Search This Blog

Saturday, February 21, 2015

Transition metal



From Wikipedia, the free encyclopedia
Transition metals in the periodic table
Hydrogen (diatomic nonmetal)
Helium (noble gas)
Lithium (alkali metal)
Beryllium (alkaline earth metal)
Boron (metalloid)
Carbon (polyatomic nonmetal)
Nitrogen (diatomic nonmetal)
Oxygen (diatomic nonmetal)
Fluorine (diatomic nonmetal)
Neon (noble gas)
Sodium (alkali metal)
Magnesium (alkaline earth metal)
Aluminium (post-transition metal)
Silicon (metalloid)
Phosphorus (polyatomic nonmetal)
Sulfur (polyatomic nonmetal)
Chlorine (diatomic nonmetal)
Argon (noble gas)
Potassium (alkali metal)
Calcium (alkaline earth metal)
Scandium (transition metal)
Titanium (transition metal)
Vanadium (transition metal)
Chromium (transition metal)
Manganese (transition metal)
Iron (transition metal)
Cobalt (transition metal)
Nickel (transition metal)
Copper (transition metal)
Zinc (transition metal)
Gallium (post-transition metal)
Germanium (metalloid)
Arsenic (metalloid)
Selenium (polyatomic nonmetal)
Bromine (diatomic nonmetal)
Krypton (noble gas)
Rubidium (alkali metal)
Strontium (alkaline earth metal)
Yttrium (transition metal)
Zirconium (transition metal)
Niobium (transition metal)
Molybdenum (transition metal)
Technetium (transition metal)
Ruthenium (transition metal)
Rhodium (transition metal)
Palladium (transition metal)
Silver (transition metal)
Cadmium (transition metal)
Indium (post-transition metal)
Tin (post-transition metal)
Antimony (metalloid)
Tellurium (metalloid)
Iodine (diatomic nonmetal)
Xenon (noble gas)
Caesium (alkali metal)
Barium (alkaline earth metal)
Lanthanum (lanthanide)
Cerium (lanthanide)
Praseodymium (lanthanide)
Neodymium (lanthanide)
Promethium (lanthanide)
Samarium (lanthanide)
Europium (lanthanide)
Gadolinium (lanthanide)
Terbium (lanthanide)
Dysprosium (lanthanide)
Holmium (lanthanide)
Erbium (lanthanide)
Thulium (lanthanide)
Ytterbium (lanthanide)
Lutetium (lanthanide)
Hafnium (transition metal)
Tantalum (transition metal)
Tungsten (transition metal)
Rhenium (transition metal)
Osmium (transition metal)
Iridium (transition metal)
Platinum (transition metal)
Gold (transition metal)
Mercury (transition metal)
Thallium (post-transition metal)
Lead (post-transition metal)
Bismuth (post-transition metal)
Polonium (post-transition metal)
Astatine (metalloid)
Radon (noble gas)
Francium (alkali metal)
Radium (alkaline earth metal)
Actinium (actinide)
Thorium (actinide)
Protactinium (actinide)
Uranium (actinide)
Neptunium (actinide)
Plutonium (actinide)
Americium (actinide)
Curium (actinide)
Berkelium (actinide)
Californium (actinide)
Einsteinium (actinide)
Fermium (actinide)
Mendelevium (actinide)
Nobelium (actinide)
Lawrencium (actinide)
Rutherfordium (transition metal)
Dubnium (transition metal)
Seaborgium (transition metal)
Bohrium (transition metal)
Hassium (transition metal)
Meitnerium (unknown chemical properties)
Darmstadtium (unknown chemical properties)
Roentgenium (unknown chemical properties)
Copernicium (transition metal)
Ununtrium (unknown chemical properties)
Flerovium (post-transition metal)
Ununpentium (unknown chemical properties)
Livermorium (unknown chemical properties)
Ununseptium (unknown chemical properties)
Ununoctium (unknown chemical properties)
In chemistry, the term transition metal (or transition element) has two possible meanings:
  • The IUPAC definition[1] defines a transition metal as "an element whose atom has a partially filled d sub-shell, or which can give rise to cations with an incomplete d sub-shell".
  • Most scientists describe a "transition metal" as any element in the d-block of the periodic table, which includes groups 3 to 12 on the periodic table.[2][3] In actual practice, the f-block lanthanide and actinide series are also considered transition metals and are called "inner transition metals".
Jensen[4] reviews the history of the terms "transition element" (or "metal") and "d-block". The word transition was first used to describe the elements now known as the d-block by the English chemist Charles Bury in 1921, who referred to a transition series of elements during the change of an inner layer of electrons (for example n=3 in the 4th row of the periodic table) from a stable group of 8 to one of 18, or from 18 to 32.[5]

Classification

In the d-block the atoms of the elements have between 1 and 10 d electrons.
Transition metals in the d-block
Group 3 4 5 6 7 8 9 10 11 12
Period 4 Sc 21 Ti 22 V 23 Cr 24 Mn 25 Fe 26 Co 27 Ni 28 Cu 29 Zn 30
Period 5 Y 39 Zr 40 Nb 41 Mo 42 Tc 43 Ru 44 Rh 45 Pd 46 Ag 47 Cd 48
Period 6 57–71 Hf 72 Ta 73 W 74 Re 75 Os 76 Ir 77 Pt 78 Au 79 Hg 80
Period 7 89–103 Rf 104 Db 105 Sg 106 Bh 107 Hs 108 Mt 109 Ds 110 Rg 111 Cn 112
The typical electronic structure of transition metal atoms can be written as [ ]ns2(n-1)dm, following the Madelung rule where the inner d orbital is predicted to be filled after the valence-shell s orbital. This is actually not the case; the 4s electrons are higher in energy than the 3d as shown spectroscopically. An ion such as Fe2+ has no 4s electrons: it has the electronic configuration [Ar]3d6 as compared with the configuration of the atom, [Ar]4s23d6.

