Search This Blog

Monday, March 18, 2019

Enrico Fermi

From Wikipedia, the free encyclopedia

Enrico Fermi
Enrico Fermi 1943-49.jpg
Born29 September 1901
Rome, Italy
Died28 November 1954 (aged 53)
Chicago, Illinois, United States
CitizenshipItalian (1901–44)
American (1944–54)
Alma materScuola Normale Superiore
Known for
Spouse(s)Laura Capon Fermi
Awards
Scientific career
FieldsPhysics
Institutions
Academic advisors
Doctoral students
Other notable students
Signature
Enrico Fermi signature.svg

Enrico Fermi was an Italian and naturalized-American physicist and the creator of the world's first nuclear reactor, the Chicago Pile-1. He has been called the "architect of the nuclear age" and the "architect of the atomic bomb". He was one of very few physicists to excel in both theoretical physics and experimental physics. Fermi held several patents related to the use of nuclear power, and was awarded the 1938 Nobel Prize in Physics for his work on induced radioactivity by neutron bombardment and for the discovery of transuranium elements. He made significant contributions to the development of statistical mechanics, quantum theory, and nuclear and particle physics.

Fermi's first major contribution involved the field of statistical mechanics. After Wolfgang Pauli formulated his exclusion principle in 1925, Fermi followed with a paper in which he applied the principle to an ideal gas, employing a statistical formulation now known as Fermi–Dirac statistics. Today, particles that obey the exclusion principle are called "fermions". Pauli later postulated the existence of an uncharged invisible particle emitted along with an electron during beta decay, to satisfy the law of conservation of energy. Fermi took up this idea, developing a model that incorporated the postulated particle, which he named the "neutrino". His theory, later referred to as Fermi's interaction and now called weak interaction, described one of the four fundamental interactions in nature. Through experiments inducing radioactivity with the recently discovered neutron, Fermi discovered that slow neutrons were more easily captured by atomic nuclei than fast ones, and he developed the Fermi age equation to describe this. After bombarding thorium and uranium with slow neutrons, he concluded that he had created new elements. Although he was awarded the Nobel Prize for this discovery, the new elements were later revealed to be nuclear fission products.

Fermi left Italy in 1938 to escape new Italian racial laws that affected his Jewish wife, Laura Capon. He emigrated to the United States, where he worked on the Manhattan Project during World War II. Fermi led the team that designed and built Chicago Pile-1, which went critical on 2 December 1942, demonstrating the first human-created, self-sustaining nuclear chain reaction. He was on hand when the X-10 Graphite Reactor at Oak Ridge, Tennessee, went critical in 1943, and when the B Reactor at the Hanford Site did so the next year. At Los Alamos, he headed F Division, part of which worked on Edward Teller's thermonuclear "Super" bomb. He was present at the Trinity test on 16 July 1945, where he used his Fermi method to estimate the bomb's yield.

After the war, Fermi served under J. Robert Oppenheimer on the General Advisory Committee, which advised the Atomic Energy Commission on nuclear matters. After the detonation of the first Soviet fission bomb in August 1949, he strongly opposed the development of a hydrogen bomb on both moral and technical grounds. He was among the scientists who testified on Oppenheimer's behalf at the 1954 hearing that resulted in the denial of Oppenheimer's security clearance. Fermi did important work in particle physics, especially related to pions and muons, and he speculated that cosmic rays arose when material was accelerated by magnetic fields in interstellar space. Many awards, concepts, and institutions are named after Fermi, including the Enrico Fermi Award, the Enrico Fermi Institute, the Fermi National Accelerator Laboratory, the Fermi Gamma-ray Space Telescope, the Enrico Fermi Nuclear Generating Station, and the synthetic element fermium, making him one of 16 scientists who have elements named after them.

Early life

Fermi was born in Rome at Via Gaeta 19.
Enrico Fermi was born in Rome, Italy, on 29 September 1901. He was the third child of Alberto Fermi, a division head in the Ministry of Railways, and Ida de Gattis, an elementary school teacher. His sister, Maria, was two years older than he, his brother Giulio a year older. After the two boys were sent to a rural community to be wet nursed, Enrico rejoined his family in Rome when he was two and a half. Although he was baptised a Roman Catholic in accordance with his grandparents' wishes, his family was not particularly religious; Enrico was an agnostic throughout his adult life. As a young boy he shared the same interests as his brother Giulio, building electric motors and playing with electrical and mechanical toys. Giulio died during an operation on a throat abscess in 1915 and Maria died in an airplane crash near Milan in 1959.

At a local market Fermi found a physics book, the 900-page Elementorum physicae mathematicae. Written in Latin by Jesuit Father Andrea Caraffa [it], a professor at the Collegio Romano, it presented mathematics, classical mechanics, astronomy, optics, and acoustics as they were understood at the time of its 1840 publication. With scientifically inclined friend, Enrico Persico, Fermi pursued projects such as building gyroscopes and measuring the acceleration of Earth's gravity. A colleague of Fermi's father gave him books on physics and mathematics which he assimilated quickly.

Scuola Normale Superiore in Pisa

Enrico Fermi as a student in Pisa
Fermi graduated from high school in July 1918, and at Amidei's urging applied to the Scuola Normale Superiore in Pisa. Having lost one son, his parents only reluctantly allowed him to live in the school's lodgings for four years. Fermi took first place in the difficult entrance exam, which included an essay on the theme of "Specific characteristics of Sounds"; the 17-year-old Fermi chose to use Fourier analysis to derive and solve the partial differential equation for a vibrating rod, and after interviewing Fermi the examiner declared he would become an outstanding physicist.

At the Scuola Normale Superiore Fermi played pranks with fellow student Franco Rasetti; the two became close friends and collaborators. Fermi was advised by Luigi Puccianti, director of the physics laboratory, who said there was little he could teach Fermi and often asked Fermi to teach him something instead. Fermi's knowledge of quantum physics was such that Puccianti asked him to organize seminars on the topic. During this time Fermi learned tensor calculus, a technique key to general relativity. Fermi initially chose mathematics as his major, but soon switched to physics. He remained largely self-taught, studying general relativity, quantum mechanics, and atomic physics.

In September 1920, Fermi was admitted to the Physics department. Since there were only three students in the department—Fermi, Rasetti, and Nello Carrara—Puccianti let them freely use the laboratory for whatever purposes they chose. Fermi decided that they should research X-ray crystallography, and the three worked to produce a Laue photograph—an X-ray photograph of a crystal. During 1921, his third year at the university, Fermi published his first scientific works in the Italian journal Nuovo Cimento. The first was entitled "On the dynamics of a rigid system of electrical charges in translational motion" (Sulla dinamica di un sistema rigido di cariche elettriche in moto traslatorio). A sign of things to come was that the mass was expressed as a tensor—a mathematical construct commonly used to describe something moving and changing in three-dimensional space. In classical mechanics, mass is a scalar quantity, but in relativity it changes with velocity. The second paper was "On the electrostatics of a uniform gravitational field of electromagnetic charges and on the weight of electromagnetic charges" (Sull'elettrostatica di un campo gravitazionale uniforme e sul peso delle masse elettromagnetiche). Using general relativity, Fermi showed that a charge has a weight equal to U/c2, where U was the electrostatic energy of the system, and c is the speed of light.

