Search This Blog

Wednesday, July 3, 2019

Symbiosis

From Wikipedia, the free encyclopedia

In a cleaning symbiosis, the clownfish feeds on small invertebrates that otherwise have potential to harm the sea anemone, and the fecal matter from the clownfish provides nutrients to the sea anemone. The clownfish is protected from predators by the anemone's stinging cells, to which the clownfish is immune. The clownfish emits a high pitched sound that deters butterfly fish, which would otherwise eat the anemone, making the relationship appear mutualistic.
 
Symbiosis (from Greek συμβίωσις "living together", from σύν "together" and βίωσις "living") is any type of a close and long-term biological interaction between two different biological organisms, be it mutualistic, commensalistic, or parasitic. The organisms, each termed a symbiont, may be of the same or of different species. In 1879, Heinrich Anton de Bary defined it as "the living together of unlike organisms". The term was subject to a century-long debate about whether it should specifically denote mutualism, as in lichens; biologists have now abandoned that restriction.

Symbiosis can be obligatory, which means that one or both of the symbionts entirely depend on each other for survival, or facultative (optional) when they can generally live independently. 

Symbiosis is also classified by physical attachment; symbiosis in which the organisms have bodily union is called conjunctive symbiosis, and symbiosis in which they are not in union is called disjunctive symbiosis. When one organism lives on the surface of another, such as head lice on humans, it is called ectosymbiosis; when one partner lives inside the tissues of another, such as Symbiodinium within coral, it is termed endosymbiosis.

Definition

Diagram of the six possible types of symbiotic relationship, from mutual benefit to mutual harm.
 
The definition of symbiosis was a matter of debate for 130 years. In 1877, Albert Bernhard Frank used the term symbiosis to describe the mutualistic relationship in lichens. In 1879, the German mycologist Heinrich Anton de Bary defined it as "the living together of unlike organisms". The definition has varied among scientists, with some advocating that it should only refer to persistent mutualisms, while others thought it should apply to all persistent biological interactions, in other words mutualisms, commensalism, or parasitism, but excluding brief interactions such as predation. Current biology and ecology textbooks use the latter "de Bary" definition, or an even broader one where symbiosis means all interspecific interactions; the restrictive definition where symbiosis means only mutualism is no longer used.

In 1949, Edward Haskell proposed an integrative approach, proposing a classification of "co-actions", later adopted by biologists as "interactions".

Biological interactions can involve individuals of the same species (intraspecific interactions) or individuals of different species (interspecific interactions). These can be further classified by either the mechanism of the interaction or the strength, duration and direction of their effects.

Obligate versus facultative

Relationships can be obligate, meaning that one or both of the symbionts entirely depend on each other for survival. For example, in lichens, which consist of fungal and photosynthetic symbionts, the fungal partners cannot live on their own. The algal or cyanobacterial symbionts in lichens, such as Trentepohlia, can generally live independently, and their symbiosis is, therefore, facultative (optional).

Physical interaction

Alder tree root nodule houses endosymbiotic nitrogen-fixing bacteria.

Endosymbiosis is any symbiotic relationship in which one symbiont lives within the tissues of the other, either within the cells or extracellularly. Examples include diverse microbiomes, rhizobia, nitrogen-fixing bacteria that live in root nodules on legume roots; actinomycete, nitrogen-fixing bacteria such as Frankia, which live in alder root nodules; single-celled algae inside reef-building corals; and bacterial endosymbionts that provide essential nutrients to about 10%–15% of insects.

Ectosymbiosis is any symbiotic relationship in which the symbiont lives on the body surface of the host, including the inner surface of the digestive tract or the ducts of exocrine glands. Examples of this include ectoparasites such as lice; commensal ectosymbionts such as the barnacles, which attach themselves to the jaw of baleen whales; and mutualist ectosymbionts such as cleaner fish

Male-male interference competition in red deer

Competition

Competition can be defined as an interaction between organisms or species, in which the fitness of one is lowered by the presence of another. Limited supply of at least one resource (such as food, water, and territory) used by both usually facilitates this type of interaction, although the competition may also exist over other 'amenities', such as females for reproduction (in case of male organisms of the same species).

Mutualism

Hermit crab, Calcinus laevimanus, with sea anemone.
 