The elements of groups 3–12 are now generally recognized as transition metals, although the elements La-Lu and Ac-Lr and Group 12 attract different definitions from different authors.
  1. Many chemistry textbooks and printed periodic tables classify La and Ac as Group 3 elements and transition metals, since their atomic ground-state configurations are s2d1 like Sc and Y. The elements Ce-Lu are considered as the “lanthanide” series (or “lanthanoid” according to IUPAC) and Th-Lr as the “actinide” series.[6][7] The two series together are classified as f-block elements, or (in older sources) as “inner transition elements”.
  2. Some inorganic chemistry textbooks include La with the lanthanides and Ac with the actinides.[8][9][10] This classification is based on similarities in chemical behaviour, and defines 15 elements in each of the two series even though they correspond to the filling of an f subshell which can only contain 14 electrons.
  3. A third classification defines the f-block elements as La-Yb and Ac-No, while placing Lu and Lr in Group 3.[4] This is based on the aufbau principle (or Madelung rule) for filling electron subshells, in which 4f is filled before 5d (and 5f before 6d), so that the f subshell is actually full at Yb (and No) while Lu (and Lr) has an [ ]s2f14d1 configuration. However La and Ac are exceptions to the Aufbau principle with electron configuration [ ]s2d1 (not [ ]s2f1 as the aufbau principle predicts) so it is not clear from atomic electron configurations whether La or Lu (Ac or Lr) should be considered as transition metals. Eric Scerri has proposed placing Lu and Lr in group 3 on the grounds of continuous sequences of atomic numbers in an expanded or long-form periodic table.[11]
Zinc, cadmium, and mercury are sometimes excluded from the transition metals[4] as they have the electronic configuration [ ]d10s2, with no incomplete d shell.[12] In the oxidation state +2 the ions have the electronic configuration [ ] d10. However, these elements can exist in other oxidation states, including the +1 oxidation state, as in the diatomic ion Hg2+
2
. The group 12 elements Zn, Cd and Hg may be classed as post-transition metals in this case, because of the formation of a covalent bond between the two atoms of the dimer. However, it is often convenient to include these elements in a discussion of the transition elements. For example, when discussing the crystal field stabilization energy of first-row transition elements, it is convenient to also include the elements calcium and zinc, as both Ca2+ and Zn2+ have a value of zero against which the value for other transition metal ions may be compared. Another example occurs in the Irving-Williams series of stability constants of complexes.

The recent synthesis of mercury(IV) fluoride (HgF
4
) has been taken by some to reinforce the view that the group 12 elements should be considered transition metal,[13] but some authors still consider this compound to be exceptional.[14]

Position in the Periodic Table

The d-block as stated earlier, is present in the centre of the long form of periodic table. These are flanked or surrounded by elements belonging to s and p-blocks on both sides. These are called transition elements since they represent a transition i.e., there is a change from metallic character of s-block elements to non-metallic character of p-block elements through d-block elements which are also metals. As pointed above there are four transition series in this block. Since the filling of electrons takes place in (n-1)d orbitals, the periods to which these series belong, is actually one more than the actual series. For example, the elements included in 3d series belong to fourth period ; the elements included in 4d series belong to the fifth period and so on.

Electronic configuration

The general electronic configuration of the d-block elements is [Inert gas] (n-1)d1-10n s1-2 The d-sub-shell is the penultimate (last but one) sub-shell and is denoted as (n-1) d-sub-shell. The number of s electrons may vary from one to two. The s-sub-shell in the valence shell is represented as the ns sub-shell. However, palladium (Pd) is an exception with no electron in the s-sub shell. In the periodic table, the transition metals are present in ten groups (3 to 12). Group-2 belongs to the s- block with an ns2 configuration.

The elements in group-3 have an ns2(n-1)d1 configuration. The first transition series is present in the 4th period, and starts after Ca (Z=20) of group-2 which has configuration [Ar]4s2. The electronic configuration of scandium (Sc), the first element of group-3 with atomic number Z=21 is[Ar]4s23d1. As we move from left to right, electrons are added to the same d-sub-shell till it is complete. The element of group-12 in the first transition series is zinc (Zn) with configuration [Ar]4s23d10. Since the electrons added fill the (n-1)d orbitals, the properties of the d-block elements are quite different from those of s and p block elements in which the filling occurs either in s or in p-orbitals of the valence shell. The electronic configuration of the individual elements present in all the transition series are given below:

First (3d) Transition Series (Sc-Zn)
Group 3 4 5 6 7 8 9 10 11 12
At.no. 21 22 23 24 25 26 27 28 29 30
Element Sc Ti V Cr Mn Fe Co Ni Cu Zn
Config. 3d14s2 3d24s2 3d34s2 3d54s1 3d54s2 3d64s2 3d74s2 3d84s2 3d104s1 3d104s2
Second (4d) Transition Series (Y-Cd)
At. No. 39 40 41 42 43 44 45 46 47 48
Element Y Zr Nb Mo Tc Ru Rh Pd Ag Cd
Config. 4d15s2 4d25s2 4d45s1 4d55s1 4d55s2 4d75s1 4d85s1 4d105s0 4d105s1 4d105s2
Third (5d) Transition Series (Lu-Hg)[15]
At.No 71 72 73 74 75 76 77 78 79 80
Element Lu Hf Ta W Re Os Ir Pt Au Hg
Config. 5d16s2 5d26s2 5d36s2 5d46s2 5d56s2 5d66s2 5d76s2 5d96s1 5d106s1 5d106s2
Fourth (6d) Transition Series (Lr-Cn)
At. No. 103 104 105 106 107 108 109 110 111 112
Element Lr Rf Db Sg Bh Hs Mt Ds Rg Cn
Config. 7s27p1 6d27s2 6d37s2 6d47s2 6d57s2 6d67s2 6d77s2 6d87s2 6d97s2 6d107s2

A careful look at the electronic configuration of the elements reveals that there are certain exceptions shown by Pt, Au and Hg.. These are either because of the symmetry or nuclear-electron and electron-electron force.

The (n-1)d orbitals that are involved in the transition metals are very significant because they influence such properties as magnetic character, variable oxidation states, formation of colored compounds etc. The valence s(ns) and p(np) orbitals have very little contribution in this regard since they hardly change in the moving from left to the right in a transition series. In transition metals, there is a greater horizontal similarities in the properties of the elements in a period in comparison to the periods in which the d-orbitals are not involved. This is because in a transition series, the valence shell electronic configuration of the elements do not change. However, there are some group similarities as well.

Characteristic properties

There are a number of properties shared by the transition elements that are not found in other elements, which results from the partially filled d shell. These include
  • the formation of compounds whose colour is due to dd electronic transitions
  • the formation of compounds in many oxidation states, due to the relatively low reactivity of unpaired d electrons.[16]
  • the formation of many paramagnetic compounds due to the presence of unpaired d electrons. A few compounds of main group elements are also paramagnetic (e.g. nitric oxide, oxygen)

Coloured compounds


From left to right, aqueous solutions of: Co(NO
3
)
2
(red); K
2
Cr
2
O
7
(orange); K
2
CrO
4
(yellow); NiCl
2
(turquoise); CuSO
4
(blue); KMnO
4
(purple).

Colour in transition-series metal compounds is generally due to electronic transitions of two principal types.
  • charge transfer transitions. An electron may jump from a predominantly ligand orbital to a predominantly metal orbital, giving rise to a ligand-to-metal charge-transfer (LMCT) transition. These can most easily occur when the metal is in a high oxidation state. For example, the colour of chromate, dichromate and permanganate ions is due to LMCT transitions. Another example is that mercuric iodide, HgI2, is red because of a LMCT transition.
A metal-to-ligand charge transfer (MLCT) transition will be most likely when the metal is in a low oxidation state and the ligand is easily reduced.
  • d-d transitions. An electron jumps from one d-orbital to another. In complexes of the transition metals the d orbitals do not all have the same energy. The pattern of splitting of the d orbitals can be calculated using crystal field theory. The extent of the splitting depends on the particular metal, its oxidation state and the nature of the ligands. The actual energy levels are shown on Tanabe-Sugano diagrams.
In centrosymmetric complexes, such as octahedral complexes, d-d transitions are forbidden by the Laporte rule and only occur because of vibronic coupling in which a molecular vibration occurs together with a d-d transition. Tetrahedral complexes have somewhat more intense colour because mixing d and p orbitals is possible when there is no centre of symmetry, so transitions are not pure d-d transitions. The molar absorptivity (ε) of bands caused by d-d transitions are relatively low, roughly in the range 5-500 M−1cm−1 (where M = mol dm−3).[17] Some d-d transitions are spin forbidden. An example occurs in octahedral, high-spin complexes of manganese(II), which has a d5 configuration in which all five electron has parallel spins; the colour of such complexes is much weaker than in complexes with spin-allowed transitions. Many compounds of manganese(II) appear almost colourless. The spectrum of [Mn(H
2
O)
6
]2+
shows a maximum molar absorptivity of about 0.04 M−1cm−1 in the visible spectrum.

Oxidation states

A characteristic of transition metals is that they exhibit two or more oxidation states, usually differing by one. For example, compounds of vanadium are known in all oxidation states between −1, such as [V(CO)
6
]
, and +5, such as VO3−
4
.

Main group elements in groups 13 to 17 also exhibit multiple oxidation states. The "common" oxidation states of these elements typically differ by two. For example, compounds of gallium in oxidation states +1 and +3 exist in which there is a single gallium atom. No compound of Ga(II) is known: any such compound would have an unpaired electron and would behave as a free radical and be destroyed rapidly. The only compounds in which gallium has a formal oxidation state of +2 are dimeric compounds, such as [Ga
2
Cl
6
]2−
, which contain a Ga-Ga bond formed from the unpaired electron on each Ga atom.[18] Thus the main difference in oxidation states, between transition elements and other elements is that oxidation states are known in which there is a single atom of the element and one or more unpaired electrons.

