Search This Blog

Tuesday, February 17, 2015

Active galactic nucleus



From Wikipedia, the free encyclopedia

An active galactic nucleus (AGN) is a compact region at the centre of a galaxy that has a much higher than normal luminosity over at least some portion, and possibly all, of the electromagnetic spectrum. Such excess emission has been observed in the radio, microwaves, infrared, optical, ultra-violet, X-ray and gamma ray wavebands. A galaxy hosting an AGN is called an active galaxy. The radiation from AGN is believed to be a result of accretion of mass by a supermassive black hole at the centre of its host galaxy. AGN are the most luminous persistent sources of electromagnetic radiation in the universe, and as such can be used as a means of discovering distant objects; their evolution as a function of cosmic time also puts constraints on models of the cosmos.

Hubble Space Telescope image of a 5000-light-year-long (1.5-kiloparsec-long) jet being ejected from the active nucleus of the active galaxy M87, a radio galaxy. The blue synchrotron radiation of the jet contrasts with the yellow starlight from the host galaxy.

Models of the active nucleus

For a long time it has been argued[1] that an AGN must be powered by accretion of mass onto massive black holes (106 to 1010 times the Solar mass).[2] AGN are both compact and persistently extremely luminous. Accretion can potentially give very efficient conversion of potential and kinetic energy to radiation, and a massive black hole has a high Eddington luminosity, and as a result, it can provide the observed high persistent luminosity. Supermassive black holes are now believed to exist in the centres of most if not all massive galaxies. Evidence for that is that the mass of the black hole correlates well with the velocity dispersion of the galactic bulge (the M-sigma relation) or with bulge luminosity (e.g.).[3] Thus AGN-like characteristics are expected whenever a supply of material for accretion comes within the sphere of influence of the central black hole.

Accretion disc

In the standard model of AGN, cold material close to a black hole forms an accretion disc.
Dissipative processes in the accretion disc transport matter inwards and angular momentum outwards, while causing the accretion disc to heat up. The expected spectrum of an accretion disc peaks in the optical-ultraviolet waveband; in addition, a corona of hot material forms above the accretion disc and can inverse-Compton scatter photons up to X-ray energies. The radiation from the accretion disc excites cold atomic material close to the black hole and this in turn radiates at particular emission lines. A large fraction of the AGN's radiation may be obscured by interstellar gas and dust close to the accretion disc, but (in a steady-state situation) this will be re-radiated at some other waveband, most likely the infrared.

Relativistic jets

Some accretion discs produce jets of twin, highly collimated, and fast outflows that emerge in opposite directions from close to the disc. The direction of the jet ejection is determined either by the angular momentum axis of the accretion disc or the spin axis of the black hole. The jet production mechanism and indeed the jet composition on very small scales are not understood at present due to the low resolution of astronomical instruments, and as a result, observations cannot provide enough evidence to support one of the various theoretical models of jet production over the many that exist. The jets have their most obvious observational effects in the radio waveband, where very-long-baseline interferometry can be used to study the synchrotron radiation they emit at resolutions of sub-parsec scales. However, they radiate in all wavebands from the radio through to the gamma-ray range via the synchrotron and the inverse-Compton scattering process, and so AGN jets are a second potential source of any observed continuum radiation.

Radiatively inefficient AGN

There exists a class of 'radiatively inefficient' solutions to the equations that govern accretion. The most widely known of these is the Advection Dominated Accretion Flow (ADAF),[4] but other theories exist. In this type of accretion, which is important for accretion rates well below the Eddington limit, the accreting matter does not form a thin disc and consequently does not efficiently radiate away the energy that it acquired as it moved close to the black hole. Radiatively inefficient accretion has been used to explain the lack of strong AGN-type radiation from massive black holes at the centres of elliptical galaxies in clusters, where otherwise we might expect high accretion rates and correspondingly high luminosities.[5] Radiatively inefficient AGN would be expected to lack many of the characteristic features of standard AGN with an accretion disc.

Observational characteristics

There is no single observational signature of an AGN. The list below covers some of the historically important features that have allowed systems to be identified as AGN.
  • Nuclear optical continuum emission. This is visible whenever there is a direct view of the accretion disc. Jets can also contribute to this component of the AGN emission. The optical emission has a roughly power-law dependence on wavelength.
  • Nuclear infra-red emission. This is visible whenever the accretion disc and its environment are obscured by gas and dust close to the nucleus and then re-emitted ('reprocessing'). As it is thermal emission, it can be distinguished from any jet or disc-related emission.
  • Broad optical emission lines. These come from cold material close to the central black hole. The lines are broad because the emitting material is revolving around the black hole with high speeds causing a range of Doppler shifts of the emitted photons.
  • Narrow optical emission lines. These come from more distant cold material, and so are narrower than the broad lines.
  • Radio continuum emission. This is always due to a jet. It shows a spectrum characteristic of synchrotron radiation.
  • X-ray continuum emission. This can arise both from a jet and from the hot corona of the accretion disc via a scattering process: in both cases it shows a power-law spectrum. In some radio-quiet AGN there is an excess of soft X-ray emission in addition to the power-law component. The origin of the soft X-rays is not clear at present.
  • X-ray line emission. This is a result of illumination of cold heavy elements by the X-ray continuum that causes fluorescence of X-ray emission lines, the best-known of which is the iron feature around 6.4 keV. This line may be narrow or broad: relativistically broadened iron lines can be used to study the dynamics of the accretion disc very close to the nucleus and therefore the nature of the central black hole.