Mutualism or interspecies reciprocal altruism is a long-term relationship between individuals of different species where both individuals benefit. Mutualistic relationships may be either obligate for both species, obligate for one but facultative for the other, or facultative for both. 

Bryoliths document a mutualistic symbiosis between a hermit crab and encrusting bryozoans.
 
A large percentage of herbivores have mutualistic gut flora to help them digest plant matter, which is more difficult to digest than animal prey. This gut flora is made up of cellulose-digesting protozoans or bacteria living in the herbivores' intestines. Coral reefs are the result of mutualisms between coral organisms and various types of algae which live inside them. Most land plants and land ecosystems rely on mutualisms between the plants, which fix carbon from the air, and mycorrhyzal fungi, which help in extracting water and minerals from the ground.

An example of mutualism is the relationship between the ocellaris clownfish that dwell among the tentacles of Ritteri sea anemones. The territorial fish protects the anemone from anemone-eating fish, and in turn the stinging tentacles of the anemone protect the clownfish from its predators. A special mucus on the clownfish protects it from the stinging tentacles.

A further example is the goby, a fish which sometimes lives together with a shrimp. The shrimp digs and cleans up a burrow in the sand in which both the shrimp and the goby fish live. The shrimp is almost blind, leaving it vulnerable to predators when outside its burrow. In case of danger, the goby touches the shrimp with its tail to warn it. When that happens both the shrimp and goby quickly retreat into the burrow. Different species of gobies (Elacatinus spp.) also clean up ectoparasites in other fish, possibly another kind of mutualism.

A non-obligate symbiosis is seen in encrusting bryozoans and hermit crabs. The bryozoan colony (Acanthodesia commensale) develops a cirumrotatory growth and offers the crab (Pseudopagurus granulimanus) a helicospiral-tubular extension of its living chamber that initially was situated within a gastropod shell.

Many types of tropical and sub-tropical ants have evolved very complex relationships with certain tree species.

Endosymbiosis

In endosymbiosis, the host cell lacks some of the nutrients which the endosymbiont provides. As a result, the host favors endosymbiont's growth processes within itself by producing some specialized cells. These cells affect the genetic composition of the host in order to regulate the increasing population of the endosymbionts and ensure that these genetic changes are passed onto the offspring via vertical transmission (heredity).

A spectacular example of obligate mutualism is the relationship between the siboglinid tube worms and symbiotic bacteria that live at hydrothermal vents and cold seeps. The worm has no digestive tract and is wholly reliant on its internal symbionts for nutrition. The bacteria oxidize either hydrogen sulfide or methane, which the host supplies to them. These worms were discovered in the late 1980s at the hydrothermal vents near the Galapagos Islands and have since been found at deep-sea hydrothermal vents and cold seeps in all of the world's oceans.

As the endosymbiont adapts to the host's lifestyle, the endosymbiont changes dramatically. There is a drastic reduction in its genome size, as many genes are lost during the process of metabolism, and DNA repair and recombination, while important genes participating in the DNA-to-RNA transcription, protein translation and DNA/RNA replication are retained. The decrease in genome size is due to loss of protein coding genes and not due to lessening of inter-genic regions or open reading frame (ORF) size. Species that are naturally evolving and contain reduced sizes of genes can be accounted for an increased number of noticeable differences between them, thereby leading to changes in their evolutionary rates. When endosymbiotic bacteria related with insects are passed on to the offspring strictly via vertical genetic transmission, intracellular bacteria go across many hurdles during the process, resulting in the decrease in effective population sizes, as compared to the free-living bacteria. The incapability of the endosymbiotic bacteria to reinstate their wild type phenotype via a recombination process is called Muller's ratchet phenomenon. Muller's ratchet phenomenon, together with less effective population sizes, leads to an accretion of deleterious mutations in the non-essential genes of the intracellular bacteria. This can be due to lack of selection mechanisms prevailing in the relatively "rich" host environment.

Commensalism

Commensalism describes a relationship between two living organisms where one benefits and the other is not significantly harmed or helped. It is derived from the English word commensal, used of human social interaction. It derives from a medieval Latin word meaning sharing food, formed from com- (with) and mensa (table).

Commensal relationships may involve one organism using another for transportation (phoresy) or for housing (inquilinism), or it may also involve one organism using something another created, after its death (metabiosis). Examples of metabiosis are hermit crabs using gastropod shells to protect their bodies, and spiders building their webs on plants.