The maximum oxidation state in the first row transition metals is equal to the number of valence electrons from titanium (+4) up to manganese (+7), but decreases in the later elements. In the second and third rows the maximum occurs with ruthenium and osmium (+8). In compounds such as [MnO
4
]
and OsO
4
the elements achieve a stable octet by forming four covalent bonds.

The lowest oxidation states are exhibited in metal carbonyl complexes such as Cr(CO)
6
(oxidation state zero) and [Fe(CO)
4
]2−
(oxidation state −2) in which the 18-electron rule is obeyed. These complexes are also covalent.

Ionic compounds are mostly formed with oxidation states +2 and +3. In aqueous solution the ions are hydrated by (usually) six water molecules arranged octahedrally.

Magnetism

Transition metal compounds are paramagnetic when they have one or more unpaired d electrons.[19] In octahedral complexes with between four and seven d electrons both high spin and low spin states are possible. Tetrahedral transition metal complexes such as [FeCl4]2− are high spin because the crystal field splitting is small so that the energy to be gained by virtue of the electrons being in lower energy orbitals is always less than the energy needed to pair up the spins. Some compounds are diamagnetic. These include octahedral, low-spin, d6 and square-planar d8 complexes. In these cases, crystal field splitting is such that all the electrons are paired up.
Ferromagnetism occurs when individual atoms are paramagnetic and the spin vectors are aligned parallel to each other in a crystalline material. Metallic iron and the alloy alnico are examples of ferromagnetic materials involving transition metals. Anti-ferromagnetism is another example of a magnetic property arising from a particular alignment of individual spins in the solid state.

Catalytic properties

The transition metals and their compounds are known for their homogeneous and heterogeneous catalytic activity. This activity is ascribed to their ability to adopt multiple oxidation states and to form complexes. Vanadium(V) oxide (in the contact process), finely divided iron (in the Haber process), and nickel (in catalytic hydrogenation) are some of the examples. Catalysts at a solid surface (nanomaterial-based catalysts) involve the formation of bonds between reactant molecules and atoms of the surface of the catalyst (first row transition metals utilize 3d and 4s electrons for bonding). This has the effect of increasing the concentration of the reactants at the catalyst surface and also weakening of the bonds in the reacting molecules (the activation energy is lowered). Also because the transition metal ions can change their oxidation states, they become more effective as catalysts.

Other properties

As implied by the name, all transition metals are metals and conductors of electricity.

In general, transition metals possess a high density and high melting points and boiling points. These properties are due to metallic bonding by delocalized d electrons, leading to cohesion which increases with the number of shared electrons. However the group 12 metals have much lower melting and boiling points since their full d subshells prevent d–d bonding. Mercury has a melting point of −38.83 °C (−37.89 °F) and is a liquid at room temperature.

Many transition metals can be bound to a variety of ligands.[20]

Precious metal



From Wikipedia, the free encyclopedia


Assortment of precious metals

A precious metal is a rare, naturally occurring metallic chemical element of high economic value. Chemically, the precious metals tend to be less reactive than most elements (see noble metal). They are usually ductile and have a high lustre. Historically, precious metals were important as currency but are now regarded mainly as investment and industrial commodities. Gold, silver, platinum, and palladium each have an ISO 4217 currency code.

The best-known precious metals are the coinage metals, gold and silver. Although both have industrial uses, they are better known for their uses in art, jewellery and coinage. Other precious metals include the platinum group metals: ruthenium, rhodium, palladium, osmium, iridium, and platinum, of which platinum is the most widely traded.[1] The demand for precious metals is driven not only by their practical use but also by their role as investments and a store of value. Historically, precious metals have commanded much higher prices than common industrial metals.

Bullion


1,000 oz silver bar

A metal is deemed to be precious if it is rare. The discovery of new sources of ore or improvements in mining or refining processes may cause the value of a precious metal to diminish. The status of a "precious" metal can also be determined by high demand or market value. Precious metals in bulk form are known as bullion and are traded on commodity markets. Bullion metals may be cast into ingots or minted into coins. The defining attribute of bullion is that it is valued by its mass and purity rather than by a face value as money.

Purity and mass


500 g silver bullion bar produced by Johnson Matthey

The level of purity varies from issue to issue. "Three nines" (99.9%) purity is common. The purest mass-produced bullion coins are in the Canadian Gold Maple Leaf series, which go up to 99.999% purity. A 100% pure bullion is nearly impossible: as the percentage of impurities diminishes, it becomes progressively more difficult to purify the metal further. Historically, coins had a certain amount of weight of alloy, with the purity a local standard. The Krugerrand is the first modern example of measuring in "pure gold": it should contain at least 12/11 ounces of at least 11/12 pure gold. Other bullion coins (for example the British Sovereign) show neither the purity nor the fine-gold weight on the coin but are recognized and consistent in their composition.[citation needed] Many coins historically showed a denomination in currency (example: American Double Eagle: $20).

Coinage


1 oz Vienna Philharmonic gold coin

Many nations mint bullion coins. Although nominally issued as legal tender, these coins' face value as currency is far below that of their value as bullion. For instance, Canada mints a gold bullion coin (the Gold Maple Leaf) at a face value of $50 containing one troy ounce (31.1035 g) of gold—as of May 2011, this coin is worth about 1,500 CAD as bullion.[2] Bullion coins' minting by national governments gives them some numismatic value in addition to their bullion value, as well as certifying their purity.