Types of active galaxy

It is convenient to divide AGN into two classes, conventionally called radio-quiet and radio-loud. In the radio-loud objects the emission contribution from the jet(s) and the lobes that they inflate dominates the luminosity of the AGN, at least at radio wavelengths but possibly at some or all others. Radio-quiet objects are simpler since jet and jet-related emission can be neglected.

AGN terminology is often confusing, since the distinctions between different types of AGN sometimes reflect historical differences in how the objects were discovered or initially classified, rather than real physical differences.

Radio-quiet AGN

  • Low-ionization nuclear emission-line regions (LINERs). As the name suggests, these systems show only weak nuclear emission-line regions, and no other signatures of AGN emission. It is debatable whether all such systems are true AGN (powered by accretion on to a supermassive black hole). If they are, they constitute the lowest-luminosity class of radio-quiet AGN. Some may be radio-quiet analogues of the low-excitation radio galaxies (see below).
  • Seyfert galaxies. Seyferts were the earliest distinct class of AGN to be identified. They show optical range nuclear continuum emission, narrow and occasionally broad emission lines, occasionally strong nuclear X-ray emission and sometimes a weak small-scale radio jet. Originally they were divided into two types known as Seyfert 1 and 2: Seyfert 1s show strong broad emission lines while Seyfert 2s do not, and Seyfert 1s are more likely to show strong low-energy X-ray emission. Various forms of elaboration on this scheme exist: for example, Seyfert 1s with relatively narrow broad lines are sometimes referred to as narrow-line Seyfert 1s. The host galaxies of Seyferts are usually spiral or irregular galaxies.
  • Radio-quiet quasars/QSOs. These are essentially more luminous versions of Seyfert 1s: the distinction is arbitrary and is usually expressed in terms of a limiting optical magnitude. Quasars were originally 'quasi-stellar' in optical images as they had optical luminosities that were greater than that of their host galaxy. They always show strong optical continuum emission, X-ray continuum emission, and broad and narrow optical emission lines. Some astronomers use the term QSO (Quasi-Stellar Object) for this class of AGN, reserving 'quasar' for radio-loud objects, while others talk about radio-quiet and radio-loud quasars. The host galaxies of quasars can be spirals, irregulars or ellipticals. There is a correlation between the quasar's luminosity and the mass of its host galaxy, in that the most luminous quasars inhabit the most massive galaxies (ellipticals).
  • 'Quasar 2s'. By analogy with Seyfert 2s, these are objects with quasar-like luminosities but without strong optical nuclear continuum emission or broad line emission. They are scarce in surveys, though a number of possible candidate quasar 2s have been identified.

Radio-loud AGN

See main article Radio galaxy for a discussion of the large-scale behaviour of the jets. Here, only the active nuclei are discussed.
  • Radio-loud quasars behave exactly like radio-quiet quasars with the addition of emission from a jet. Thus they show strong optical continuum emission, broad and narrow emission lines, and strong X-ray emission, together with nuclear and often extended radio emission.
  • Blazars” (BL Lac objects and OVV quasars) classes are distinguished by rapidly variable, polarized optical, radio and X-ray emission. BL Lac objects show no optical emission lines, broad or narrow, so that their redshifts can only be determined from features in the spectra of their host galaxies. The emission-line features may be intrinsically absent or simply swamped by the additional variable component. In the latter case, emission lines may become visible when the variable component is at a low level.[6] OVV quasars behave more like standard radio-loud quasars with the addition of a rapidly variable component. In both classes of source, the variable emission is believed to originate in a relativistic jet oriented close to the line of sight. Relativistic effects amplify both the luminosity of the jet and the amplitude of variability.
  • Radio galaxies. These objects show nuclear and extended radio emission. Their other AGN properties are heterogeneous. They can broadly be divided into low-excitation and high-excitation classes.[7][8] Low-excitation objects show no strong narrow or broad emission lines, and the emission lines they do have may be excited by a different mechanism.[9] Their optical and X-ray nuclear emission is consistent with originating purely in a jet.[10][11] They may be the best current candidates for AGN with radiatively inefficient accretion. By contrast, high-excitation objects (narrow-line radio galaxies) have emission-line spectra similar to those of Seyfert 2s. The small class of broad-line radio galaxies, which show relatively strong nuclear optical continuum emission[12] probably includes some objects that are simply low-luminosity radio-loud quasars. The host galaxies of radio galaxies, whatever their emission-line type, are essentially always ellipticals.