The first paper seemed to point out a contradiction between the electrodynamic theory and the relativistic one concerning the calculation of the electromagnetic masses, as the former predicted a value of 4/3 U/c2. Fermi addressed this the next year in a paper "Concerning a contradiction between electrodynamic and the relativistic theory of electromagnetic mass" in which he showed that the apparent contradiction was a consequence of relativity. This paper was sufficiently well-regarded that it was translated into German and published in the German scientific journal Physikalische Zeitschrift in 1922. That year, Fermi submitted his article "On the phenomena occurring near a world line" (Sopra i fenomeni che avvengono in vicinanza di una linea oraria) to the Italian journal I Rendiconti dell'Accademia dei Lincei. In this article he examined the Principle of Equivalence, and introduced the so-called "Fermi coordinates". He proved that on a world line close to the time line, space behaves as if it were a Euclidean space.

A light cone is a three-dimensional surface of all possible light rays arriving at and departing from a point in spacetime. Here, it is depicted with one spatial dimension suppressed. The time line is the vertical axis.
Fermi submitted his thesis, "A theorem on probability and some of its applications" (Un teorema di calcolo delle probabilità ed alcune sue applicazioni), to the Scuola Normale Superiore in July 1922, and received his laurea at the unusually young age of 20. The thesis was on X-ray diffraction images. Theoretical physics was not yet considered a discipline in Italy, and the only thesis that would have been accepted was one on experimental physics. For this reason, Italian physicists were slow in embracing the new ideas like relativity coming from Germany. Since Fermi was quite at home in the lab doing experimental work, this did not pose insurmountable problems for him.

While writing the appendix for the Italian edition of the book Fundamentals of Einstein Relativity by August Kopff in 1923, Fermi was the first to point out that hidden inside the famous Einstein equation (E = mc2) was an enormous amount of nuclear potential energy to be exploited. "It does not seem possible, at least in the near future", he wrote, "to find a way to release these dreadful amounts of energy—which is all to the good because the first effect of an explosion of such a dreadful amount of energy would be to smash into smithereens the physicist who had the misfortune to find a way to do it."

In 1924 Fermi was initiated into the Masonic Lodge "Adriano Lemmi" of the Grand Orient of Italy.

Fermi spent a semester studying under Max Born at the University of Göttingen, where he met Werner Heisenberg and Pascual Jordan. Fermi then studied in Leiden with Paul Ehrenfest from September to December 1924 on a fellowship from the Rockefeller Foundation obtained through the intercession of the mathematician Vito Volterra. Here Fermi met Hendrik Lorentz and Albert Einstein, and became good friends with Samuel Goudsmit and Jan Tinbergen. From January 1925 to late 1926, Fermi taught mathematical physics and theoretical mechanics at the University of Florence, where he teamed up with Rasetti to conduct a series of experiments on the effects of magnetic fields on mercury vapour. He also participated in seminars at the Sapienza University of Rome, giving lectures on quantum mechanics and solid state physics. While giving lectures on the new quantum mechanics based on the remarkable accuracy of predictions of the Schrödinger equation, the Italian physicist would often say, "It has no business to fit so well!"

After Wolfgang Pauli announced his exclusion principle in 1925, Fermi responded with a paper "On the quantisation of the perfect monoatomic gas" (Sulla quantizzazione del gas perfetto monoatomico), in which he applied the exclusion principle to an ideal gas. The paper was especially notable for Fermi's statistical formulation, which describes the distribution of particles in systems of many identical particles that obey the exclusion principle. This was independently developed soon after by the British physicist Paul Dirac, who also showed how it was related to the Bose–Einstein statistics. Accordingly, it is now known as Fermi–Dirac statistics. After Dirac, particles that obey the exclusion principle are today called "fermions", while those that do not are called "bosons".

Professor in Rome

Fermi and his students (the Via Panisperna boys) in the courtyard of Rome University's Physics Institute in Via Panisperna, about 1934. From Left to right: Oscar D'Agostino, Emilio Segrè, Edoardo Amaldi, Franco Rasetti and Fermi
Professorships in Italy were granted by competition (concorso) for a vacant chair, the applicants being rated on their publications by a committee of professors. Fermi applied for a chair of mathematical physics at the University of Cagliari on Sardinia, but was narrowly passed over in favour of Giovanni Giorgi. In 1926, at the age of 24, he applied for a professorship at the Sapienza University of Rome. This was a new chair, one of the first three in theoretical physics in Italy, that had been created by the Minister of Education at the urging of Professor Orso Mario Corbino, who was the University's professor of experimental physics, the Director of the Institute of Physics, and a member of Benito Mussolini's cabinet. Corbino, who also chaired the selection committee, hoped that the new chair would raise the standard and reputation of physics in Italy. The committee chose Fermi ahead of Enrico Persico and Aldo Pontremoli, and Corbino helped Fermi recruit his team, which was soon joined by notable students such as Edoardo Amaldi, Bruno Pontecorvo, Ettore Majorana and Emilio Segrè, and by Franco Rasetti, whom Fermi had appointed as his assistant. They were soon nicknamed the "Via Panisperna boys" after the street where the Institute of Physics was located.

Fermi married Laura Capon, a science student at the University, on 19 July 1928. They had two children: Nella, born in January 1931, and Giulio, born in February 1936. On 18 March 1929, Fermi was appointed a member of the Royal Academy of Italy by Mussolini, and on 27 April he joined the Fascist Party. He later opposed Fascism when the 1938 racial laws were promulgated by Mussolini in order to bring Italian Fascism ideologically closer to German National Socialism. These laws threatened Laura, who was Jewish, and put many of Fermi's research assistants out of work.

During their time in Rome, Fermi and his group made important contributions to many practical and theoretical aspects of physics. In 1928, he published his Introduction to Atomic Physics (Introduzione alla fisica atomica), which provided Italian university students with an up-to-date and accessible text. Fermi also conducted public lectures and wrote popular articles for scientists and teachers in order to spread knowledge of the new physics as widely as possible. Part of his teaching method was to gather his colleagues and graduate students together at the end of the day and go over a problem, often from his own research. A sign of success was that foreign students now began to come to Italy. The most notable of these was the German physicist Hans Bethe, who came to Rome as a Rockefeller Foundation fellow, and collaborated with Fermi on a 1932 paper "On the Interaction between Two Electrons" (German: Über die Wechselwirkung von Zwei Elektronen).

At this time, physicists were puzzled by beta decay, in which an electron was emitted from the atomic nucleus. To satisfy the law of conservation of energy, Pauli postulated the existence of an invisible particle with no charge and little or no mass that was also emitted at the same time. Fermi took up this idea, which he developed in a tentative paper in 1933, and then a longer paper the next year that incorporated the postulated particle, which Fermi called a "neutrino". His theory, later referred to as Fermi's interaction, and still later as the theory of the weak interaction, described one of the four fundamental forces of nature. The neutrino was detected after his death, and his interaction theory showed why it was so difficult to detect. When he submitted his paper to the British journal Nature, that journal's editor turned it down because it contained speculations which were "too remote from physical reality to be of interest to readers". Thus Fermi saw the theory published in Italian and German before it was published in English.

In the introduction to the 1968 English translation, physicist Fred L. Wilson noted that:
Fermi's theory, aside from bolstering Pauli's proposal of the neutrino, has a special significance in the history of modern physics. One must remember that only the naturally occurring β emitters were known at the time the theory was proposed. Later when positron decay was discovered, the process was easily incorporated within Fermi's original framework. On the basis of his theory, the capture of an orbital electron by a nucleus was predicted and eventually observed. With time much experimental data has accumulated. Although peculiarities have been observed many times in β decay, Fermi's theory always has been equal to the challenge.

