pedipalps, have been adapted for feeding, locomotion, and/or reproductive functions. In Solifugae, the palps are quite leg-like, so that these animals appear to have ten legs. The larvae of mites and Ricinulei have only six legs; a fourth pair usually appears when they moult into nymphs. However, mites are variable: as well as eight, there are adult mites with six or even four legs.[3]

Arachnids are further distinguished from insects by the fact they do not have antennae or wings. Their body is organized into two tagmata, called the prosoma, or cephalothorax, and the opisthosoma, or abdomen. The cephalothorax is derived from the fusion of the cephalon (head) and the thorax, and is usually covered by a single, unsegmented carapace. The abdomen is segmented in the more primitive forms, but varying degrees of fusion between the segments occur in many groups. It is typically divided into a preabdomen and postabdomen, although this is only clearly visible in scorpions, and in some orders, such as the Acari, the abdominal sections are completely fused.[4]

Like all arthropods, arachnids have an exoskeleton, and they also have an internal structure of cartilage-like tissue, called the endosternite, to which certain muscle groups are attached. The endosternite is even calcified in some Opiliones.[5]

Locomotion

Most arachnids lack extensor muscles in the distal joints of their appendages. Spiders and whipscorpions extend their limbs hydraulically using the pressure of their hemolymph.[6] Solifuges and some harvestmen extend their knees by the use of highly elastic thickenings in the joint cuticle.[6] Scorpions, pseudoscorpions and some harvestmen have evolved muscles that extend two leg joints (the femur-patella and patella-tibia joints) at once.[7][8] The equivalent joints of the pedipalps of scorpions though, are extended by elastic recoil.[9]

Physiology

There are characteristics that are particularly important for the terrestrial lifestyle of arachnids, such as internal respiratory surfaces in the form of tracheae, or modification of the book gill into a book lung, an internal series of vascular lamellae used for gas exchange with the air.[10] While the tracheae are often individual systems of tubes, similar to those in insects, ricnuleids, pseudoscorpions, and some spiders possess sieve tracheae, in which several tubes arise in a bundle from a small chamber connected to the spiracle. This type of tracheal system has almost certainly evolved from the book lungs, and indicates that the tracheae of arachnids are not homologous with those of insects.[11]
Further adaptations to terrestrial life are appendages modified for more efficient locomotion on land, internal fertilisation, special sensory organs, and water conservation enhanced by efficient excretory structures as well as a waxy layer covering the cuticle.

The excretory glands of arachnids include up to four pairs of coxal glands along the side of the prosoma, and one or two pairs of Malpighian tubules, emptying into the gut. Many arachnids have only one or the other type of excretory gland, although several do have both. The primary nitrogenous waste product in arachnids is guanine.[11]

Arachnid blood is variable in composition, depending on the mode of respiration. Arachnids with an efficient tracheal system do not need to transport oxygen in the blood, and may have a reduced circulatory system. In scorpions and some spiders, however, the blood contains haemocyanin, a copper-based pigment with a similar function to haemoglobin in vertebrates. The heart is located in the forward part of the abdomen, and may or may not be segmented. Some mites have no heart at all.[11]

Diet and digestive system

Arachnids are mostly carnivorous, feeding on the pre-digested bodies of insects and other small animals. Only in the harvestmen and among mites, such as the house dust mite, is there ingestion of solid food particles, and thus exposure to internal parasites,[12] although it is not unusual for spiders to eat their own silk. Several groups secrete venom from specialized glands to kill prey or enemies. Several mites are parasites, some of which are carriers of disease.

Arachnids produce digestive juices in their stomachs, and use their pedipalps and chelicerae to pour them over their dead prey. The digestive juices rapidly turn the prey into a broth of nutrients, which the arachnid sucks into a pre-buccal cavity located immediately in front of the mouth. Behind the mouth is a muscular, sclerotised pharynx, which acts as a pump, sucking the food through the mouth and on into the oesophagus and stomach. In some arachnids, the oesophagus also acts as an additional pump.