Summary

These galaxies can be broadly summarised by the following table:

Differences between active galaxy types and normal galaxies.
Galaxy Type Active
Nuclei
Emission Lines X-rays Excess of Strong
Radio
Jets Variable Radio
loud
Narrow Broad UV Far-IR
Normal no weak no weak no no no no no no
Starburst no yes no some no yes some no no no
Seyfert I yes yes yes some some yes few no yes no
Seyfert II yes yes no some some yes few yes yes no
Quasar yes yes yes some yes yes some some yes 10%
Blazar yes no some yes yes no yes yes yes yes
BL Lac yes no no/faint yes yes no yes yes yes yes
OVV yes no stronger than BL Lac yes yes no yes yes yes yes
Radio galaxy yes some some some some yes yes yes yes yes

Unification of AGN species[edit]


Unification by viewing angle. From bottom to top: down the jet - Blazar, at an angle to the jet - Quasar/Seyfert 1 Galaxy, at 90 degrees from the jet - Radio galaxy / Seyfert 2 Galaxy[13]

Unified models propose that different observational classes of AGN are a single type of physical object observed under different conditions. The currently favoured unified models are 'orientation-based unified models' meaning that they propose that the apparent differences between different types of objects arise simply because of their different orientations to the observer.[14][15] However, they are debated (see below).

Radio-quiet unification

At low luminosities, the objects to be unified are Seyfert galaxies. The unification models propose that in Seyfert 1s the observer has a direct view of the active nucleus. In Seyfert 2s the nucleus is observed through an obscuring structure which prevents a direct view of the optical continuum, broad-line region or (soft) X-ray emission. The key insight of orientation-dependent accretion models is that the two types of object can be the same if only certain angles to the line of sight are observed.
The standard picture is of a torus of obscuring material surrounding the accretion disc. It must be large enough to obscure the broad-line region but not large enough to obscure the narrow-line region, which is seen in both classes of object. Seyfert 2s are seen through the torus. Outside the torus there is material that can scatter some of the nuclear emission into our line of sight, allowing us to see some optical and X-ray continuum and, in some cases, broad emission lines—which are strongly polarized, showing that they have been scattered and proving that some Seyfert 2s really do contain hidden Seyfert 1s. Infrared observations of the nuclei of Seyfert 2s also support this picture.

At higher luminosities, quasars take the place of Seyfert 1s, but, as already mentioned, the corresponding 'quasar 2s' are elusive at present. If they do not have the scattering component of Seyfert 2s they would be hard to detect except through their luminous narrow-line and hard X-ray emission.

Radio-loud unification

Historically, work on radio-loud unification has concentrated on high-luminosity radio-loud quasars. These can be unified with narrow-line radio galaxies in a manner directly analogous to the Seyfert 1/2 unification (but without the complication of much in the way of a reflection component: narrow-line radio galaxies show no nuclear optical continuum or reflected X-ray component, although they do occasionally show polarized broad-line emission). The large-scale radio structures of these objects provide compelling evidence that the orientation-based unified models really are true.[16][17][18] X-ray evidence, where available, supports the unified picture: radio galaxies show evidence of obscuration from a torus, while quasars do not, although care must be taken since radio-loud objects also have a soft unabsorbed jet-related component, and high resolution is necessary to separate out thermal emission from the sources' large-scale hot-gas environment.[19] At very small angles to the line of sight, relativistic beaming dominates, and we see a blazar of some variety.

However, the population of radio galaxies is completely dominated by low-luminosity, low-excitation objects. These do not show strong nuclear emission lines — broad or narrow — they have optical continua which appear to be entirely jet-related,[10] and their X-ray emission is also consistent with coming purely from a jet, with no heavily absorbed nuclear component in general.[11] These objects cannot be unified with quasars, even though they include some high-luminosity objects when looking at radio emission, since the torus can never hide the narrow-line region to the required extent, and since infrared studies show that they have no hidden nuclear component:[20] in fact there is no evidence for a torus in these objects at all. Most likely, they form a separate class in which only jet-related emission is important. At small angles to the line of sight, they will appear as BL Lac objects.[21]

Criticism of the radio-quiet unification

In the recent literature on AGN, being subject to an intense debate, an increasing set of observations appear to be in conflict with some of the key predictions of the Unified Model, e.g. that each Seyfert 2 has an obscured Seyfert 1 nucleus (a hidden broad-line region).