The consequences of the Fermi theory are vast. For example, β spectroscopy was established as a powerful tool for the study of nuclear structure. But perhaps the most influential aspect of this work of Fermi is that his particular form of the β interaction established a pattern which has been appropriate for the study of other types of interactions. It was the first successful theory of the creation and annihilation of material particles. Previously, only photons had been known to be created and destroyed.
In January 1934, Irène Joliot-Curie and Frédéric Joliot announced that they had bombarded elements with alpha particles and induced radioactivity in them. By March, Fermi's assistant Gian-Carlo Wick had provided a theoretical explanation using Fermi's theory of beta decay. Fermi decided to switch to experimental physics, using the neutron, which James Chadwick had discovered in 1932. In March 1934, Fermi wanted to see if he could induce radioactivity with Rasetti's polonium-beryllium neutron source. Neutrons had no electric charge, and so would not be deflected by the positively charged nucleus. This meant that they needed much less energy to penetrate the nucleus than charged particles, and so would not require a particle accelerator, which the Via Panisperna boys did not have.

Enrico Fermi between Franco Rasetti (left) and Emilio Segrè in academic dress
Fermi had the idea to resort to replacing the polonium-beryllium neutron source with a radon-beryllium one, which he created by filling a glass bulb with beryllium powder, evacuating the air, and then adding 50 mCi of radon gas, supplied by Giulio Cesare Trabacchi. This created a much stronger neutron source, the effectiveness of which declined with the 3.8-day half-life of radon. He knew that this source would also emit gamma rays, but, on the basis of his theory, he believed that this would not affect the results of the experiment. He started by bombarding platinum, an element with a high atomic number that was readily available, without success. He turned to aluminium, which emitted an alpha particle and produced sodium, which then decayed into magnesium by beta particle emission. He tried lead, without success, and then fluorine in the form of calcium fluoride, which emitted an alpha particle and produced nitrogen, decaying into oxygen by beta particle emission. In all, he induced radioactivity in 22 different elements. Fermi rapidly reported the discovery of neutron-induced radioactivity in the Italian journal La Ricerca Scientifica on 25 March 1934.

The natural radioactivity of thorium and uranium made it hard to determine what was happening when these elements were bombarded with neutrons but, after correctly eliminating the presence of elements lighter than uranium but heavier than lead, Fermi concluded that they had created new elements, which he called hesperium and ausonium. The chemist Ida Noddack suggesting that some of the experiments could have produced lighter elements than lead rather than new, heavier elements. Her suggestion was not taken seriously at the time because her team had not carried out any experiments with uranium or build the theoretical basis for this possibility. At that time, fission was thought to be improbable if not impossible on theoretical grounds. While physicists expected elements with higher atomic numbers to form from neutron bombardment of lighter elements, nobody expected neutrons to have enough energy to split a heavier atom into two light element fragments in the manner that Noddack suggested.

Beta decay. A neutron decays into a proton, and an electron is emitted. In order for the total energy in the system to remain the same, Pauli and Fermi postulated that a neutrino () was also emitted
The Via Panisperna boys also noticed some unexplained effects. The experiment seemed to work better on a wooden table than a marble table top. Fermi remembered that Joliot-Curie and Chadwick had noted that paraffin wax was effective at slowing neutrons, so he decided to try that. When neutrons were passed through paraffin wax, they induced a hundred times as much radioactivity in silver compared with when it was bombarded without the paraffin. Fermi guessed that this was due to the hydrogen atoms in the paraffin. Those in wood similarly explained the difference between the wooden and the marble table tops. This was confirmed by repeating the effect with water. He concluded that collisions with hydrogen atoms slowed the neutrons. The lower the atomic number of the nucleus it collides with, the more energy a neutron loses per collision, and therefore the fewer collisions that are required to slow a neutron down by a given amount. Fermi realised that this induced more radioactivity because slow neutrons were more easily captured than fast ones. He developed a diffusion equation to describe this, which became known as the Fermi age equation.

In 1938 Fermi received the Nobel Prize in Physics at the age of 37 for his "demonstrations of the existence of new radioactive elements produced by neutron irradiation, and for his related discovery of nuclear reactions brought about by slow neutrons". After Fermi received the prize in Stockholm, he did not return home to Italy, but rather continued to New York City with his family in December 1938, where they applied for permanent residency. The decision to move to America and become U.S. citizens was due primarily to the racial laws in Italy.

Manhattan Project

Fermi arrived in New York City on 2 January 1939. He was immediately offered positions at five universities, and accepted one at Columbia University, where he had already given summer lectures in 1936. He received the news that in December 1938, the German chemists Otto Hahn and Fritz Strassmann had detected the element barium after bombarding uranium with neutrons, which Lise Meitner and her nephew Otto Frisch correctly interpreted as the result of nuclear fission. Frisch confirmed this experimentally on 13 January 1939. The news of Meitner and Frisch's interpretation of Hahn and Strassmann's discovery crossed the Atlantic with Niels Bohr, who was to lecture at Princeton University. Isidor Isaac Rabi and Willis Lamb, two Columbia University physicists working at Princeton, found out about it and carried it back to Columbia. Rabi said he told Enrico Fermi, but Fermi later gave the credit to Lamb:
I remember very vividly the first month, January, 1939, that I started working at the Pupin Laboratories because things began happening very fast. In that period, Niels Bohr was on a lecture engagement at the Princeton University and I remember one afternoon Willis Lamb came back very excited and said that Bohr had leaked out great news. The great news that had leaked out was the discovery of fission and at least the outline of its interpretation. Then, somewhat later that same month, there was a meeting in Washington where the possible importance of the newly discovered phenomenon of fission was first discussed in semi-jocular earnest as a possible source of nuclear power.
Noddack was proven right after all. Fermi had dismissed the possibility of fission on the basis of his calculations, but he had not taken into account the binding energy that would appear when a nuclide with an odd number of neutrons absorbed an extra neutron. For Fermi, the news came as a profound embarrassment, as the transuranic elements that he had partly been awarded the Nobel Prize for discovering had not been transuranic elements at all, but fission products. He added a footnote to this effect to his Nobel Prize acceptance speech.

Diagram of Chicago Pile-1, the first nuclear reactor to achieve a self-sustaining chain reaction. Designed by Fermi, it consisted of uranium and uranium oxide in a cubic lattice embedded in graphite.
The scientists at Columbia decided that they should try to detect the energy released in the nuclear fission of uranium when bombarded by neutrons. On 25 January 1939, in the basement of Pupin Hall at Columbia, an experimental team including Fermi conducted the first nuclear fission experiment in the United States. The other members of the team were Herbert L. Anderson, Eugene T. Booth, John R. Dunning, G. Norris Glasoe, and Francis G. Slack. The next day, the Fifth Washington Conference on Theoretical Physics began in Washington, D.C. under the joint auspices of George Washington University and the Carnegie Institution of Washington. There, the news on nuclear fission was spread even further, fostering many more experimental demonstrations.

French scientists Hans von Halban, Lew Kowarski, and Frédéric Joliot-Curie had demonstrated that uranium bombarded by neutrons emitted more neutrons than it absorbed, suggesting the possibility of a chain reaction. Fermi and Anderson did so too a few weeks later. Leó Szilárd obtained 200 kilograms (440 lb) of uranium oxide from Canadian radium producer Eldorado Gold Mines Limited, allowing Fermi and Anderson to conduct experiments with fission on a much larger scale. Fermi and Szilárd collaborated on a design of a device to achieve a self-sustaining nuclear reaction—a nuclear reactor. Owing to the rate of absorption of neutrons by the hydrogen in water, it was unlikely that a self-sustaining reaction could be achieved with natural uranium and water as a neutron moderator. Fermi suggested, based on his work with neutrons, that the reaction could be achieved with uranium oxide blocks and graphite as a moderator instead of water. This would reduce the neutron capture rate, and in theory make a self-sustaining chain reaction possible. Szilárd came up with a workable design: a pile of uranium oxide blocks interspersed with graphite bricks. Szilárd, Anderson, and Fermi published a paper on "Neutron Production in Uranium". But their work habits and personalities were different, and Fermi had trouble working with Szilárd.