One of the largest bullion coins in the world is the 10,000 dollar Australian Gold Nugget coin minted in Australia which consists of a full kilogram of 99.9% pure gold. There have been a small number of larger bullion coins, but they are impractical to handle and not produced in mass quantities. China has produced coins in very limited quantities (less than 20 pieces minted) that exceed 8 kilograms (260 ozt) of gold.[citation needed] Austria has minted a coin containing 31 kg of gold (the Vienna Philharmonic Coin minted in 2004 with a face value of 100,000 euro). As a stunt to publicise the 99.999% pure one-ounce Canadian Gold Maple Leaf series, in 2007 the Royal Canadian Mint made a 100 kg 99.999% gold coin, with a face value of $1 million, and now manufactures them to order, but at a substantial premium over the market value of the gold.[3][4]

Economic use


1 kg gold bullion (ingots)

Gold and silver, and sometimes other precious metals, are often seen as hedges against both inflation and economic downturn. Silver coins have become popular with collectors due to their relative affordability, and, unlike most gold and platinum issues which are valued based upon the markets, silver issues are more often valued as collectibles, far higher than their actual bullion value.

Aluminium

An initially precious metal that became common is aluminium. While aluminium is the third most abundant element and most abundant metal in the Earth's crust, it was at first found to be exceedingly difficult to extract the metal from its various non-metallic ores. The great expense of refining the metal made the small available quantity of pure aluminium more valuable than gold.[5] Bars of aluminium were exhibited at the Exposition Universelle of 1855,[6] and Napoleon III's most important guests were given aluminium cutlery, while those less worthy dined with mere silver.[5] In 1884, the pyramidal capstone of the Washington Monument was cast of 100 ounces of pure aluminium. By that time, aluminium was as expensive as silver.[7] Over time, however, the price of the metal has dropped. The dawn of commercial electric generation in 1882 and the invention of the Hall–Héroult process in 1886 caused the price of aluminium to drop substantially over a short period of time.

Rough world market price ($/kg)

Valuable metal price ($/kg) with precious metal names in bold
metal mass abundance
parts per billion[8]
10 April 2009[9] 22 July 2009[10] 7 January 2010[citation needed] 31 December 2014[11]
Rhodium 1 39680 46200 88415 39641
Platinum 5 42681 37650 87741 38902
Gold 4 31100 30590 24317 38130
Palladium 15 8430 8140 13632 25559
Osmium 1.5 13400 12200 12217 12217
Rhenium 0.7 7400 7000 6250 2425
Ruthenium 1 2290 2730 5562 1865
Germanium 1500 1050[12] 1038
Beryllium 2800 850[citation needed]
Silver 75 437 439 588
Gallium 19000 425[12] 413
Indium 50[13] 325[12] 520
Tellurium 1 158.70
Mercury 85 18.90 15.95
Bismuth 8.5 15.40 18.19

Gemstone



From Wikipedia, the free encyclopedia


Group of precious and semiprecious stones —both uncut and faceted— including (clockwise from top left) diamond, uncut synthetic sapphire, ruby, uncut emerald, and amethyst crystal cluster.

A gemstone or gem (also called a fine gem, jewel, or a precious or semi-precious stone) is a piece of mineral crystal, which, in cut and polished form, is used to make jewelry or other adornments.[1][2] However, certain rocks (such as lapis lazuli) or organic materials that are not minerals (such as amber or jet), are also used for jewelry, and are therefore often considered to be gemstones as well. Most gemstones are hard, but some soft minerals are used in jewelry because of their luster or other physical properties that have aesthetic value. Rarity is another characteristic that lends value to a gemstone. Apart from jewelry, from earliest antiquity engraved gems and hardstone carvings, such as cups, were major luxury art forms. The carvings of Carl Fabergé are significant works in this tradition.

Characteristics and classification


A selection of gemstone pebbles made by tumbling rough rock with abrasive grit, in a rotating drum. The biggest pebble here is 40 mm long (1.6 inches).

The traditional classification in the West, which goes back to the Ancient Greeks, begins with a distinction between precious and semi-precious; similar distinctions are made in other cultures. In modern usage the precious stones are diamond, ruby, sapphire and emerald, with all other gemstones being semi-precious.[3] This distinction reflects the rarity of the respective stones in ancient times, as well as their quality: all are translucent with fine color in their purest forms, except for the colorless diamond, and very hard, with hardnesses of 8 to 10 on the Mohs scale. Other stones are classified by their color, translucency and hardness. The traditional distinction does not necessarily reflect modern values, for example, while garnets are relatively inexpensive, a green garnet called Tsavorite, can be far more valuable than a mid-quality emerald.[4] Another unscientific term for semi-precious gemstones used in art history and archaeology is hardstone. Use of the terms 'precious' and 'semi-precious' in a commercial context is, arguably, misleading in that it deceptively implies certain stones are intrinsically more valuable than others, which is not the case.

In modern times gemstones are identified by gemologists, who describe gems and their characteristics using technical terminology specific to the field of gemology. The first characteristic a gemologist uses to identify a gemstone is its chemical composition. For example, diamonds are made of carbon (C) and rubies of aluminium oxide (Al
2
O
3
). Next, many gems are crystals which are classified by their crystal system such as cubic or trigonal or monoclinic. Another term used is habit, the form the gem is usually found in. For example diamonds, which have a cubic crystal system, are often found as octahedrons.