The stomach is tubular in shape, with multiple diverticula extending throughout the body. The stomach and its diverticula both produce digestive enzymes and absorb nutrients from the food. It extends through most of the body, and connects to a short sclerotised intestine and anus in the hind part of the abdomen.[11]

Senses

Arachnids have two kinds of eyes, the lateral and median ocelli. The lateral ocelli evolved from compound eyes and may have a tapetum, which enhances the ability to collect light. With the exception of scorpions, which can have up to five pairs of lateral ocelli, there are never more than three pairs present. The median ocelli develop from a transverse fold of the ectoderm. The ancestors of modern arachnids probably had both types, but modern ones often lack one type or the other.[12] The cornea of the eye also acts as a lens, and is continuous with the cuticle of the body. Beneath this is a transparent vitreous body, and then the retina and, if present, the tapetum. In most arachnids, the retina probably does not have enough light sensitive cells to allow the eyes to form a proper image.[11]

In addition to the eyes, almost all arachnids have two other types of sensory organs. The most important to most arachnids are the fine sensory hairs that cover the body and give the animal its sense of touch. These can be relatively simple, but many arachnids also possess more complex structures, called trichobothria.

Finally, slit sense organs are slit-like pits covered with a thin membrane. Inside the pit, a small hair touches the underside of the membrane, and detects its motion. Slit sense organs are believed to be involved in proprioception, and possibly also hearing.[11]

Reproduction

Arachnids may have one or two gonads, which are located in the abdomen. The genital opening is usually located on the underside of the second abdominal segment. In most species, the male transfers sperm to the female in a package, or spermatophore. Complex courtship rituals have evolved in many arachnids to ensure the safe delivery of the sperm to the female.[11]
Arachnids usually lay yolky eggs, which hatch into immatures that resemble adults. Scorpions, however, are either ovoviviparous or viviparous, depending on species, and bear live young.

Systematics


Trilobita


Xiphosura



Eurypterida

Arachnida


Scorpiones



Opiliones



Pseudoscorpiones


Solifugae







Acari



Palpigradi


Pycnogonida







Trigonotarbida


Ricinulei




Araneae



Amblypygi



Thelyphonida


Schizomida









Phylogeny of the Chelicerata (after Giribet et al. 2002)
It is estimated that 98,000 arachnid species have been described, and that there may be up to 600,000 in total.[13]

Acari


Acari or Acarina is a taxon of arachnids that contains mites and ticks. Its fossil history goes back to the Devonian period, although there is also a questionable Ordovician record. The Devonian period was the time frame in which certain species of animals developed legs. In most modern treatments, the Acari is considered a subclass of Arachnida and is composed of two or three orders or superorders: Acariformes, Parasitiformes, and Opilioacariformes. Most acarines are minute to small (e.g. 0.080–1.00 mm), but the giants of the Acari (some ticks and red velvet mites) may reach lengths of 10–20 mm. It is estimated that over 50,000 species have been described (as of 1999) and that a million or more species are currently living.[citation needed] The study of mites and ticks is called acarology.[14]

Only the faintest traces of primary segmentation remain in mites, the prosoma and opisthosoma being insensibly fused, and a region of flexible cuticle (the cirumcapitular furrow) separates the chelicerae and pedipalps from the rest of the body. This anterior body region is called the gnathosoma (or capitulum) and is also found in the Ricinulei. The remainder of the body is called the idiosoma and is unique to mites. Most adult mites have four pairs of legs, like other arachnids, but some have fewer. For example, gall mites like Phyllocoptes variabilis (superfamily Eriophyioidea) have a wormlike body with only two pairs of legs; some parasitic mites have only one or three pairs of legs in the adult stage. Larval and prelarval stages have a maximum of three pairs of legs; adult mites with only three pairs of legs may be called 'larviform'.

Acarine ontogeny consists of an egg, a prelarval stage (often absent), a larval stage (hexapod except in Eriophyoidea, which have only two pairs of legs), and a series of nymphal stages. Larvae (and prelarvae) have a maximum of three pairs of legs (legs are often reduced to stubs or absent in prelarvae); the fourth pair of legs is added at the first nymphal stage.

Acarines live in practically every habitat, and include aquatic (freshwater and sea water) and terrestrial species. They outnumber other arthropods in the soil organic matter and detritus. Many are parasitic, and they affect both vertebrates and invertebrates. Most parasitic forms are external parasites, while the free living forms are generally predaceous and may even be used to control undesirable arthropods. Others are detritivores that help to break down forest litter and dead organic matter such as skin cells. Others still are plant feeders and may damage crops. Damage to crops is perhaps the most costly economic effect of mites, especially by the spider mites and their relatives (Tetranychoidea), earth mites (Penthaleidae), thread-footed mites (Tarsonemidae) and the gall and rust mites (Eriophyoidea). Some parasitic forms affect humans and other mammals, causing damage by their feeding, and can even be vectors of diseases such as scrub typhus and rickettsial pox. A well-known effect of mites on humans is their role as an allergen and the stimulation of asthma in people affected by the respiratory disease. The use of predatory mites (e.g. Phytoseiidae) in pest control and herbivorous mites that attack weeds is also important. An unquantified, but major positive contribution of the Acari is their normal functioning in ecosystems, especially their roles in the decomposer subsystem.[14]