Fermi was among the first to warn military leaders about the potential impact of nuclear energy, giving a lecture on the subject at the Navy Department on 18 March 1939. The response fell short of what he had hoped for, although the Navy agreed to provide $1,500 towards further research at Columbia. Later that year, Szilárd, Eugene Wigner, and Edward Teller sent the famous letter signed by Einstein to U.S. President Roosevelt, warning that Nazi Germany was likely to build an atomic bomb. In response, Roosevelt formed the Advisory Committee on Uranium to investigate the matter.

Fermi's ID photo from Los Alamos
The Advisory Committee on Uranium provided money for Fermi to buy graphite, and he built a pile of graphite bricks on the seventh floor of the Pupin Hall laboratory. By August 1941, he had six tons of uranium oxide and thirty tons of graphite, which he used to build a still larger pile in Schermerhorn Hall at Columbia.

The S-1 Section of the Office of Scientific Research and Development, as the Advisory Committee on Uranium was now known, met on 18 December 1941, with the U.S. now engaged in World War II, making its work urgent. Most of the effort sponsored by the Committee had been directed at producing enriched uranium, but Committee member Arthur Compton determined that a feasible alternative was plutonium, which could be mass-produced in nuclear reactors by the end of 1944. He decided to concentrate the plutonium work at the University of Chicago. Fermi reluctantly moved, and his team became part of the new Metallurgical Laboratory there.

The possible results of a self-sustaining nuclear reaction were unknown, so it seemed inadvisable to build the first nuclear reactor on the University of Chicago campus in the middle of the city. Compton found a location in the Argonne Woods Forest Preserve, about 20 miles (32 km) from Chicago. Stone & Webster was contracted to develop the site, but the work was halted by an industrial dispute. Fermi then persuaded Compton that he could build the reactor in the squash court under the stands of the University of Chicago's Stagg Field. Construction of the pile began on 6 November 1942, and Chicago Pile-1 went critical on 2 December. The shape of the pile was intended to be roughly spherical, but as work proceeded Fermi calculated that criticality could be achieved without finishing the entire pile as planned.

This experiment was a landmark in the quest for energy, and it was typical of Fermi's approach. Every step was carefully planned, every calculation meticulously done. When the first self-sustained nuclear chain reaction was achieved, Compton made a coded phone call to James B. Conant, the chairman of the National Defense Research Committee.
I picked up the phone and called Conant. He was reached at the President's office at Harvard University. "Jim," I said, "you'll be interested to know that the Italian navigator has just landed in the new world." Then, half apologetically, because I had led the S-l Committee to believe that it would be another week or more before the pile could be completed, I added, "the earth was not as large as he had estimated, and he arrived at the new world sooner than he had expected."

"Is that so," was Conant's excited response. "Were the natives friendly?" "Everyone landed safe and happy."
Three men talking. The one on the left is wearing a tie and leans against a wall. He stands head and shoulders above the other two. The one in the centre is smiling, and wearing an open-necked shirt. The one on the right wears a shirt and lab coat. All three have photo ID passes.
To continue the research where it would not pose a public health hazard, the reactor was disassembled and moved to the Argonne Woods site. There Fermi directed experiments on nuclear reactions, revelling in the opportunities provided by the reactor's abundant production of free neutrons. The laboratory soon branched out from physics and engineering into using the reactor for biological and medical research. Initially, Argonne was run by Fermi as part of the University of Chicago, but it became a separate entity with Fermi as its director in May 1944.

When the air-cooled X-10 Graphite Reactor at Oak Ridge went critical on 4 November 1943, Fermi was on hand just in case something went wrong. The technicians woke him early so that he could see it happen. Getting X-10 operational was another milestone in the plutonium project. It provided data on reactor design, training for DuPont staff in reactor operation, and produced the first small quantities of reactor-bred plutonium. Fermi became an American citizen in July 1944, the earliest date the law allowed.

In September 1944, Fermi inserted the first uranium fuel slug into the B Reactor at the Hanford Site, the production reactor designed to breed plutonium in large quantities. Like X-10, it had been designed by Fermi's team at the Metallurgical Laboratory, and built by DuPont, but it was much larger, and was water-cooled. Over the next few days, 838 tubes were loaded, and the reactor went critical. Shortly after midnight on 27 September, the operators began to withdraw the control rods to initiate production. At first all appeared to be well, but around 03:00, the power level started to drop and by 06:30 the reactor had shut down completely. The Army and DuPont turned to Fermi's team for answers. The cooling water was investigated to see if there was a leak or contamination. The next day the reactor suddenly started up again, only to shut down once more a few hours later. The problem was traced to neutron poisoning from xenon-135, a fission product with a half-life of 9.2 hours. DuPont had deviated from the Metallurgical Laboratory's original design in which the reactor had 1,500 tubes arranged in a circle, and had added 504 tubes to fill in the corners. The scientists had originally considered this over-engineering a waste of time and money, but Fermi realized that if all 2,004 tubes were loaded, the reactor could reach the required power level and efficiently produce plutonium.

The FERMIAC, an analog computer invented by Fermi to study neutron transport
In mid-1944, Robert Oppenheimer persuaded Fermi to join his Project Y at Los Alamos, New Mexico. Arriving in September, Fermi was appointed an associate director of the laboratory, with broad responsibility for nuclear and theoretical physics, and was placed in charge of F Division, which was named after him. F Division had four branches: F-1 Super and General Theory under Teller, which investigated the "Super" (thermonuclear) bomb; F-2 Water Boiler under L. D. P. King, which looked after the "water boiler" aqueous homogeneous research reactor; F-3 Super Experimentation under Egon Bretscher; and F-4 Fission Studies under Anderson. Fermi observed the Trinity test on 16 July 1945, and conducted an experiment to estimate the bomb's yield by dropping strips of paper into the blast wave. He paced off the distance they were blown by the explosion, and calculated the yield as ten kilotons of TNT; the actual yield was about 18.6 kilotons.

Along with Oppenheimer, Compton, and Ernest Lawrence, Fermi was part of the scientific panel that advised the Interim Committee on target selection. The panel agreed with the committee that atomic bombs would be used without warning against an industrial target. Like others at the Los Alamos Laboratory, Fermi found out about the atomic bombings of Hiroshima and Nagasaki from the public address system in the technical area. Fermi did not believe that atomic bombs would deter nations from starting wars, nor did he think that the time was ripe for world government. He therefore did not join the Association of Los Alamos Scientists.

Post-war work

Fermi became the Charles H. Swift Distinguished Professor of Physics at the University of Chicago on 1 July 1945, although he did not depart the Los Alamos Laboratory with his family until 31 December 1945. He was elected a member of the U.S. National Academy of Sciences in 1945. The Metallurgical Laboratory became the Argonne National Laboratory on 1 July 1946, the first of the national laboratories established by the Manhattan Project. The short distance between Chicago and Argonne allowed Fermi to work at both places. At Argonne he continued experimental physics, investigating neutron scattering with Leona Marshall. He also discussed theoretical physics with Maria Mayer, helping her develop insights into spin–orbit coupling that would lead to her receiving the Nobel Prize.