Parasitism

Head (scolex) of tapeworm Taenia solium is adapted to parasitism with hooks and suckers to attach to its host.
 
In a parasitic relationship, the parasite benefits while the host is harmed. Parasitism takes many forms, from endoparasites that live within the host's body to ectoparasites and parasitic castrators that live on its surface and micropredators like mosquitoes that visit intermittently. Parasitism is an extremely successful mode of life; as many as half of all animals have at least one parasitic phase in their life cycles, and it is also frequent in plants and fungi. Moreover, almost all free-living animal species are hosts to parasites, often of more than one species.

Mimicry

Mimicry is a form of symbiosis in which a species adopts distinct characteristics of another species to alter its relationship dynamic with the species being mimicked, to its own advantage. Among the many types of mimicry are Batesian and Müllerian, the first involving one-sided exploitation, the second providing mutual benefit. Batesian mimicry is an exploitative three-party interaction where one species, the mimic, has evolved to mimic another, the model, to deceive a third, the dupe. In terms of signalling theory, the mimic and model have evolved to send a signal; the dupe has evolved to receive it from the model. This is to the advantage of the mimic but to the detriment of both the model, whose protective signals are effectively weakened, and of the dupe, which is deprived of an edible prey. For example, a wasp is a strongly-defended model, which signals with its conspicuous black and yellow coloration that it is an unprofitable prey to predators such as birds which hunt by sight; many hoverflies are Batesian mimics of wasps, and any bird that avoids these hoverflies is a dupe. In contrast, Müllerian mimicry is mutually beneficial as all participants are both models and mimics. For example, different species of bumblebee mimic each other, with similar warning coloration in combinations of black, white, red, and yellow, and all of them benefit from the relationship. 

Amensalism

The black walnut secretes a chemical from its roots that harms neighboring plants, an example of antagonism.
 
Amensalism is an asymmetric interaction where one species is harmed or killed by the other, and one is unaffected by the other. There are two types of amensalism, competition and antagonism (or antibiosis). Competition is where a larger or stronger organism deprives a smaller or weaker one from a resource. Antagonism occurs when one organism is damaged or killed by another through a chemical secretion. An example of competition is a sapling growing under the shadow of a mature tree. The mature tree can rob the sapling of necessary sunlight and, if the mature tree is very large, it can take up rainwater and deplete soil nutrients. Throughout the process, the mature tree is unaffected by the sapling. Indeed, if the sapling dies, the mature tree gains nutrients from the decaying sapling. An example of antagonism is Juglans nigra (black walnut), secreting juglone, a substance which destroys many herbaceous plants within its root zone.

A clear case of amensalism is where sheep or cattle trample grass. Whilst the presence of the grass causes negligible detrimental effects to the animal's hoof, the grass suffers from being crushed. Amensalism is often used to describe strongly asymmetrical competitive interactions, such as has been observed between the Spanish ibex and weevils of the genus Timarcha which feed upon the same type of shrub. Whilst the presence of the weevil has almost no influence on food availability, the presence of ibex has an enormous detrimental effect on weevil numbers, as they consume significant quantities of plant matter and incidentally ingest the weevils upon it.

Cleaning symbiosis

Cleaning symbiosis is an association between individuals of two species, where one (the cleaner) removes and eats parasites and other materials from the surface of the other (the client). It is putatively mutually beneficial, but biologists have long debated whether it is mutual selfishness, or simply exploitative. Cleaning symbiosis is well-known among marine fish, where some small species of cleaner fish, notably wrasses but also species in other genera, are specialised to feed almost exclusively by cleaning larger fish and other marine animals.

Co-evolution

Leafhoppers protected by meat ants
 
Symbiosis is increasingly recognized as an important selective force behind evolution; many species have a long history of interdependent co-evolution.

Symbiogenesis

Eukaryotes (plants, animals, fungi, and protists) developed by symbiogenesis from a symbiosis between bacteria and archaea. Evidence for this includes the fact that mitochondria and chloroplasts divide independently of the cell, and the observation that some organelles seem to have their own genome.

The biologist Lynn Margulis, famous for her work on endosymbiosis, contended that symbiosis is a major driving force behind evolution. She considered Darwin's notion of evolution, driven by competition, to be incomplete and claimed that evolution is strongly based on co-operation, interaction, and mutual dependence among organisms. According to Margulis and her son Dorion Sagan, "Life did not take over the globe by combat, but by networking."