Therefore, one cannot know whether the gas in all Seyfert 2 galaxies is ionized due to photoionization from a single, non-stellar continuum source in the center or due to shock-ionization from e.g. intense, nuclear starbursts. Spectropolarimetric studies [22] reveal that only 50% of Seyfert 2s show a hidden broad-line region and thus split Seyfert 2 galaxies into two populations. The two classes of populations appear to differ by their luminosity, where the Seyfert 2s without a hidden broad-line region are generally less luminous.[23] This suggests absence of broad-line region is connected to low Eddington ratio, and not to obscuration.

The covering factor of the torus might play an important role. Some torus models [24][25] predict how Seyfert 1s and Seyfert 2s can obtain different covering factors from a luminosity- and accretion rate- dependence of the torus covering factor, something supported by studies in the x-ray of AGN.[26] The models also suggest an accretion-rate dependence of the broad-line region and provide a natural evolution from more active engines in Seyfert 1s to more “dead” Seyfert 2s [27] and can explain the observed break-down of the unified model at low luminosities [28] and the evolution of the broad-line region.[29]

While studies of single AGN show important deviations from the expectations of the unified model, results from statistical tests have been contradictory. The most important short-coming of statistical tests by direct comparisons of statistical samples of Seyfert 1s and Seyfert 2s is the introduction of selection biases due to anisotropic selection criteria.[30][31]

Studying neighbour galaxies rather than the AGN themselves [32][33] first suggested the numbers of neighbours were larger for Seyfert 2s than for Seyfert 1s, in contradiction with the Unified Model. Today, having overcome the previous limitations of small sample sizes and anisotropic selection, studies of neighbours of hundreds to thousands of AGN [34] have shown that the neighbours of Seyfert 2s are intrinsically dustier and more star-forming than Seyfert 1s and a connection between AGN type, host galaxy morphology and collision history. Moreover, angular clustering studies [35] of the two AGN types confirm that they reside in different environments and show that they reside within dark matter halos of different masses. The AGN environment studies are in line with evolution-based unification models [36] where Seyfert 2s transform into Seyfert 1s during merger, supporting earlier models of merger-driven activation of Seyfert 1 nuclei.

While controversy about the soundness of each individual study still prevails, they all agree on that the simplest viewing-angle based models of AGN Unification are incomplete. While it still might be valid that an obscured Seyfert 1 can appear as a Seyfert 2, not all Seyfert 2s must host an obscured Seyfert 1. Understanding whether it is the same engine driving all Seyfert 2s, the connection to radio-loud AGN, the mechanisms of the variability of some AGN that vary between the two types at very short time scales, and the connection of the AGN type to small- and large-scale environment remain important issues to incorporate into any unified model of active galactic nuclei.

Cosmological uses and evolution

For a long time, active galaxies held all the records for the highest-redshift objects known either in the optical or the radio spectrum, because of their high luminosity. They still have a role to play in studies of the early universe, but it is now recognised that an AGN gives a highly biased picture of the 'typical' high-redshift galaxy.

More interesting is the study of the evolution of the AGN population. Most luminous classes of AGN (radio-loud and radio-quiet) seem to have been much more numerous in the early universe. This suggests (1) that massive black holes formed early on and (2) that the conditions for the formation of luminous AGN were more common in the early universe, such as a much higher availability of cold gas near the centre of galaxies than at present. It also implies that many objects that were once luminous quasars are now much less luminous, or entirely quiescent. The evolution of the low-luminosity AGN population is much less well understood due to the difficulty of observing these objects at high redshifts.

Supermassive black hole



From Wikipedia, the free encyclopedia


Artist concept of a SMBH consuming matter from a nearby star

A supermassive black hole (SMBH) is the largest type of black hole, on the order of hundreds of thousands to billions of solar masses (M), and is found in the center of almost all massive galaxies.[1][2] In the case of the Milky Way, the SMBH is believed to correspond with the location of Sagittarius A*.[3]

Supermassive black holes have properties which distinguish them from lower-mass classifications. First, the average density of a supermassive black hole (defined as the mass of the black hole divided by the volume within its Schwarzschild radius) can be less than the density of water in the case of some supermassive black holes.[4] This is because the Schwarzschild radius is directly proportional to mass, while density is inversely proportional to the volume. Since the volume of a spherical object (such as the event horizon of a non-rotating black hole) is directly proportional to the cube of the radius, the density of a black hole is inversely proportional to the square of the mass, and thus higher mass black holes have lower average density. In addition, the tidal forces in the vicinity of the event horizon are significantly weaker for massive black holes. As with density, the tidal force on a body at the event horizon is inversely proportional to the square of the mass: a person on the surface of the Earth and one at the event horizon of a 10 million M black hole experience about the same tidal force between their head and feet. Unlike with stellar mass black holes, one would not experience significant tidal force until very deep into the black hole.