The Manhattan Project was replaced by the Atomic Energy Commission (AEC) on 1 January 1947. Fermi served on the AEC General Advisory Committee, an influential scientific committee chaired by Robert Oppenheimer. He also liked to spend a few weeks of each year at the Los Alamos National Laboratory, where he collaborated with Nicholas Metropolis, and with John von Neumann on Rayleigh–Taylor instability, the science of what occurs at the border between two fluids of different densities.

Laura and Enrico Fermi at the Institute for Nuclear Studies, Los Alamos, 1954
After the detonation of the first Soviet fission bomb in August 1949, Fermi, along with Isidor Rabi, wrote a strongly worded report for the committee, opposing the development of a hydrogen bomb on moral and technical grounds. Nonetheless, Fermi continued to participate in work on the hydrogen bomb at Los Alamos as a consultant. Along with Stanislaw Ulam, he calculated that not only would the amount of tritium needed for Teller's model of a thermonuclear weapon be prohibitive, but a fusion reaction could still not be assured to propagate even with this large quantity of tritium. Fermi was among the scientists who testified on Oppenheimer's behalf at the Oppenheimer security hearing in 1954 that resulted in denial of Oppenheimer's security clearance.

In his later years, Fermi continued teaching at the University of Chicago. His PhD students in the post-war period included Owen Chamberlain, Geoffrey Chew, Jerome Friedman, Marvin Goldberger, Tsung-Dao Lee, Arthur Rosenfeld and Sam Treiman. Jack Steinberger was a graduate student, and Mildred Dresselhaus was highly influenced by Fermi during the year she overlapped with him as a PhD student. Fermi conducted important research in particle physics, especially related to pions and muons. He made the first predictions of pion-nucleon resonance, relying on statistical methods, since he reasoned that exact answers were not required when the theory was wrong anyway. In a paper co-authored with Chen Ning Yang, he speculated that pions might actually be composite particles. The idea was elaborated by Shoichi Sakata. It has since been supplanted by the quark model, in which the pion is made up of quarks, which completed Fermi's model, and vindicated his approach.

Fermi wrote a paper "On the Origin of Cosmic Radiation" in which he proposed that cosmic rays arose through material being accelerated by magnetic fields in interstellar space, which led to a difference of opinion with Teller. Fermi examined the issues surrounding magnetic fields in the arms of a spiral galaxy. He mused about what is now referred to as the "Fermi paradox": the contradiction between the presumed probability of the existence of extraterrestrial life and the fact that contact has not been made.

Fermi's grave in Chicago
Toward the end of his life, Fermi questioned his faith in society at large to make wise choices about nuclear technology. He said:
Some of you may ask, what is the good of working so hard merely to collect a few facts which will bring no pleasure except to a few long-haired professors who love to collect such things and will be of no use to anybody because only few specialists at best will be able to understand them? In answer to such question[s] I may venture a fairly safe prediction.

History of science and technology has consistently taught us that scientific advances in basic understanding have sooner or later led to technical and industrial applications that have revolutionized our way of life. It seems to me improbable that this effort to get at the structure of matter should be an exception to this rule. What is less certain, and what we all fervently hope, is that man will soon grow sufficiently adult to make good use of the powers that he acquires over nature.

Death

Fermi underwent an exploratory operation in Billings Memorial Hospital in October 1954, after which he returned home. Fifty days later died of stomach cancer at age 53 in his home in Chicago. His memorial service was held at the University of Chicago chapel, where colleagues Samuel K. Allison, Emilio Segrè, and Herbert L. Anderson spoke to mourn the loss of one of the world's "most brilliant and productive physicists." His body was interred at Oak Woods Cemetery.

Impact and legacy

Legacy

As a person, Fermi seemed simplicity itself. He was extraordinarily vigorous and loved games and sport. On such occasions his ambitious nature became apparent. He played tennis with considerable ferocity and when climbing mountains acted rather as a guide. One might have called him a benevolent dictator. I remember once at the top of a mountain Fermi got up and said: "Well, it is two minutes to two, let's all leave at two o'clock"; and of course, everybody got up faithfully and obediently. This leadership and self-assurance gave Fermi the name of "The Pope" whose pronouncements were infallible in physics. He once said: "I can calculate anything in physics within a factor 2 on a few sheets; to get the numerical factor in front of the formula right may well take a physicist a year to calculate, but I am not interested in that." His leadership could go so far that it was a danger to the independence of the person working with him. I recollect once, at a party at his house when my wife cut the bread, Fermi came along and said he had a different philosophy on bread-cutting and took the knife out of my wife's hand and proceeded with the job because he was convinced that his own method was superior. But all this did not offend at all, but rather charmed everybody into liking Fermi. He had very few interests outside physics and when he once heard me play on Teller's piano he confessed that his interest in music was restricted to simple tunes.Egon Bretscher
Fermi received numerous awards in recognition of his achievements, including the Matteucci Medal in 1926, the Nobel Prize for Physics in 1938, the Hughes Medal in 1942, the Franklin Medal in 1947, and the Rumford Prize in 1953. He was awarded the Medal for Merit in 1946 for his contribution to the Manhattan Project. Fermi was elected a Foreign Member of the Royal Society (FRS) in 1950. The Basilica of Santa Croce, Florence, known as the Temple of Italian Glories for its many graves of artists, scientists and prominent figures in Italian history, has a plaque commemorating Fermi. In 1999, Time named Fermi on its list of the top 100 persons of the twentieth century. Fermi was widely regarded as an unusual case of a 20th-century physicist who excelled both theoretically and experimentally. The historian of physics, C. P. Snow, wrote that "if Fermi had been born a few years earlier, one could well imagine him discovering Rutherford's atomic nucleus, and then developing Bohr's theory of the hydrogen atom. If this sounds like hyperbole, anything about Fermi is likely to sound like hyperbole".

Fermi was known as an inspiring teacher, and was noted for his attention to detail, simplicity, and careful preparation of his lectures. Later, his lecture notes were transcribed into books. His papers and notebooks are today in the University of Chicago. Victor Weisskopf noted how Fermi "always managed to find the simplest and most direct approach, with the minimum of complication and sophistication." Fermi's ability and success stemmed as much from his appraisal of the art of the possible, as from his innate skill and intelligence. He disliked complicated theories, and while he had great mathematical ability, he would never use it when the job could be done much more simply. He was famous for getting quick and accurate answers to problems that would stump other people. Later on, his method of getting approximate and quick answers through back-of-the-envelope calculations became informally known as the "Fermi method", and is widely taught.

Fermi was fond of pointing out that Alessandro Volta, working in his laboratory, could have had no idea where the study of electricity would lead. Fermi is generally remembered for his work on nuclear power and nuclear weapons, especially the creation of the first nuclear reactor, and the development of the first atomic and hydrogen bombs. His scientific work has stood the test of time. This includes his theory of beta decay, his work with non-linear systems, his discovery of the effects of slow neutrons, his study of pion-nucleon collisions, and his Fermi–Dirac statistics. His speculation that a pion was not a fundamental particle pointed the way towards the study of quarks and leptons.