Co-evolutionary relationships

Mycorrhizas

About 80% of vascular plants worldwide form symbiotic relationships with fungi, in particular in arbuscular mycorrhizas.

Pollination is a mutualism between flowering plants and their animal pollinators.

Pollination

A fig is pollinated by the fig wasp, Blastophaga psenes.

Flowering plants and the animals that pollinate them have co-evolved. Many plants that are pollinated by insects (in entomophily), bats, or birds (in ornithophily) have highly specialized flowers modified to promote pollination by a specific pollinator that is correspondingly adapted. The first flowering plants in the fossil record had relatively simple flowers. Adaptive speciation quickly gave rise to many diverse groups of plants, and, at the same time, corresponding speciation occurred in certain insect groups. Some groups of plants developed nectar and large sticky pollen, while insects evolved more specialized morphologies to access and collect these rich food sources. In some taxa of plants and insects, the relationship has become dependent, where the plant species can only be pollinated by one species of insect.

Pseudomyrmex ant on bull thorn acacia (Vachellia cornigera) with Beltian bodies that provide the ants with protein

Acacia ants and acacias

The acacia ant (Pseudomyrmex ferruginea) is an obligate plant ant that protects at least five species of "Acacia" (Vachellia) from preying insects and from other plants competing for sunlight, and the tree provides nourishment and shelter for the ant and its larvae.

Mycorrhiza

From Wikipedia, the free encyclopedia

Many conspicuous fungi such as the fly agaric (upper left) form ectomycorrhiza (upper right) with tree rootlets. Arbuscular mycorrhiza (lower left) are very common in plants, including crop species such as wheat (lower right)
 
A mycorrhiza (from Greek μύκης mýkēs, "fungus", and ῥίζα rhiza, "root"; pl. mycorrhizae, mycorrhiza or mycorrhizas) is a symbiotic association between a fungus and a plant. The term mycorrhiza refers to the role of the fungus in the plant's rhizosphere, its root system. Mycorrhizae play important roles in plant nutrition, soil biology and soil chemistry.

In a mycorrhizal association, the fungus colonizes the host plant's root tissues, either intracellularly as in arbuscular mycorrhizal fungi (AMF or AM), or extracellularly as in ectomycorrhizal fungi. The association is sometimes mutualistic. In particular species or in particular circumstances mycorrhizae may have a parasitic association with host plants.

Definition

A mycorrhiza is a symbiotic association between a green plant and a fungus. The plant makes organic molecules such as sugars by photosynthesis and supplies them to the fungus, and the fungus supplies to the plant water and mineral nutrients, such as phosphorus, taken from the soil. Mycorrhizas are located in the roots of vascular plants, but mycorrhiza-like associations also occur in bryophytes and there is fossil evidence that early land plants that lacked roots formed arbuscular mycorrhizal associations. Most plant species form mycorrhizal associations, though some families like Brassicaceae and Chenopodiaceae cannot. Different forms for the association are detailed in the next section. The most common is the arbuscular type that is present in 70% of plant species, including many crop plants such as wheat and rice.

Types

Mycorrhizas are commonly divided into ectomycorrhizas and endomycorrhizas. The two types are differentiated by the fact that the hyphae of ectomycorrhizal fungi do not penetrate individual cells within the root, while the hyphae of endomycorrhizal fungi penetrate the cell wall and invaginate the cell membrane. Endomycorrhiza includes arbuscular, ericoid, and orchid mycorrhiza, while arbutoid mycorrhizas can be classified as ectoendomycorrhizas. Monotropoid mycorrhizas form a special category.

Ectomycorrhiza


Ectomycorrhizas, or EcM, are symbiotic associations between the roots of around 10% of plant families, mostly woody plants including the birch, dipterocarp, eucalyptus, oak, pine, and rose families, orchids, and fungi belonging to the Basidiomycota, Ascomycota, and Zygomycota. Some EcM fungi, such as many Leccinum and Suillus, are symbiotic with only one particular genus of plant, while other fungi, such as the Amanita, are generalists that form mycorrhizas with many different plants. An individual tree may have 15 or more different fungal EcM partners at one time. Thousands of ectomycorrhizal fungal species exist, hosted in over 200 genera. A recent study has conservatively estimated global ectomycorrhizal fungal species richness at approximately 7750 species, although, on the basis of estimates of knowns and unknowns in macromycete diversity, a final estimate of ECM species richness would probably be between 20,000 and 25,000.