Gemstones are classified into different groups, species, and varieties. For example, ruby is the red variety of the species corundum, while any other color of corundum is considered sapphire. Other examples are the Emerald (green), aquamarine (blue), red beryl (red), goshenite (colorless), heliodor (yellow), and morganite (pink), which are all varieties of the mineral species beryl.

Gems are characterized in terms of refractive index, dispersion, specific gravity, hardness, cleavage, fracture, and luster. They may exhibit pleochroism or double refraction. They may have luminescence and a distinctive absorption spectrum.

Material or flaws within a stone may be present as inclusions.

Gemstones may also be classified in terms of their "water". This is a recognized grading of the gem's luster and/or transparency and/or "brilliance".[5] Very transparent gems are considered "first water", while "second" or "third water" gems are those of a lesser transparency.[6]

Value


Spanish emerald and gold pendant at Victoria and Albert Museum

Enamelled gold, amethyst and pearl pendant, about 1880, Pasquale Novissimo (1844–1914), V&A Museum number M.36-1928

There is no universally accepted grading system for gemstones. Diamonds are graded using a system developed by the Gemological Institute of America (GIA) in the early 1950s. Historically, all gemstones were graded using the naked eye. The GIA system included a major innovation: the introduction of 10x magnification as the standard for grading clarity. Other gemstones are still graded using the naked eye (assuming 20/20 vision).[7]

A mnemonic device, the "four Cs" (color, cut, clarity and carats), has been introduced to help the consumer understand the factors used to grade a diamond.[8] With modification, these categories can be useful in understanding the grading of all gemstones. The four criteria carry different weight depending upon whether they are applied to colored gemstones or to colorless diamonds. In diamonds, cut is the primary determinant of value, followed by clarity and color. Diamonds are meant to sparkle, to break down light into its constituent rainbow colors (dispersion), chop it up into bright little pieces (scintillation), and deliver it to the eye (brilliance). In its rough crystalline form, a diamond will do none of these things; it requires proper fashioning and this is called "cut". In gemstones that have color, including colored diamonds, it is the purity and beauty of that color that is the primary determinant of quality.

Physical characteristics that make a colored stone valuable are color, clarity to a lesser extent (emeralds will always have a number of inclusions), cut, unusual optical phenomena within the stone such as color zoning (the uneven distribution of coloring within a gem) and asteria (star effects). The Greeks, for example, greatly valued asteria in gemstones, which were regarded as powerful love charms, and Helen of Troy was known to have worn star-corundum.[9]

Aside from the diamond, the ruby, sapphire, emerald, pearl (not, strictly speaking, a gemstone) and opal[10] have also been considered to be precious. Up to the discoveries of bulk amethyst in Brazil in the 19th century, amethyst was considered a precious stone as well, going back to ancient Greece. Even in the last century certain stones such as aquamarine, peridot and cat's eye (cymophane) have been popular and hence been regarded as precious.

Nowadays such a distinction is no longer made by the gemstone trade.[11] Many gemstones are used in even the most expensive jewelry, depending on the brand name of the designer, fashion trends, market supply, treatments, etc. Nevertheless, diamonds, rubies, sapphires, and emeralds still have a reputation that exceeds those of other gemstones.[12]

Rare or unusual gemstones, generally meant to include those gemstones which occur so infrequently in gem quality that they are scarcely known except to connoisseurs, include andalusite, axinite, cassiterite, clinohumite and red beryl.

Gem prices can fluctuate heavily (such as those of tanzanite over the years) or can be quite stable (such as those of diamonds). In general per carat prices of larger stones are higher than those of smaller stones, but popularity of certain sizes of stone can affect prices. Typically prices can range from US$1/carat for a normal amethyst to US$20,000–50,000 for a collector's three carat pigeon-blood almost "perfect" ruby.

Grading

There are a number of[11] laboratories which grade and provide reports on gemstones.
Gemological Institute of America (GIA), the main provider of education services and diamond grading reports. And also Colourstone reports.
  • International Gemological Institute (IGI), independent laboratory for grading and evaluation of diamonds, jewelry and colored stones.
  • Hoge Raad voor Diamant (HRD Antwerp), The Diamond High Council, Belgium is one of Europe's oldest laboratories. Its main stakeholder is the Antwerp World Diamond Centre.
  • American Gemological Society (AGS) is not as widely recognized nor as old as the GIA.
  • American Gem Trade Laboratory which is part of the American Gem Trade Association (AGTA), a trade organization of jewelers and dealers of colored stones.
  • American Gemological Laboratories (AGL), owned by Christopher P. Smith.
  • European Gemological Laboratory (EGL), founded in 1974 by Guy Margel in Belgium.
  • Gemmological Association of All Japan (GAAJ-ZENHOKYO), Zenhokyo, Japan, active in gemological research.
  • Gemmological Institute of Thailand (GIT) is closely related to Chulalongkorn University
  • Gemmology Institute of Southern Africa, Africa's premium gem laboratory.
  • Asian Institute of Gemmological Sciences (AIGS), the oldest gemological institute in South East Asia, involved in gemological education and gem testing.
  • Swiss Gemmological Institute (SSEF), founded by Henry Hänni, focusing on colored gemstones and the identification of natural pearls.
  • Gübelin Gem Lab, the traditional Swiss lab founded by Eduard Gübelin.
Each laboratory has its own methodology to evaluate gemstones. A stone can be called "pink" by one lab while another lab calls it "Padparadscha". One lab can conclude a stone is untreated, while another lab might conclude that it is heat-treated.[11] To minimise such differences, seven of the most respected labs, AGTA-GTL (New York), CISGEM (Milano), GAAJ-ZENHOKYO (Tokyo), GIA (Carlsbad), GIT (Bangkok), Gübelin (Lucerne) and SSEF (Basel), have established the Laboratory Manual Harmonisation Committee (LMHC), for the standardization of wording reports, promotion of certain analytical methods and interpretation of results. Country of origin has sometimes been difficult to determine, due to the constant discovery of new source locations. Determining a "country of origin" is thus much more difficult than determining other aspects of a gem (such as cut, clarity, etc.).[13]