Things named in Fermi's honor

The sign at Enrico Fermi Street in Rome
Memorial plaque in the Basilica Santa Croce, Florence. Italy
Many things bear Fermi's name. These include the Fermilab particle accelerator and physics lab in Batavia, Illinois, which was renamed in his honor in 1974, and the Fermi Gamma-ray Space Telescope, which was named after him in 2008, in recognition of his work on cosmic rays. Three nuclear reactor installations have been named after him: the Fermi 1 and Fermi 2 nuclear power plants in Newport, Michigan, the Enrico Fermi Nuclear Power Plant at Trino Vercellese in Italy, and the RA-1 Enrico Fermi research reactor in Argentina. A synthetic element isolated from the debris of the 1952 Ivy Mike nuclear test was named fermium, in honor of Fermi's contributions to the scientific community. This makes him one of 16 scientists who have elements named after them.

Since 1956, the United States Atomic Energy Commission has named its highest honor, the Fermi Award, after him. Recipients of the award include well-known scientists like Otto Hahn, Robert Oppenheimer, Edward Teller and Hans Bethe.

Bibliography

  • Introduzione alla Fisica Atomica (in Italian). Bologna: N. Zanichelli. 1928. OCLC 9653646.
  • Fisica per i Licei (in Italian). Bologna: N. Zanichelli. 1929. OCLC 9653646.
  • Molecole e cristalli (in Italian). Bologna: N. Zanichelli. 1934. OCLC 19918218.
  • Thermodynamics. New York: Prentice Hall. 1937. OCLC 2379038.
  • Fisica per Istituti Tecnici (in Italian). Bologna: N. Zanichelli. 1938.
  • Fisica per Licei Scientifici (in Italian). Bologna: N. Zanichelli. 1938. (with Edoardo Amaldi)
  • Elementary particles. New Haven: Yale University Press. 1951. OCLC 362513.
  • Notes on Quantum Mechanics. Chicago: The University of Chicago Press. 1961. OCLC 1448078.

Patents

  • US Patent 2206634, "Process for the Production of Radioactive Substances", issued July 1940
  • US Patent 2836554, "Air Cooled Neutronic Reactor", issued April 1950
  • US Patent 2524379, "Neutron Velocity Selector", issued October 1950
  • US Patent 2852461, "Neutronic Reactor", issued September 1953
  • US Patent 2708656, "Neutronic Reactor", issued May 1955
  • US Patent 2768134, "Testing Material in a Neutronic Reactor", issued October 1956
  • US Patent 2780595, "Test Exponential Pile", issued February 1957
  • US Patent 2798847, "Method of Operating a Neutronic Reactor", issued July 1957
  • US Patent 2807581, "Neutronic Reactor", issued September 1957
  • US Patent 2807727, "Neutronic Reactor Shield", issued September 1957
  • US Patent 2813070, "Method of Sustaining a Neutronic Chain Reacting System", issued November 1957
  • US Patent 2837477, "Chain Reacting System", issued June 1958
  • US Patent 2931762, "Neutronic Reactor", issued April 1960
  • US Patent 2969307, "Method of Testing Thermal Neutron Fissionable Material for Purity", issued January 1961
  • Pulsar

    From Wikipedia, the free encyclopedia

    PSR B1509-58X-rays from Chandra are gold; Infrared from WISE in red, green and blue/max.
     
    A pulsar (from pulse and -ar as in quasar) is a highly magnetized rotating neutron star that emits a beam of electromagnetic radiation. This radiation can be observed only when the beam of emission is pointing toward Earth (much like the way a lighthouse can be seen only when the light is pointed in the direction of an observer), and is responsible for the pulsed appearance of emission. Neutron stars are very dense, and have short, regular rotational periods. This produces a very precise interval between pulses that ranges from milliseconds to seconds for an individual pulsar. Pulsars are believed to be one of the candidates for the source of ultra-high-energy cosmic rays (see also centrifugal mechanism of acceleration). 

    The periods of pulsars make them very useful tools. Observations of a pulsar in a binary neutron star system were used to indirectly confirm the existence of gravitational radiation. The first extrasolar planets were discovered around a pulsar, PSR B1257+12. Certain types of pulsars rival atomic clocks in their accuracy in keeping time.

    History of observation

    Discovery

    Chart on which Jocelyn Bell Burnell first recognised evidence of a pulsar, exhibited at Cambridge university Library
     
    Composite optical/X-ray image of the Crab Nebula, showing synchrotron emission in the surrounding pulsar wind nebula, powered by injection of magnetic fields and particles from the central pulsar.
     
    The first pulsar was observed on November 28, 1967, by Jocelyn Bell Burnell and Antony Hewish. They observed pulses separated by 1.33 seconds that originated from the same location in the sky, and kept to sidereal time. In looking for explanations for the pulses, the short period of the pulses eliminated most astrophysical sources of radiation, such as stars, and since the pulses followed sidereal time, it could not be man-made radio frequency interference

    When observations with another telescope confirmed the emission, it eliminated any sort of instrumental effects. At this point, Bell Burnell said of herself and Hewish that "we did not really believe that we had picked up signals from another civilization, but obviously the idea had crossed our minds and we had no proof that it was an entirely natural radio emission. It is an interesting problem—if one thinks one may have detected life elsewhere in the universe, how does one announce the results responsibly?" Even so, they nicknamed the signal LGM-1, for "little green men" (a playful name for intelligent beings of extraterrestrial origin). 

    It was not until a second pulsating source was discovered in a different part of the sky that the "LGM hypothesis" was entirely abandoned. Their pulsar was later dubbed CP 1919, and is now known by a number of designators including PSR 1919+21 and PSR J1921+2153. Although CP 1919 emits in radio wavelengths, pulsars have subsequently been found to emit in visible light, X-ray, and gamma ray wavelengths.

    The word "pulsar" is a portmanteau of 'pulsating' and 'quasar', and first appeared in print in 1968: 

    An entirely novel kind of star came to light on Aug. 6 last year and was referred to, by astronomers, as LGM (Little Green Men). Now it is thought to be a novel type between a white dwarf and a neutron [star]. The name Pulsar is likely to be given to it. Dr. A. Hewish told me yesterday: "… I am sure that today every radio telescope is looking at the Pulsars."

    The existence of neutron stars was first proposed by Walter Baade and Fritz Zwicky in 1934, when they argued that a small, dense star consisting primarily of neutrons would result from a supernova. Based on the idea of magnetic flux conservation from magnetic main sequence stars, Lodewijk Woltjer proposed in 1964 that such neutron stars might contain magnetic fields as large as 10^14 to 10^16 G. In 1967, shortly before the discovery of pulsars, Franco Pacini suggested that a rotating neutron star with a magnetic field would emit radiation, and even noted that such energy could be pumped into a supernova remnant around a neutron star, such as the Crab Nebula. After the discovery of the first pulsar, Thomas Gold independently suggested a rotating neutron star model similar to that of Pacini, and explicitly argued that this model could explain the pulsed radiation observed by Bell Burnell and Hewish. The discovery of the Crab pulsar later in 1968 seemed to provide confirmation of the rotating neutron star model of pulsars. The Crab pulsar has a 33-millisecond pulse period, which was too short to be consistent with other proposed models for pulsar emission. Moreover, the Crab pulsar is so named because it is located at the center of the Crab Nebula, consistent with the 1933 prediction of Baade and Zwicky.

    In 1974, Antony Hewish and Martin Ryle became the first astronomers to be awarded the Nobel Prize in Physics, with the Royal Swedish Academy of Sciences noting that Hewish played a "decisive role in the discovery of pulsars". Considerable controversy is associated with the fact that Hewish was awarded the prize while Bell, who made the initial discovery while she was his PhD student, was not. Bell claims no bitterness upon this point, supporting the decision of the Nobel prize committee.

    Milestones

    The Vela Pulsar and its surrounding pulsar wind nebula.
     