Ectomycorrhizas consist of a hyphal sheath, or mantle, covering the root tip and a Hartig net of hyphae surrounding the plant cells within the root cortex. In some cases the hyphae may also penetrate the plant cells, in which case the mycorrhiza is called an ectendomycorrhiza. Outside the root, ectomycorrhizal extramatrical mycelium forms an extensive network within the soil and leaf litter. 

Nutrients can be shown to move between different plants through the fungal network. Carbon has been shown to move from paper birch trees into Douglas-fir trees thereby promoting succession in ecosystems. The ectomycorrhizal fungus Laccaria bicolor has been found to lure and kill springtails to obtain nitrogen, some of which may then be transferred to the mycorrhizal host plant. In a study by Klironomos and Hart, Eastern White Pine inoculated with L. bicolor was able to derive up to 25% of its nitrogen from springtails. When compared to non-mycorrhizal fine roots, ectomycorrhizae may contain very high concentrations of trace elements, including toxic metals (cadmium, silver) or chlorine.

The first genomic sequence for a representative of symbiotic fungi, the ectomycorrhizal basidiomycete L. bicolor, has been published. An expansion of several multigene families occurred in this fungus, suggesting that adaptation to symbiosis proceeded by gene duplication. Within lineage-specific genes those coding for symbiosis-regulated secreted proteins showed an up-regulated expression in ectomycorrhizal root tips suggesting a role in the partner communication. L. bicolor is lacking enzymes involved in the degradation of plant cell wall components (cellulose, hemicellulose, pectins and pectates), preventing the symbiont from degrading host cells during the root colonisation. By contrast, L. bicolor possesses expanded multigene families associated with hydrolysis of bacterial and microfauna polysaccharides and proteins. This genome analysis revealed the dual saprotrophic and biotrophic lifestyle of the mycorrhizal fungus that enables it to grow within both soil and living plant roots.

Arbutoid mycorrhiza

This type of mycorrhiza involves plants of the Ericaceae subfamily Arbutoideae. It is however different from ericoid mycorrhiza and resembles ectomycorrhiza, both functionally and in terms of the fungi involved. The difference to ectomycorrhiza is that some hyphae actually penetrate into the root cells, making this type of mycorrhiza an ectendomycorrhiza.

Endomycorrhiza

Arbuscular mycorrhiza

Endomycorrhizas are variable and have been further classified as arbuscular, ericoid, arbutoid, monotropoid, and orchid mycorrhizas. Arbuscular mycorrhizas, or AM (formerly known as vesicular-arbuscular mycorrhizas, or VAM), are mycorrhizas whose hyphae penetrate plant cells, producing structures that are either balloon-like (vesicles) or dichotomously branching invaginations (arbuscules) as a means of nutrient exchange. The fungal hyphae do not in fact penetrate the protoplast (i.e. the interior of the cell), but invaginate the cell membrane. The structure of the arbuscules greatly increases the contact surface area between the hypha and the cell cytoplasm to facilitate the transfer of nutrients between them. 

Arbuscular mycorrhizas are formed only by fungi in the division Glomeromycota. Fossil evidence and DNA sequence analysis suggest that this mutualism appeared 400-460 million years ago, when the first plants were colonizing land. Arbuscular mycorrhizas are found in 85% of all plant families, and occur in many crop species. The hyphae of arbuscular mycorrhizal fungi produce the glycoprotein glomalin, which may be one of the major stores of carbon in the soil. Arbuscular mycorrhizal fungi have (possibly) been asexual for many millions of years and, unusually, individuals can contain many genetically different nuclei (a phenomenon called heterokaryosis).

Ericoid mycorrhiza

An ericoid mycorrhizal fungus isolated from Woollsia pungens

Ericoid mycorrhizas are the third of the three more ecologically important types. They have a simple intraradical (grow in cells) phase, consisting of dense coils of hyphae in the outermost layer of root cells. There is no periradical phase and the extraradical phase consists of sparse hyphae that don't extend very far into the surrounding soil. They might form sporocarps (probably in the form of small cups), but their reproductive biology is little understood.