History of research

Donald Lynden-Bell and Martin Rees hypothesized in 1971 that the center of the Milky Way galaxy would contain a supermassive black hole. Sagittarius A* was discovered and named on February 13 and 15, 1974, by astronomers Bruce Balick and Robert Brown using the baseline interferometer of the National Radio Astronomy Observatory.[5] They discovered a radio source that emits synchrotron radiation; it was found to be dense and immobile because of its gravitation. This was, therefore, the first indication that a supermassive black hole exists in the center of the Milky Way.

Formation


An artist's conception of a supermassive black hole and accretion disk

The origin of supermassive black holes remains an open field of research. Astrophysicists agree that once a black hole is in place in the center of a galaxy, it can grow by accretion of matter and by merging with other black holes. There are, however, several hypotheses for the formation mechanisms and initial masses of the progenitors, or "seeds", of supermassive black holes. The most obvious hypothesis is that the seeds are black holes of tens or perhaps hundreds of solar masses that are left behind by the explosions of massive stars and grow by accretion of matter. Another model involves a large gas cloud in the period before the first stars formed collapsing into a “quasi-star” and then a black hole of initially only around ~20 M, and then rapidly accreting to become relatively quickly an intermediate-mass black hole, and possibly a SMBH if the accretion-rate is not quenched at higher masses.[6] The initial “quasi-star” would become unstable to radial perturbations because of electron-positron pair production in its core, and may collapse directly into a black hole without a supernova explosion, which would eject most of its mass and prevent it from leaving a black hole as a remnant. Yet another model[7] involves a dense stellar cluster undergoing core-collapse as the negative heat capacity of the system drives the velocity dispersion in the core to relativistic speeds. Finally, primordial black holes may have been produced directly from external pressure in the first moments after the Big Bang. Formation of black holes from the deaths of the first stars has been extensively studied and corroborated by observations. The other models for black hole formation listed above are theoretical.

Artist’s impression of the huge outflow ejected from the quasar SDSS J1106+1939[8]

The difficulty in forming a supermassive black hole resides in the need for enough matter to be in a small enough volume. This matter needs to have very little angular momentum in order for this to happen. Normally, the process of accretion involves transporting a large initial endowment of angular momentum outwards, and this appears to be the limiting factor in black hole growth. This is a major component of the theory of accretion disks. Gas accretion is the most efficient and also the most conspicuous way in which black holes grow. The majority of the mass growth of supermassive black holes is thought to occur through episodes of rapid gas accretion, which are observable as active galactic nuclei or quasars. Observations reveal that quasars were much more frequent when the Universe was younger, indicating that supermassive black holes formed and grew early. A major constraining factor for theories of supermassive black hole formation is the observation of distant luminous quasars, which indicate that supermassive black holes of billions of solar masses had already formed when the Universe was less than one billion years old. This suggests that supermassive black holes arose very early in the Universe, inside the first massive galaxies.

Currently, there appears to be a gap in the observed mass distribution of black holes. There are stellar-mass black holes, generated from collapsing stars, which range up to perhaps 33 M. The minimal supermassive black hole is in the range of a hundred thousand solar masses. Between these regimes there appears to be a dearth of intermediate-mass black holes. Such a gap would suggest qualitatively different formation processes. However, some models[9] suggest that ultraluminous X-ray sources (ULXs) may be black holes from this missing group.

Computer model of a supermassive black hole is approximately what a person would see in reality made from equations of general relativity for the film Interstellar.

Doppler measurements

Direct Doppler measures of water masers surrounding the nuclei of nearby galaxies have revealed a very fast Keplerian motion, only possible with a high concentration of matter in the center. Currently, the only known objects that can pack enough matter in such a small space are black holes, or things that will evolve into black holes within astrophysically short timescales. For active galaxies farther away, the width of broad spectral lines can be used to probe the gas orbiting near the event horizon. The technique of reverberation mapping uses variability of these lines to measure the mass and perhaps the spin of the black hole that powers active galaxies.

Gravitation from supermassive black holes in the center of many galaxies is thought to power active objects such as Seyfert galaxies and quasars.

An empirical correlation between the size of supermassive black holes and the stellar velocity dispersion σ of a galaxy bulge[10] is called the M-sigma relation.