Amblypygi


An amblypygid

Amblypygids are also known as tailless whip scorpions or cave spiders. Approximately 5 families, 17 genera and 136 species have been described. They are found in tropical and subtropical regions worldwide. Some species are subterranean; many are nocturnal. During the day, they may hide under logs, bark, stones, or leaves. They prefer a humid environment. Amblypygids may range from 5 to 40 mm. Their bodies are broad and highly flattened and the first pair of legs (the first walking legs in most arachnid orders) are modified to act as sensory organs. (Compare solifugids, uropygids, and schizomids.) These very thin modified legs can extend several times the length of body.
They have no silk glands or venomous fangs, but can have prominent pincer-like pedipalps. Amblypygids often move about sideways on their six walking legs, with one "whip" pointed in the direction of travel while the other probes on either side of them. Prey are located with these "whips", captured with pedipalps, then torn to pieces with chelicerae. Fossilised amblypygids have been found dating back to the Carboniferous period.

Amblypygids, particularly the species Phrynus marginemaculatus and Damon diadema, are thought to be one of the few species of arachnids that show signs of social behavior. Research conducted at Cornell University by entomologists suggests that mother amblypygids comfort their young by gently caressing the offspring with her feelers. Further, when two or more siblings were placed in an unfamiliar environment, such as a cage, they would seek each other out and gather back in a group.[15]

Araneae


Araneae, or spiders, are the most familiar of the arachnids, and the most species-rich with around 40,000 described species.[16] All spiders produce silk, a thin, strong protein strand extruded by the spider from spinnerets most commonly found on the end of the abdomen. Many species use it to trap insects in webs, although there are many species that hunt freely. Silk can be used to aid in climbing, form smooth walls for burrows, build egg sacs, wrap prey, temporarily hold sperm, and even fly, among other applications.

All spiders except those in the families Uloboridae and Holarchaeidae, and in the suborder Mesothelae (together about 350 species) can inject venom to protect themselves or to kill and liquefy prey. Only about 200 species, however, have bites that can pose health problems to humans.[17] Many larger species' bites may be painful, but will not produce lasting health concerns.

Spiders are found all over the world, from the tropics to the Arctic, with some extreme species even living underwater in silken domes that they supply with air,[18] and on the tops of the highest mountains.

Haptopoda

Haptopoda is an extinct order known exclusively from a few specimens from the Upper Carboniferous of the United Kingdom. It is monotypic, i.e. has only one species: Plesiosiro madeleyi Pocock 1911. Relationships with other arachnids are obscure, but closest relatives may be the Amblypygi, Thelyphonida and Schizomida of the tetrapulmonate clade[19] - a result which has been reflected in cladistic analyses.[20]

Opiliones


Male Opilio canestrinii cleaning its legs

Opiliones (formerly Phalangida, and better known as "harvestmen" or "daddy longlegs") are arachnids that are harmless to people and are known for their exceptionally long walking legs, compared to their body size. As of December 2011, over 6,500 species of harvestmen have been discovered worldwide.[21] The order Opiliones is divided into five suborders: Cyphophthalmi, Eupnoi, Dyspnoi, Laniatores, and the recently described Tetrophthalmi.[22] Well-preserved fossils have been found in the 410-million year old Rhynie cherts of Scotland and 305-million-year-old rocks from France; they look surprisingly modern, suggesting that the basic structure of the harvestmen has not changed much since then.[23][24]

The difference between harvestmen and spiders is that in harvestmen the two main body sections (the abdomen or opisthosoma with ten segments and the cephalothorax or prosoma) are nearly joined, so that they appear to be one oval structure. In more advanced species, the first five abdominal segments are often fused into a dorsal shield called the scutum, which is normally fused with the carapace. Sometimes this shield is only present in males. The two hindmost abdominal segments may be reduced or separated in the middle on the surface to form two plates lying next to each other. The second pair of legs is longer than the others and works as antennae. They have a single pair of eyes in the middle of their heads, oriented sideways. They have a pair of prosomatic scent glands that secrete a peculiar smelling fluid when disturbed. Harvestmen do not have spinnerets and do not possess poison glands, posing absolutely no danger to humans. They breathe through tracheae. Between the base of the fourth pair of legs and the abdomen is a pair of spiracles, one opening on each side. In more active species, spiracles are also found upon the tibia of the legs. They have a gonopore on the ventral cephalothorax, and copulation is direct, as the male has a penis (while the female has an ovipositor).