Ericoid mycorrhizas have also been shown to have considerable saprotrophic capabilities, which would enable plants to receive nutrients from not-yet-decomposed materials via the decomposing actions of their ericoid partners.

Orchid mycorrhiza

All orchids are myco-heterotrophic at some stage during their lifecycle and form orchid mycorrhizas with a range of basidiomycete fungi. Their hyphae penetrate into the root cells and form pelotons (coils) for nutrient exchange.

Monotropoid mycorrhiza

This type of mycorrhiza occurs in the subfamily Monotropoideae of the Ericaceae, as well as several genera in the Orchidaceae. These plants are heterotrophic or mixotrophic and derive their carbon from the fungus partner. This is thus a non-mutualistic, parasitic type of mycorrhizal symbiosis.

Mutualist dynamics

Mycorrhizal fungi form a mutualistic relationship with the roots of most plant species. In such a relationship, both the plants themselves and those parts of the roots that host the fungi, are said to be mycorrhizal. Relatively few of the mycorrhizal relationships between plant species and fungi have been examined to date, but 95% of the plant families investigated are predominantly mycorrhizal either in the sense that most of their species associate beneficially with mycorrhizae, or are absolutely dependent on mycorrhizae. The Orchidaceae are notorious as a family in which the absence of the correct mycorrhizae is fatal even to germinating seeds.

Recent research into ectomycorrhizal plants in boreal forests has indicated that mycorrhizal fungi and plants have a relationship that may be more complex than simply mutualistic. This relationship was noted when mycorrhizal fungi were unexpectedly found to be hoarding nitrogen from plant roots in times of nitrogen scarcity. Researchers argue that some mycorrhizae distribute nutrients based upon the environment with surrounding plants and other mycorrhizae. They go on to explain how this updated model could explain why mycorrhizae do not alleviate plant nitrogen limitation, and why plants can switch abruptly from a mixed strategy with both mycorrhizal and nonmycorrhizal roots to a purely mycorrhizal strategy as soil nitrogen availability declines. It has also been suggested that evolutionary and phylogenetic relationships can explain much more variation in the strength of mycorrhizal mutualisms than ecological factors.

Sugar-water/mineral exchange

In this mutualism, fungal hyphae (E) increase the surface area of the root and uptake of key nutrients while the plant supplies the fungi with fixed carbon (A=root cortex, B=root epidermis, C=arbuscle, D=vesicle, F=root hair, G=nuclei).
 
The mycorrhizal mutualistic association provides the fungus with relatively constant and direct access to carbohydrates, such as glucose and sucrose. The carbohydrates are translocated from their source (usually leaves) to root tissue and on to the plant's fungal partners. In return, the plant gains the benefits of the mycelium's higher absorptive capacity for water and mineral nutrients, partly because of the large surface area of fungal hyphae, which are much longer and finer than plant root hairs, and partly because some such fungi can mobilize soil minerals unavailable to the plants' roots. The effect is thus to improve the plant's mineral absorption capabilities.

Unaided plant roots may be unable to take up nutrients that are chemically or physically immobilised; examples include phosphate ions and micronutrients such as iron. One form of such immobilization occurs in soil with high clay content, or soils with a strongly basic pH. The mycelium of the mycorrhizal fungus can, however, access many such nutrient sources, and make them available to the plants they colonize. Thus, many plants are able to obtain phosphate, without using soil as a source. Another form of immobilisation is when nutrients are locked up in organic matter that is slow to decay, such as wood, and some mycorrhizal fungi act directly as decay organisms, mobilising the nutrients and passing some onto the host plants; for example, in some dystrophic forests, large amounts of phosphate and other nutrients are taken up by mycorrhizal hyphae acting directly on leaf litter, bypassing the need for soil uptake. Inga alley cropping, proposed as an alternative to slash and burn rainforest destruction, relies upon mycorrhiza within the root system of species of Inga to prevent the rain from washing phosphorus out of the soil.

In some more complex relationships, mycorrhizal fungi do not just collect immobilised soil nutrients, but connect individual plants together by mycorrhizal networks that transport water, carbon, and other nutrients directly from plant to plant through underground hyphal networks.

Suillus tomentosus, a basidiomycete fungus, produces specialized structures known as tuberculate ectomycorrhizae with its plant host lodgepole pine (Pinus contorta var. latifolia). These structures have been shown to host nitrogen fixing bacteria which contribute a significant amount of nitrogen and allow the pines to colonize nutrient-poor sites.