In the Milky Way


Inferred orbits of 6 stars around supermassive black hole candidate Sagittarius A* at the Milky Way galactic centre[11]

Astronomers are confident that our own Milky Way galaxy has a supermassive black hole at its center, 26,000 light-years from the Solar System, in a region called Sagittarius A*[12] because:
  • The star S2 follows an elliptical orbit with a period of 15.2 years and a pericenter (closest distance) of 17 light-hours (1.8×1013 m or 120 AU) from the center of the central object.[13]
  • From the motion of star S2, the object's mass can be estimated as 4.1 million M,[14][15] or about 8.2×1036 kg.
  • The radius of the central object must be less than 17 light-hours, because otherwise, S2 would collide with it. In fact, recent observations from the star S14[16] indicate that the radius is no more than 6.25 light-hours, about the diameter of Uranus' orbit. However, applying the formula for the Schwarzschild radius yields just about 41 light-seconds, making it consistent with the escape velocity being the speed of light.
  • No known astronomical object other than a black hole can contain 4.1 million M in this volume of space.
The Max Planck Institute for Extraterrestrial Physics and UCLA Galactic Center Group[17] have provided the strongest evidence to date that Sagittarius A* is the site of a supermassive black hole,[12] based on data from ESO's Very Large Telescope[18] and the Keck telescope.[19]

On 5 January 2015, NASA reported observing an X-ray flare 400 times brighter than usual, a record-breaker, from Sagittarius A*, a supermassive black hole in the center of the Milky Way galaxy. The unusual event may have been caused by the breaking apart of an asteroid falling into the black hole or by the entanglement of magnetic field lines within gas flowing into Sagittarius A*, according to astronomers.[20]
Detection of an unusually bright X-Ray flare from Sagittarius A*, a supermassive black hole in the center of the Milky Way galaxy[20]

Outside the Milky Way


Supermassive black hole tearing apart a star. Below: supermassive black hole devouring a star in galaxy RX J1242-11 – X-ray (left) and optical (right).[21]
Unambiguous dynamical evidence for supermassive black holes exists only in a handful of galaxies;[22] these include the Milky Way, the Local Group galaxies M31 and M32, and a few galaxies beyond the Local Group, e.g. NGC 4395. In these galaxies, the mean square (or rms) velocities of the stars or gas rises as ~1/r near the center, indicating a central point mass. In all other galaxies observed to date, the rms velocities are flat, or even falling, toward the center, making it impossible to state with certainty that a supermassive black hole is present.[22] Nevertheless it is commonly accepted that the center of nearly every galaxy contains a supermassive black hole.[23]
The reason for this assumption is the M-sigma relation, a tight (low scatter) relation between the mass of the hole in the ~10 galaxies with secure detections, and the velocity dispersion of the stars in the bulges of those galaxies.[24] This correlation, although based on just a handful of galaxies, suggests to many astronomers a strong connection between the formation of the black hole and the galaxy itself.[23]

Hubble Space Telescope photograph of the 4,400 light-year long relativistic jet of Messier 87, which is matter being ejected by the 6.4×109 M supermassive black hole at the center of the galaxy

The nearby Andromeda Galaxy, 2.5 million light-years away, contains a (1.1–2.3) × 108 (110-230 million) M central black hole, significantly larger than the Milky Way's.[25] The largest supermassive black hole in the Milky Way's vicinity appears to be that of M87, weighing in at (6.4 ± 0.5) × 109 (~6.4 billion) M at a distance of 53.5 million light-years.[26][27] On 5 December 2011 astronomers discovered the largest supermassive black hole in the nearby universe yet found, that of the supergiant elliptical galaxy NGC 4889, weighing in at 2.1×1010 (21 billion) M at a distance of 336 million light-years away in the Coma Berenices constellation.[28] Meanwhile, the supergiant elliptical galaxy at the center of the Phoenix Cluster hosts a black hole of 2.0×1010 (20 billion) M at a distance of 5.7 billion light years. Black holes in quasars are much larger, due to their active state of continuous growing phase. The hyperluminous quasar APM 08279+5255 has a supermassive black hole with a mass of 2.3×1010 (23 billion) M. Larger still is at another hyperluminous quasar S5 0014+81, the largest supermassive black hole yet found, which weighs in at 4.0×1010 (40 billion) M, or 10,000 times the size of the black hole at the Milky Way Galactic Center. Both quasars are 12.1 billion light years away.

Some galaxies, such as Galaxy 0402+379, appear to have two supermassive black holes at their centers, forming a binary system. If they collided, the event would create strong gravitational waves.[29] Binary supermassive black holes are believed to be a common consequence of galactic mergers.[30] The binary pair in OJ 287, 3.5 billion light-years away, contains the most massive black hole in a pair, with a mass estimated at 18 billion M.[31] A supermassive black hole was recently discovered in the dwarf galaxy Henize 2-10, which has no bulge. The precise implications for this discovery on black hole formation are unknown, but may indicate that black holes formed before bulges.[32]

On March 28, 2011, a supermassive black hole was seen tearing a mid-size star apart.[33] That is, according to astronomers, the only likely explanation of the observations that day of sudden X-ray radiation and the follow-up broad-band observations.[34][35] The source was previously an inactive galactic nucleus, and from study of the outburst the galactic nucleus is estimated to be a SMBH with mass of the order of a million solar masses. This rare event is assumed to be a relativistic outflow (material being emitted in a jet at a significant fraction of the speed of light) from a star tidally disrupted by the SMBH. A significant fraction of a solar mass of material is expected to have accreted onto the SMBH. Subsequent long-term observation will allow this assumption to be confirmed if the emission from the jet decays at the expected rate for mass accretion onto a SMBH.
A gas cloud with several times the mass of the Earth is accelerating towards a supermassive black hole at the centre of the Milky Way.