    In 1974, Joseph Hooton Taylor, Jr. and Russell Hulse discovered for the first time a pulsar in a binary system, PSR B1913+16. This pulsar orbits another neutron star with an orbital period of just eight hours. Einstein's theory of general relativity predicts that this system should emit strong gravitational radiation, causing the orbit to continually contract as it loses orbital energy. Observations of the pulsar soon confirmed this prediction, providing the first ever evidence of the existence of gravitational waves. As of 2010, observations of this pulsar continue to agree with general relativity. In 1993, the Nobel Prize in Physics was awarded to Taylor and Hulse for the discovery of this pulsar.

    In 1982, Don Backer led a group which discovered PSR B1937+21, a pulsar with a rotation period of just 1.6 milliseconds (38,500 rpm). Observations soon revealed that its magnetic field was much weaker than ordinary pulsars, while further discoveries cemented the idea that a new class of object, the "millisecond pulsars" (MSPs) had been found. MSPs are believed to be the end product of X-ray binaries. Owing to their extraordinarily rapid and stable rotation, MSPs can be used by astronomers as clocks rivaling the stability of the best atomic clocks on Earth. Factors affecting the arrival time of pulses at Earth by more than a few hundred nanoseconds can be easily detected and used to make precise measurements. Physical parameters accessible through pulsar timing include the 3D position of the pulsar, its proper motion, the electron content of the interstellar medium along the propagation path, the orbital parameters of any binary companion, the pulsar rotation period and its evolution with time. (These are computed from the raw timing data by Tempo, a computer program specialized for this task.) After these factors have been taken into account, deviations between the observed arrival times and predictions made using these parameters can be found and attributed to one of three possibilities: intrinsic variations in the spin period of the pulsar, errors in the realization of Terrestrial Time against which arrival times were measured, or the presence of background gravitational waves. Scientists are currently attempting to resolve these possibilities by comparing the deviations seen between several different pulsars, forming what is known as a pulsar timing array. The goal of these efforts is to develop a pulsar-based time standard precise enough to make the first ever direct detection of gravitational waves. In June 2006, the astronomer John Middleditch and his team at LANL announced the first prediction of pulsar glitches with observational data from the Rossi X-ray Timing Explorer. They used observations of the pulsar PSR J0537-6910

    In 1992, Aleksander Wolszczan discovered the first extrasolar planets around PSR B1257+12. This discovery presented important evidence concerning the widespread existence of planets outside the Solar System, although it is very unlikely that any life form could survive in the environment of intense radiation near a pulsar. 

    In 2016, AR Scorpii was identified as the first pulsar in which the compact object is a white dwarf instead of a neutron star. Because its moment of inertia is much higher than that of a neutron star, the white dwarf in this system rotates once every 1.97 minutes, far slower than neutron-star pulsars. The system displays strong pulsations from ultraviolet to radio wavelengths, powered by the spin-down of the strongly magnetized white dwarf.

    Nomenclature

    Initially pulsars were named with letters of the discovering observatory followed by their right ascension (e.g. CP 1919). As more pulsars were discovered, the letter code became unwieldy, and so the convention then arose of using the letters PSR (Pulsating Source of Radio) followed by the pulsar's right ascension and degrees of declination (e.g. PSR 0531+21) and sometimes declination to a tenth of a degree (e.g. PSR 1913+16.7). Pulsars appearing very close together sometimes have letters appended (e.g. PSR 0021-72C and PSR 0021-72D). 

    The modern convention prefixes the older numbers with a B (e.g. PSR B1919+21), with the B meaning the coordinates are for the 1950.0 epoch. All new pulsars have a J indicating 2000.0 coordinates and also have declination including minutes (e.g. PSR J1921+2153). Pulsars that were discovered before 1993 tend to retain their B names rather than use their J names (e.g. PSR J1921+2153 is more commonly known as PSR B1919+21). Recently discovered pulsars only have a J name (e.g. PSR J0437-4715). All pulsars have a J name that provides more precise coordinates of its location in the sky.

    Formation, mechanism, turn off

    Schematic view of a pulsar. The sphere in the middle represents the neutron star, the curves indicate the magnetic field lines, the protruding cones represent the emission beams and the green line represents the axis on which the star rotates.
     
    The events leading to the formation of a pulsar begin when the core of a massive star is compressed during a supernova, which collapses into a neutron star. The neutron star retains most of its angular momentum, and since it has only a tiny fraction of its progenitor's radius (and therefore its moment of inertia is sharply reduced), it is formed with very high rotation speed. A beam of radiation is emitted along the magnetic axis of the pulsar, which spins along with the rotation of the neutron star. The magnetic axis of the pulsar determines the direction of the electromagnetic beam, with the magnetic axis not necessarily being the same as its rotational axis. This misalignment causes the beam to be seen once for every rotation of the neutron star, which leads to the "pulsed" nature of its appearance. 

    In rotation-powered pulsars, the beam originates from the rotational energy of the neutron star, which generates an electrical field from the movement of the very strong magnetic field, resulting in the acceleration of protons and electrons on the star surface and the creation of an electromagnetic beam emanating from the poles of the magnetic field. This rotation slows down over time as electromagnetic power is emitted. When a pulsar's spin period slows down sufficiently, the radio pulsar mechanism is believed to turn off (the so-called "death line"). This turn-off seems to take place after about 10–100 million years, which means of all the neutron stars born in the 13.6 billion year age of the universe, around 99% no longer pulsate.

    Though the general picture of pulsars as rapidly rotating neutron stars is widely accepted, Werner Becker of the Max Planck Institute for Extraterrestrial Physics said in 2006, "The theory of how pulsars emit their radiation is still in its infancy, even after nearly forty years of work."

    Categories

    Three distinct classes of pulsars are currently known to astronomers, according to the source of the power of the electromagnetic radiation:
    1. Rotation-powered pulsars, where the loss of rotational energy of the star provides the power,
    2. Accretion-powered pulsars (accounting for most but not all X-ray pulsars), where the gravitational potential energy of accreted matter is the power source (producing X-rays that are observable from the Earth).
    3. Magnetars, where the decay of an extremely strong magnetic field provides the electromagnetic power.
    Although all three classes of objects are neutron stars, their observable behavior and the underlying physics are quite different. There are, however, connections. For example, X-ray pulsars are probably old rotationally-powered pulsars that have already lost most of their power, and have only become visible again after their binary companions had expanded and began transferring matter on to the neutron star. The process of accretion can in turn transfer enough angular momentum to the neutron star to "recycle" it as a rotation-powered millisecond pulsar. As this matter lands on the neutron star, it is thought to "bury" the magnetic field of the neutron star (although the details are unclear), leaving millisecond pulsars with magnetic fields 1000-10,000 times weaker than average pulsars. This low magnetic field is less effective at slowing the pulsar's rotation, so millisecond pulsars live for billions of years, making them the oldest known pulsars. Millisecond pulsars are seen in globular clusters, which stopped forming neutron stars billions of years ago.

    Of interest to the study of the state of the matter in a neutron star are the glitches observed in the rotation velocity of the neutron star. This velocity is decreasing slowly but steadily, except by sudden variations. One model put forward to explain these glitches is that they are the result of "starquakes" that adjust the crust of the neutron star. Models where the glitch is due to a decoupling of the possibly superconducting interior of the star have also been advanced. In both cases, the star's moment of inertia changes, but its angular momentum does not, resulting in a change in rotation rate.