Typical body length does not exceed 7 millimetres (0.28 in) even in the largest species. However, leg span is much larger and can exceed 160 mm (6.3 in). Most species live for a year. Many species are omnivorous, eating primarily small insects and all kinds of plant material and fungi; some are scavengers of the decays of any dead animal, bird dung and other fecal material. They are mostly nocturnal and coloured in hues of brown, although there are a number of diurnal species that have vivid patterns in yellow, green and black with varied reddish and blackish mottling and reticulation.

Palpigradi

Palpigradi, commonly known as "microwhip scorpions", are tiny cousins of the uropygid, or whip scorpion, no more than 3 mm in length. They have a thin, pale, segmented carapace that terminates in a whip-like flagellum, made up of 15 segments. The carapace is divided into two plates between the third and fourth leg set. They have no eyes. Some species have three pairs of book lungs, while others have no respiratory organs at all.[25] Approximately 80 species of Palpigradi have been described worldwide, in the families Eukoeneniidae and Prokoeneniidae, with a total of seven genera.
They are believed to be predators like their larger relatives, feeding on minuscule insects in their habitat. Their mating habits are unknown, except that they lay only a few relatively large eggs at a time. Microwhip scorpions need a damp environment to survive, and they always hide from light, so they are commonly found in the moist earth under buried stones and rocks. They can be found on every continent, except in Arctic and Antarctic regions.

Phalangiotarbida

Phalangiotarbi is an extinct arachnid order known exclusively from the Palaeozoic (Devonian to Permian) of Europe and North America.
The affinities of phalangiotarbids are obscure, with most authors favouring affinities with Opiliones (harvestmen)[20] and/or Acari (mites and ticks). Phalangiotarbida has been recently proposed to be sister group to (Palpigradi+Tetrapulmonata): the taxon Megoperculata sensu Shultz (1990).[26]

Pseudoscorpions


A pseudoscorpion on a printed page

Pseudoscorpions are small arthropods with a flat, pear-shaped body and pincers that resemble those of scorpions. They range from 2 to 8 mm (0.079 to 0.315 in) long.[27] The opisthosoma is made up of twelve segments, each guarded by plate-like tergites above and sternites below. The abdomen is short and rounded at the rear, rather than extending into a segmented tail and stinger like true scorpions. The colour of the body can be yellowish-tan to dark-brown, with the paired claws often a contrasting colour. They may have two, four or no eyes. They have two very long pedipalps with palpal chelae (pincers) that strongly resemble the pincers found on a scorpion. The pedipalps generally consist of an immobile "hand" and "finger", with a separate movable finger controlled by an adductor muscle. A venom gland and duct are usually located in the mobile finger; the poison is used to capture and immobilise the pseudoscorpion's prey. During digestion, pseudoscorpions pour a mildly corrosive fluid over the prey, then ingest the liquefied remains. Pseudoscorpions spin silk from a gland in their jaws to make disk-shaped cocoons for mating, molting, or waiting out cold weather. Another trait they share with their closest relatives, the spiders, is breathing through spiracles. Most spiders have one pair of spiracles, and one of book lungs, but pseudoscorpions do not have book lungs.

There are more than 2,000 species of pseudoscorpions recorded. They range worldwide, even in temperate to cold regions, but have their most dense and diverse populations in the tropics and subtropics. The fossil record of pseudoscorpions dates back over 380 million years, to the Devonian period, near the time when the first land-animal fossils appear.

During the elaborate mating dance, the male of some pseudoscorpion species pulls a female over a spermatophore previously laid upon a surface.[28] In other species, the male also pushes the sperm into the female genitals using the forelegs.[29] The female carries the fertilised eggs in a brood pouch attached to her abdomen, and the young ride on the mother for a short time after they hatch.[27] Up to two dozen young are hatched in a single brood; there may be more than one brood per year. The young go through three molts over the course of several years before reaching adulthood. Adult pseudoscorpions live 2 to 3 years. They are active in the warm months of the year, overwintering in silken cocoons when the weather grows cold.