In 2012, astronomers reported an unusually large mass of approximately 17 billion M for the black hole in the compact, lenticular galaxy NGC 1277, which lies 220 million light-years away in the constellation Perseus. The putative black hole has approximately 59 percent of the mass of the bulge of this lenticular galaxy (14 percent of the total stellar mass of the galaxy).[36] Another study reached a very different conclusion: this black hole is not particularly overmassive, estimated at between 2 and 5 billion M with 5 billion M being the most likely value.[37] On 28 February 2013 astronomers reported on the use of the NuSTAR satellite to accurately measure the spin of a supermassive black hole for the first time, in NGC 1365, reporting that the event horizon was spinning at almost the speed of light.[38]

In September 2014, data from different X-ray telescopes has shown that the extremely small, dense, ultracompact dwarf galaxy M60-UCD1 hosts a 20 million solar mass black hole at its center, accounting for more than 10% of the total mass of the galaxy. The discovery is quite surprising, since the black hole is five times more massive than the Milky Way's black hole despite the galaxy being less than five-thousandth the mass of the Milky Way.

Some galaxies, however, lack any supermassive black holes in their centers. Although most galaxies with no supermassive black holes are very small, dwarf galaxies, one discovery remains mysterious: The supergiant elliptical cD galaxy A2261-BCG has not been found to contain a supermassive black hole, despite the galaxy being one of the largest galaxies known; ten times the size and one thousand times the mass of the Milky Way. There is not yet any explanation for this; no traces of any X-ray source are found in the galaxy's center, however the discovery may imply that not all massive galaxies generally contain an SMBH, and the size of the galaxy does not correlate the size of the central black hole in some cases.

Galactic Center



From Wikipedia, the free encyclopedia


The Galactic Center as seen by one of the 2MASS infrared telescopes, is located in the bright upper left portion of the image.
This pan video gives a closer look at a huge image of the central parts of the Milky Way made by combining thousands of images from ESO's VISTA telescope on Paranal in Chile and compares it with the view in visible light. Because VISTA has a camera sensitive to infrared light it can see through much of the dust blocking the view in visible light, although many more opaque dust filaments still show up well in this picture.
Animation of a barred galaxy like the Milky Way showing the presence of an X-shaped bulge. The X-shape extends to about one half of the bar radius. It is directly visible when the bar is seen from the side, but when the viewer is close to the long axis of the bar it cannot be seen directly and its presence can only be inferred from the distribution of brightnesses of stars along a given direction.

The Galactic Center (or Galactic Centre)[1] is the rotational center of the Milky Way. It is located about 8.33±0.35 kpc (~27±kly) from Earth[2][3][4][5][6] in the direction of the constellations Sagittarius, Ophiuchus, and Scorpius where the Milky Way appears brightest. There is strong evidence consistent with the existence of a supermassive black hole at the Galactic Center of the Milky Way.

Proof of existence and location

Because of interstellar dust along the line of sight, the Galactic Center cannot be studied at visible, ultraviolet or soft X-ray wavelengths. The available information about the Galactic Center comes from observations at gamma ray, hard X-ray, infrared, sub-millimetre and radio wavelengths.
Coordinates of the Galactic Center were first found by Harlow Shapley in his 1918 study of the distribution of the globular clusters. In the equatorial coordinate system they are: RA 17h45m40.04s, Dec −29° 00' 28.1" (J2000 epoch).

Distance to the Galactic Center

The exact distance between the Solar System and the Galactic Center is not certain. The latest estimates from geometric-based methods and standard candles yield distances to the Galactic Center between 7.6 and 8.7 kpc (25–28 kly).[7][8][9][10] An accurate determination of the distance to the Galactic Center as established from variable stars (e.g. RR Lyrae variables) or standard candles (e.g. red-clump stars) is hindered by countless effects, which include: an ambiguous reddening law; a bias for smaller values of the distance to the Galactic Center because of a preferential sampling of stars toward the near side of the Galactic bulge owing to interstellar extinction; and an uncertainty in characterizing how a mean distance to a group of variable stars found in the direction of the Galactic bulge relates to the distance to the Galactic Center.[10][11]