Gem dealers are aware of the differences between gem laboratories and will make use of the discrepancies to obtain the best possible certificate.[11]

Cutting and polishing


Raw gemstones

A rural Thai gem cutter

A few gemstones are used as gems in the crystal or other form in which they are found. Most however, are cut and polished for usage as jewelry. The picture to the right is of a rural, commercial cutting operation in Thailand. This small factory cuts thousands of carats of sapphire annually. The two main classifications are stones cut as smooth, dome shaped stones called cabochons, and stones which are cut with a faceting machine by polishing small flat windows called facets at regular intervals at exact angles.

Stones which are opaque or semi-opaque such as opal, turquoise, variscite, etc. are commonly cut as cabochons. These gems are designed to show the stone's color or surface properties as in opal and star sapphires. Grinding wheels and polishing agents are used to grind, shape and polish the smooth dome shape of the stones.[14]

Gems which are transparent are normally faceted, a method which shows the optical properties of the stone's interior to its best advantage by maximizing reflected light which is perceived by the viewer as sparkle. There are many commonly used shapes for faceted stones. The facets must be cut at the proper angles, which varies depending on the optical properties of the gem. If the angles are too steep or too shallow, the light will pass through and not be reflected back toward the viewer. The faceting machine is used to hold the stone onto a flat lap for cutting and polishing the flat facets.[15] Rarely, some cutters use special curved laps to cut and polish curved facets.

Color


Nearly 300 variations of diamond color exhibited at the Aurora display at the Natural History Museum in London.

The color of any material is due to the nature of light itself. Daylight, often called white light, is actually all of the colors of the spectrum combined. When light strikes a material, most of the light is absorbed while a smaller amount of a particular frequency or wavelength is reflected. The part that is reflected reaches the eye as the perceived color. A ruby appears red because it absorbs all the other colors of white light (green and blue), while reflecting the red.

The same material can exhibit different colors. For example ruby and sapphire have the same chemical composition (both are corundum) but exhibit different colors. Even the same gemstone can occur in many different colors: sapphires show different shades of blue and pink and "fancy sapphires" exhibit a whole range of other colors from yellow to orange-pink, the latter called "Padparadscha sapphire".

This difference in color is based on the atomic structure of the stone. Although the different stones formally have the same chemical composition, they are not exactly the same. Every now and then an atom is replaced by a completely different atom (and this could be as few as one in a million atoms). These so-called impurities are sufficient to absorb certain colors and leave the other colors unaffected.

For example, beryl, which is colorless in its pure mineral form, becomes emerald with chromium impurities. If manganese is added instead of chromium, beryl becomes pink morganite. With iron, it becomes aquamarine.

Some gemstone treatments make use of the fact that these impurities can be "manipulated", thus changing the color of the gem.

Treatment

Gemstones are often treated to enhance the color or clarity of the stone. Depending on the type and extent of treatment, they can affect the value of the stone. Some treatments are used widely because the resulting gem is stable, while others are not accepted most commonly because the gem color is unstable and may revert to the original tone.[16]

Heat

Heat can improve gemstone color or clarity. The heating process has been well known to gem miners and cutters for centuries, and in many stone types heating is a common practice. Most citrine is made by heating amethyst, and partial heating with a strong gradient results in ametrine—a stone partly amethyst and partly citrine. Much aquamarine is heated to remove yellow tones and change the green color into the more desirable blue or enhance its existing blue color to a purer blue.[17]
Nearly all tanzanite is heated at low temperatures to remove brown undertones and give a more desirable blue/purple color. A considerable portion of all sapphire and ruby is treated with a variety of heat treatments to improve both color and clarity.

When jewelry containing diamonds is heated (for repairs) the diamond should be protected with boracic acid; otherwise the diamond (which is pure carbon) could be burned on the surface or even burned completely up. When jewelry containing sapphires or rubies is heated, it should not be coated with boracic acid or any other substance, as this can etch the surface; they do not have to be "protected" like a diamond.

Radiation

Virtually all blue topaz, both the lighter and the darker blue shades such as "London" blue, has been irradiated to change the color from white to blue. Most greened quartz (Oro Verde) is also irradiated to achieve the yellow-green color.

Waxing/oiling

Emeralds containing natural fissures are sometimes filled with wax or oil to disguise them. This wax or oil is also colored to make the emerald appear of better color as well as clarity. Turquoise is also commonly treated in a similar manner.

Fracture filling

Fracture filling has been in use with different gemstones such as diamonds, emeralds and sapphires. In 2006 "glass filled rubies" received publicity. Rubies over 10 carats (2 g) with large fractures were filled with lead glass, thus dramatically improving the appearance (of larger rubies in particular). Such treatments are fairly easy to detect.