Pseudoscorpions are generally beneficial to humans since they prey on clothes moth larvae, carpet beetle larvae, booklice, ants, mites, and small flies. They are small and inoffensive, and are rarely seen due to their size. They usually enter the home by "riding along" with larger insects (known as phoresy), or are brought in with firewood. They are often observed in bathrooms or laundry rooms, since they seek humidity. They may sometimes be found feeding on mites under the wing covers of certain beetles.

Ricinulei

Ricinulei (hooded tickspiders) are 5–10 mm long. Their most notable feature is a "hood" that can be raised and lowered over the head; when lowered, it covers the mouth and the chelicerae. Ricinulei have no eyes. The pedipalps end in pincers that are small relative to their bodies, when compared to those of the related orders of scorpions and pseudoscorpions. The heavy-bodied abdomen forms a narrow pedicel, or waist, where it attaches to the prosoma. In males, the third pair of legs are modified to form copulatory organs. Malpighian tubules and a pair of coxal glands make up the excretory system. They have no lungs, as gas exchange takes place through the trachea.
Ricinulei are predators, feeding on other small arthropods. Little is known about their mating habits; the males have been observed using their modified third leg to transfer a spermatophore to the female. The eggs are carried under the mother's hood, until the young hatch into six-legged "larva", which later molt into their adult forms. Ricinulei require moisture to survive. Approximately 57 species of ricinuleids have been described worldwide, all in a single family that contains three genera.

Schizomida

Schizomida is an order of arachnids that tend to live in the top layer of soils. Schizomids present the prosoma covered by a large protopeltidium and smaller, paired, mesopeltidia and metapeltidia. There are no eyes. The opisthosoma is a smooth oval of 12 recognisable somites. The first is reduced and forms the pedicel. The last three are much constricted, forming the pygidium. The last somite bears the flagellum, which in this order is short and consists of not more than four segments.
The name means "split or cleaved middle", referring to the way the cephalothorax is divided into two separate plates. Like the related orders Uropygi, Amblypygi, and Solpugida, the schizomids use only six legs for walking, having modified their first two legs to serve as sensory organs. They also have large well-developed pedipalps (pincers) just behind the sensory legs.

Scorpions


Scorpions are characterised by a metasoma (tail) comprising six segments, the last containing the scorpion's anus and bearing the telson (the sting). The telson, in turn, consists of the vesicle, which holds a pair of venom glands and the hypodermic aculeus, the venom-injecting barb. The abdomen's front half, the mesosoma, is made up of six segments. The first segment contains the sexual organs as well as a pair of vestigial and modified appendages forming a structure called the genital operculum. The second segment bears a pair of featherlike sensory organs known as the pectines; the final four segments each contain a pair of book lungs. The mesosoma is armored with chitinous plates, known as tergites on the upper surface and sternites on the lower surface.

The cuticle of scorpions is covered with hairs in some places that act like balance organs. An outer layer that makes them fluorescent green under ultraviolet light is called the hyaline layer. Newly molted scorpions do not glow until after their cuticle has hardened. The fluorescent hyaline layer can be intact in fossil rocks that are hundreds of millions of years old.

Scorpions are opportunistic predators of small arthropods and insects. They use their chela (pincers) to catch the prey initially. Depending on the toxicity of their venom and size of their claws, they will then either crush the prey or inject it with neurotoxic venom. The neurotoxins consist of a variety of small proteins as well as sodium and potassium cations, which serve to interfere with neurotransmission in the victim. Scorpions use their venom to kill or paralyze their prey so that it can be eaten; in general, it is fast acting, allowing for effective prey capture.
Scorpion venoms are optimised for action on other arthropods and therefore most scorpions are relatively harmless to humans; stings produce only local effects (such as pain, numbness or swelling). A few scorpion species, however, mostly in the family Buthidae, can be dangerous to humans. The scorpion that is responsible for the most human deaths is the Androctonus australis, or fat-tailed scorpion of North Africa. The toxicity of A. australis's venom is roughly half that of the deathstalker (Leiurus quinquestriatus), but since A. australis injects quite a bit more venom into its prey, it is the most deadly to humans. Human deaths normally occur in the young, elderly, or infirm; scorpions are generally unable to deliver enough venom to kill healthy adults. Some people, however, may be allergic to the venom of some species, in which case the scorpion's sting can more likely kill. A primary symptom of a scorpion sting is numbing at the injection site, sometimes lasting for several days. It has been found that scorpions have two types of venom: a translucent, weaker venom designed to stun only, and an opaque, more potent venom designed to kill heavier threats.[30][31]