The nature of the Milky Way's bar which extends across the Galactic Center is also actively debated, with estimates for its half-length and orientation spanning between 1–5 kpc (short or a long bar) and 10–50°.[9][10][12] Certain authors advocate that the Milky Way features two distinct bars, one nestled within the other.[13] The bar is delineated by red-clump stars (see also red giant), however, RR Lyr variables do not trace a prominent Galactic bar.[10][14][15] The bar may be surrounded by a ring called the "5-kpc ring" that contains a large fraction of the molecular hydrogen present in the Milky Way, as well as most of the Milky Way's star formation activity. Viewed from the Andromeda Galaxy, it would be the brightest feature of the Milky Way.[16]

Supermassive black hole


There is a supermassive black hole in the bright white area to the right of the center of image. This composite photograph covers about half of a degree.

The complex astronomical radio source Sagittarius A appears to be located almost exactly at the Galactic Center (approx. 18 hrs, −29 deg), and contains an intense compact radio source, Sagittarius A*, which coincides with a supermassive black hole at the center of the Milky Way. Accretion of gas onto the black hole, probably involving a disk around it, would release energy to power the radio source, itself much larger than the black hole. The latter is too small to see with present instruments.

A study in 2008 which linked radio telescopes in Hawaii, Arizona and California (Very Long Baseline Interferometry) measured the diameter of Sagittarius A* to be 44 million kilometers (0.3 AU).[17][18] For comparison, the radius of Earth's orbit around the Sun is about 150 million kilometers (1.0 AU), whereas the distance of Mercury from the Sun at closest approach (perihelion) is 46 million kilometers (0.3 AU). Thus the diameter of the radio source is slightly less than the distance from Mercury to the Sun.

Scientists at the Max Planck Institute for Extraterrestrial Physics in Germany using Chilean telescopes have confirmed the existence of a supermassive black hole at the Galactic Center, on the order of 4.31 million solar masses.[19]

On 5 January 2015, NASA reported observing an X-ray flare 400 times brighter than usual, a record-breaker, from Sagittarius A*. The unusual event may have been caused by the breaking apart of an asteroid falling into the black hole or by the entanglement of magnetic field lines within gas flowing into Sagittarius A*, according to astronomers.[20]

Stellar population


Galactic Center of the Milky Way and a meteor.

The central parsec around Sagittarius A* contains thousands of stars. Although most of them are old red main-sequence stars, the Galactic Center is also rich in massive stars. More than 100 OB and Wolf–Rayet stars have been identified there so far.[21] They seem to have all been formed in a single star formation event a few million years ago. The existence of these relatively young stars was a surprise to experts, who expected the tidal forces from the central black hole to prevent their formation. This paradox of youth is even stronger for stars that are on very tight orbits around Sagittarius A*, such as S2 and S0-102. The scenarios invoked to explain this formation involve either star formation in a massive star cluster offset from the Galactic Center that would have migrated to its current location once formed, or star formation within a massive, compact gas accretion disk around the central black-hole. Most of these 100 young, massive stars seem to be concentrated within one or two disks, rather than randomly distributed within the central parsec.[22][23] This observation however does not allow definite conclusions to be drawn at this point.

Star formation does not seem to be occurring currently at the Galactic Center, although the Circumnuclear Disk of molecular gas that orbits the Galactic Center at two parsecs seems a fairly favorable site for star formation. Work presented in 2002 by Antony Stark and Chris Martin mapping the gas density in a 400-light-year region around the Galactic Center has revealed an accumulating ring with a mass several million times that of the Sun and near the critical density for star formation. They predict that in approximately 200 million years there will be an episode of starburst in the Galactic Center, with many stars forming rapidly and undergoing supernovae at a hundred times the current rate. This starburst may also be accompanied by the formation of galactic jets as matter falls into the central black hole. It is thought that the Milky Way undergoes a starburst of this sort every 500 million years.

In addition to the paradox of youth, there is also a "conundrum of old age" associated with the distribution of the old stars at the Galactic Center. Theoretical models had predicted that the old stars—which far outnumber young stars—should have a steeply-rising density near the black hole, a so-called Bahcall–Wolf cusp. Instead, it was discovered in 2009 that the density of the old stars peaks at a distance of roughly 0.5 parsec from Sgr A*, then falls inward: instead of a dense cluster, there is a "hole", or core, around the black hole.[24] Several suggestions have been put forward to explain this puzzling observation, but none is completely satisfactory.[25][26] For instance, although the black hole would eat stars near it, creating a region of low density, this region would be much smaller than a parsec. Because the observed stars are a fraction of the total number, it is theoretically possible that the overall stellar distribution is different than what is observed, although no plausible models of this sort have yet been proposed.

Gallery

Nanotoxicology

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Nanotoxicology Nanonotoxicology is th...