    Disrupted recycled pulsar

    When two massive stars are born close together from the same cloud of gas, they can form a binary system and orbit each other from birth. If those two stars are at least a few times as massive as our sun, their lives will both end in supernova explosions. The more massive star explodes first, leaving behind a neutron star. If the explosion does not kick the second star away, the binary system survives. The neutron star can now be visible as a radio pulsar, and it slowly loses energy and spins down. Later, the second star can swell up, allowing the neutron star to suck up its matter. The matter falling onto the neutron star spins it up and reduces its magnetic field. This is called "recycling" because it returns the neutron star to a quickly-spinning state. Finally, the second star also explodes in a supernova, producing another neutron star. If this second explosion also fails to disrupt the binary, a double neutron star binary is formed. Otherwise, the spun-up neutron star is left with no companion and becomes a "disrupted recycled pulsar", spinning between a few and 50 times per second.

    Applications

    The discovery of pulsars allowed astronomers to study an object never observed before, the neutron star. This kind of object is the only place where the behavior of matter at nuclear density can be observed (though not directly). Also, millisecond pulsars have allowed a test of general relativity in conditions of an intense gravitational field.

    Maps

    Relative position of the Sun to the center of the Galaxy and 14 pulsars with their periods denoted
     
    Pulsar maps have been included on the two Pioneer Plaques as well as the Voyager Golden Record. They show the position of the Sun, relative to 14 pulsars, which are identified by the unique timing of their electromagnetic pulses, so that our position both in space and in time can be calculated by potential extraterrestrial intelligences. Because pulsars are emitting very regular pulses of radio waves, its radio transmissions do not require daily corrections. Moreover, pulsar positioning could create a spacecraft navigation system independently, or be used in conjunction with satellite navigation.

    Precise clocks

    Generally, the regularity of pulsar emission does not rival the stability of atomic clocks. However, for some millisecond pulsars, the regularity of pulsation is even more precise than an atomic clock. For example, J0437-4715 has a period of 0.005757451936712637 s with an error of 1.7×10−17 s. This stability allows millisecond pulsars to be used in establishing ephemeris time or in building pulsar clocks.

    Timing noise is the name for rotational irregularities observed in all pulsars. This timing noise is observable as random wandering in the pulse frequency or phase. It is unknown whether timing noise is related to pulsar glitches.

    Probes of the interstellar medium

    The radiation from pulsars passes through the interstellar medium (ISM) before reaching Earth. Free electrons in the warm (8000 K), ionized component of the ISM and H II regions affect the radiation in two primary ways. The resulting changes to the pulsar's radiation provide an important probe of the ISM itself.

    Because of the dispersive nature of the interstellar plasma, lower-frequency radio waves travel through the medium slower than higher-frequency radio waves. The resulting delay in the arrival of pulses at a range of frequencies is directly measurable as the dispersion measure of the pulsar. The dispersion measure is the total column density of free electrons between the observer and the pulsar,
    where is the distance from the pulsar to the observer and is the electron density of the ISM. The dispersion measure is used to construct models of the free electron distribution in the Milky Way.

    Additionally, turbulence in the interstellar gas causes density inhomogeneities in the ISM which cause scattering of the radio waves from the pulsar. The resulting scintillation of the radio waves—the same effect as the twinkling of a star in visible light due to density variations in the Earth's atmosphere—can be used to reconstruct information about the small scale variations in the ISM. Due to the high velocity (up to several hundred km/s) of many pulsars, a single pulsar scans the ISM rapidly, which results in changing scintillation patterns over timescales of a few minutes.

    Probes of space-time

    Pulsars orbiting within the curved space-time around Sgr A*, the supermassive black hole at the center of the Milky Way, could serve as probes of gravity in the strong-field regime. Arrival times of the pulses would be affected by special- and general-relativistic Doppler shifts and by the complicated paths that the radio waves would travel through the strongly curved space-time around the black hole. In order for the effects of general relativity to be measurable with current instruments, pulsars with orbital periods less than about 10 years would need to be discovered; such pulsars would orbit at distances inside 0.01 pc from Sgr A*. Searches are currently underway; at present, five pulsars are known to lie within 100 pc from Sgr A*.

    Gravitational waves detectors

    There are 3 consortia around the world which use pulsars to search for gravitational waves. In Europe, there is the European Pulsar Timing Array (EPTA); there is the Parkes Pulsar Timing Array (PPTA) in Australia; and there is the North American Nanohertz Observatory for Gravitational Waves (NANOGrav) in Canada and the US. Together, the consortia form the International Pulsar Timing Array (IPTA). The pulses from Millisecond Pulsars (MSPs) are used as a system of Galactic clocks. Disturbances in the clocks will be measurable at Earth. A disturbance from a passing gravitational wave will have a particular signature across the ensemble of pulsars, and will be thus detected.

    Significant pulsars

    Pulsars within 300 pc
    PSR Distance
    (pc)
    Age
    (Myr)
    J0030+0451 244 7,580
    J0108−1431 238 166
    J0437−4715 156 1,590
    J0633+1746 156 0.342
    J0659+1414 290 0.111
    J0835−4510 290 0.0113
    J0453+0755 260 17.5
    J1045−4509 300 6,710
    J1741−2054 250 0.387
    J1856−3754 161 3.76
    J2144−3933 165 272

    Gamma-ray pulsars detected by the Fermi Gamma-ray Space Telescope.

    The pulsars listed here were either the first discovered of its type, or represent an extreme of some type among the known pulsar population, such as having the shortest measured period.
    • The first radio pulsar "CP 1919" (now known as PSR B1919+21), with a pulse period of 1.337 seconds and a pulse width of 0.04-second, was discovered in 1967.
    • The first binary pulsar, PSR 1913+16, whose orbit is decaying at the exact rate predicted due to the emission of gravitational radiation by general relativity
    • The brightest radio pulsar, the Vela Pulsar.
    • The first millisecond pulsar, PSR B1937+21
    • The brightest millisecond pulsar, PSR J0437-4715
    • The first X-ray pulsar, Cen X-3
    • The first accreting millisecond X-ray pulsar, SAX J1808.4-3658
    • The first pulsar with planets, PSR B1257+12
    • The first pulsar observed to have been affected by asteroids: PSR J0738-4042
    • The first double pulsar binary system, PSR J0737−3039
    • The shortest period pulsar, PSR J1748-2446ad, with a period of ~0.0014 seconds or ~1.4 milliseconds (716 times a second).
    • The longest period pulsar, at 118.2 seconds, as well as the only known example of a white dwarf pulsar, AR Scorpii.
    • The longest period neutron star pulsar, PSR J0250+5854, with a period of 23.5 seconds.
    • The pulsar with the most stable period, PSR J0437-4715
    • The first millisecond pulsar with 2 stellar mass companions, PSR J0337+1715
    • PSR J1841-0500, stopped pulsing for 580 days. One of only two pulsars known to have stopped pulsing for more than a few minutes.
    • PSR B1931+24, has a cycle. It pulses for about a week and stops pulsing for about a month. One of only two pulsars known to have stopped pulsing for more than a few minutes.
    • PSR J1903+0327, a ~2.15 ms pulsar discovered to be in a highly eccentric binary star system with a Sun-like star.
    • PSR J2007+2722, a 40.8-hertz 'recycled' isolated pulsar was the first pulsar found by volunteers on data taken in February 2007 and analyzed by distributed computing project Einstein@Home.
    • PSR J1311–3430, the first millisecond pulsar discovered via gamma-ray pulsations and part of a binary system with the shortest orbital period.

    Plastic pollution

    From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Plastic_pollution Plastic pollution a...