Unlike the majority of Arachnida species, scorpions are viviparous. The young are born one by one, and the brood is carried about on its mother's back until the young have undergone at least one moult.[32] The young generally resemble their parents, requiring between five and seven moults to reach maturity. Scorpions have quite variable lifespans and the lifespan of most species is not known. The age range appears to be approximately 4–25 years (25 years being the maximum reported life span in the giant desert hairy scorpion, Hadrurus arizonensis). They are nocturnal and fossorial, finding shelter during the day in the relative cool of underground holes or undersides of rocks and coming out at night to hunt and feed. Scorpions prefer to live in areas where the temperature is 20–37 °C (68–99 °F), but may survive in the temperature range of 14–45 °C (57–113 °F).[33][34]

Scorpions have been found in many fossil records, including coal deposits from the Carboniferous Period and in marine Silurian deposits. They are thought to have existed in some form since about 450 to 425 million years ago. They are believed to have an oceanic origin, with gills and a claw-like appendage that enabled them to hold onto rocky shores or seaweed.

Solifugae


Solifugae is a group of 900 species of arachnids, commonly known as camel spiders, wind scorpions, and sun spiders. The name derives from Latin, and means those that flee from the sun. Most Solifugae live in tropical or semitropical regions where they inhabit warm and arid habitats, but some species have been known to live in grassland or forest habitats. The most distinctive feature of Solifugae is their large chelicerae. Each of the two chelicerae are composed of two articles forming a powerful pincer; each article bears a variable number of teeth. Males in all families but Eremobatidae possess a flagellum on the basal article of the chelicera. Solifugae also have long pedipalps, which function as sense organs similar to insects' antennae and give the appearance of the two extra legs. Pedipalps terminate in reversible adhesive organs.

Solifugae are carnivorous or omnivorous, with most species feeding on termites, darkling beetles, and other small arthropods; however, solifugae have been videotaped consuming larger prey, such as lizards. Prey is located with the pedipalps and killed and cut into pieces by the chelicerae. The prey is then liquefied and the liquid ingested through the pharynx. Reproduction can involve direct or indirect sperm transfer; when indirect, the male emits a spermatophore on the ground and then inserts it with his chelicerae in the female's genital pore.

Trigonotarbida

The Order Trigonotarbida is an extinct group of arachnids whose fossil record extends from the Silurian to the Lower Permian.[35] They are known from several localities in North Asia, North America and Argentina. They superficially resemble spiders, to which they were clearly related - most cladistic analyses recover them in a clade with Thelyphonida, Schizomida, Amblypygi and Araneae.[20]
These early arachnids seem to have been adapted to stalking prey on the ground.[36] They have been found within the very structure of ground-dwelling plants, possibly where they hid to await their prey. Trigonotarbids are currently among the oldest known land arthropods. They lack silk glands on the opisthosoma and cheliceral poison glands, and most likely represented independent offshoots of the Arachnida.

Thelyphonida


A whip scorpion

The Thelyphonida (formerly Uropygida), commonly known as vinegarroons or whip scorpions, range from 25 to 85 mm in length; the largest species, of the genus Mastigoproctus, reaches 85 mm (3.3 in). Like the related orders Schizomida, Amblypygi, and Solifugae, the vinegarroons use only six legs for walking, having modified their first two legs to serve as antennae-like sensory organs. Many species also have very large scorpion-like pedipalps (pincers). They have one pair of eyes at the front of the cephalothorax and three on each side of the head. Whip scorpions have no poison glands, but they do have glands near the rear of their abdomen that can spray a combination of acetic acid and octanoic acid when they are bothered. Other species spray formic acid or chlorine. As of 2006, over 100 species have been described worldwide.

Whip scorpions are carnivorous, nocturnal hunters feeding mostly on insects but sometimes on worms and slugs. The prey is crushed between special teeth on the inside of the trochanters (the second segment of the leg) of the front legs. They are valuable in controlling cockroach and cricket populations.

Males secrete a sperm sac, which is transferred to the female. Up to 35 eggs are laid in a burrow, within a mucous membrane that preserves moisture. Mothers stay with the eggs and do not eat. The white young that hatch from the eggs climb onto their mother's back and attach themselves there with special suckers. After the first molt, they look like miniature whip scorpions, and leave the burrow; the mother dies soon after. The young grow slowly, going through three molts in about three years before reaching adulthood.

Vinegarroons are found in tropical and subtropical areas worldwide, usually in underground burrows that they dig with their pedipalps. They may also burrow under logs, rotting wood, rocks, and other natural debris. They enjoy humid, dark places and avoid the light.