Mechanisms

The mechanisms by which mycorrhizae increase absorption include some that are physical and some that are chemical. Physically, most mycorrhizal mycelia are much smaller in diameter than the smallest root or root hair, and thus can explore soil material that roots and root hairs cannot reach, and provide a larger surface area for absorption. Chemically, the cell membrane chemistry of fungi differs from that of plants. For example, they may secrete organic acids that dissolve or chelate many ions, or release them from minerals by ion exchange. Mycorrhizae are especially beneficial for the plant partner in nutrient-poor soils.

Disease, drought and salinity resistance and its correlation to mycorrhizae

Mycorrhizal plants are often more resistant to diseases, such as those caused by microbial soil-borne pathogens. These associations have been found to assist in plant defense both above and belowground. Mycorrhizas have been found to excrete enzymes that are toxic to soil borne organisms such as nematodes. More recent studies have shown that mycorrhizal associations result in a priming effect of plants that essentially acts as a primary immune response. When this association is formed a defense response is activated similarly to the response that occurs when the plant is under attack. As a result of this inoculation, defense responses are stronger in plants with mycorrhizal associations.

AMF was also significantly correlated with soil biological fertility variables such as soil fungi and soil bacteria, including soil disease. Furthermore, AMF was significantly correlated with soil physical variable, but only with water level and not with aggregate stability. and are also more resistant to the effects of drought. The significance of arbuscular mycorrhizal fungi includes alleviation of salt stress and its beneficial effects on plant growth and productivity. Although salinity can negatively affect arbuscular mycorrhizal fungi, many reports show improved growth and performance of mycorrhizal plants under salt stress conditions 

Resistance to insects

Recent research has shown that plants connected by mycorrihzal fungi can use these underground connections to produce and receive warning signals. Specifically, when a host plant is attacked by an aphid, the plant signals surrounding connected plants of its condition. The host plant releases volatile organic compounds (VOCs) that attract the insect's predators. The plants connected by mycorrhizal fungi are also prompted to produce identical VOCs that protect the uninfected plants from being targeted by the insect. Additionally, this assists the mycorrhizal fungi by preventing the plant’s carbon relocation which negatively affects the fungi’s growth and occurs when the plant is attacked by herbivores.

Colonization of barren soil

Plants grown in sterile soils and growth media often perform poorly without the addition of spores or hyphae of mycorrhizal fungi to colonise the plant roots and aid in the uptake of soil mineral nutrients. The absence of mycorrhizal fungi can also slow plant growth in early succession or on degraded landscapes. The introduction of alien mycorrhizal plants to nutrient-deficient ecosystems puts indigenous non-mycorrhizal plants at a competitive disadvantage. This aptitude to colonize barren soil is defined by the category Oligotroph.

Resistance to toxicity

Fungi have been found to have a protective role for plants rooted in soils with high metal concentrations, such as acidic and contaminated soils. Pine trees inoculated with Pisolithus tinctorius planted in several contaminated sites displayed high tolerance to the prevailing contaminant, survivorship and growth. One study discovered the existence of Suillus luteus strains with varying tolerance of zinc. Another study discovered that zinc-tolerant strains of Suillus bovinus conferred resistance to plants of Pinus sylvestris. This was probably due to binding of the metal to the extramatricial mycelium of the fungus, without affecting the exchange of beneficial substances.

Occurrence of mycorrhizal associations

At around 400 million years old, the Rhynie chert contains an assemblage of fossil plants preserved in sufficient detail that mycorrhizas have been observed in the stems of Aglaophyton major.

Mycorrhizas are present in 92% of plant families studied (80% of species), with arbuscular mycorrhizas being the ancestral and predominant form, and the most prevalent symbiotic association found in the plant kingdom. The structure of arbuscular mycorrhizas has been highly conserved since their first appearance in the fossil record, with both the development of ectomycorrhizas, and the loss of mycorrhizas, evolving convergently on multiple occasions.

Discovery

Associations of fungi with the roots of plants have been known since at least the mid-19th century. However early observers simply recorded the fact without investigating the relationships between the two organisms. This symbiosis was studied and described by Franciszek Kamieński in 1879–1882. Further research was carried out by Albert Bernhard Frank, who introduced the term mycorrhiza in 1885.

Degenerative disc disease

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Deg...