Synthetic and artificial gemstones

Some gemstones are manufactured to imitate other gemstones. For example, cubic zirconia is a synthetic diamond simulant composed of zirconium oxide. Synthetic moissanite is another example. The imitations copy the look and color of the real stone but possess neither their chemical nor physical characteristics. Moissanite actually has a higher refractive index than diamond and when presented beside an equivalently sized and cut diamond will have more "fire" than the diamond.

However, lab created gemstones are not imitations. For example, diamonds, rubies, sapphires and emeralds have been manufactured in labs to possess identical chemical and physical characteristics to the naturally occurring variety. Synthetic (lab created) corundum, including ruby and sapphire, are very common and they cost only a fraction of the natural stones. Smaller synthetic diamonds have been manufactured in large quantities as industrial abrasives, although larger gem-quality synthetic diamonds are becoming available in multiple carats.[18]

Whether a gemstone is a natural stone or a lab-created (synthetic) stone, the characteristics of each are the same. Lab-created stones tend to have a more vivid color to them, as impurities are not present in a lab and do not modify the clarity or color of the stone, unless added intentionally for a specific purpose.[citation needed]

Organic horticulture



From Wikipedia, the free encyclopedia


An organic garden on a school campus

Organic horticulture is the science and art of growing fruits, vegetables, flowers, or ornamental plants by following the essential principles of organic agriculture in soil building and conservation, pest management, and heirloom variety preservation.

The Latin words hortus (garden plant) and cultura (culture) together form horticulture, classically defined as the culture or growing of garden plants. Horticulture is also sometimes defined simply as “agriculture minus the plough.” Instead of the plough, horticulture makes use of human labour and gardener’s hand tools, although some small machine tools like rotary tillers are commonly employed now.

General

Mulches, cover crops, compost, manures, vermicompost, and mineral supplements are soil-building mainstays that distinguish this type of farming from its commercial counterpart. Through attention to good healthy soil condition,[1] it is expected that insect, fungal, or other problems that sometimes plague plants can be minimized. However, pheromone traps, insecticidal soap sprays, and other pest-control methods available to organic farmers[2] are also utilized by organic horticulturists.

Horticulture involves five areas of study. These areas are floriculture (includes production and marketing of floral crops), landscape horticulture (includes production, marketing and maintenance of landscape plants), olericulture (includes production and marketing of vegetables), pomology (includes production and marketing of fruits), and postharvest physiology (involves maintaining quality and preventing spoilage of horticultural crops). All of these can be, and sometimes are, pursued according to the principles of organic cultivation.

Organic horticulture (or organic gardening) is based on knowledge and techniques gathered over thousands of years. In general terms, organic horticulture involves natural processes, often taking place over extended periods of time, and a sustainable, holistic approach - while chemical-based horticulture focuses on immediate, isolated effects and reductionist strategies.

Organic gardening systems

There are a number of formal organic gardening and farming systems that prescribe specific techniques. They tend to be more specific than, and fit within, general organic standards. Forest gardening, a fully organic food production system which dates from prehistoric times, is thought to be the world's oldest and most resilient agroecosystem.[3]

Biodynamic farming is an approach based on the esoteric teachings of Rudolf Steiner. The Japanese farmer and writer Masanobu Fukuoka invented a no-till system for small-scale grain production that he called Natural Farming. French intensive gardening and biointensive methods and SPIN Farming (Small Plot INtensive) are all small scale gardening techniques. These techniques were brought to the United States by Alan Chadwick in the 1930s.[4] This method has since been promoted by John Jeavons, Director of Ecology Action.[5] A garden is more than just a means of providing food, it is a model of what is possible in a community - everyone could have a garden of some kind (container, growing box, raised bed) and produce healthy, nutritious organic food, a farmers market, a place to pass on gardening experience, and a sharing of bounty, promoting a more sustainable way of living that would encourage their local economy. A simple 4' x 8' (32 square feet) raised bed garden based on the principles of bio-intensive planting and square foot gardening uses fewer nutrients and less water, and could keep a family, or community, supplied with an abundance of healthy, nutritious organic greens, while promoting a more sustainable way of living.

Organic gardening is designed to work with the ecological systems and minimally disturb the Earth’s natural balance. Because of this organic farmers have been interested in reduced-tillage methods. Conventional agriculture uses mechanical tillage, which is plowing or sowing, which is harmful to the environment. The impact of tilling in organic farming is much less of an issue. Ploughing speeds up erosion because the soil remains uncovered for a long period of time and if it has a low content of organic matter the structural stability of the soil decreases. Organic farmers use techniques such as mulching, planting cover crops, and intercropping, to maintain a soil cover throughout most of the year. The use of compost, manure mulch and other organic fertilizers yields a higher organic content of soils on organic farms and helps limit soil degradation and erosion. [6]

Other methods can also be used to supplement an existing garden. Methods such as composting, or vermicomposting. These practices are ways of recycling organic matter into some of the best organic fertilizers and soil conditioner. Vermicompost is especially easy. The byproduct is also an excellent source of nutrients for an organic garden.[7]

Pest control approaches

Differing approaches to pest control are equally notable. In chemical horticulture, a specific insecticide may be applied to quickly kill off a particular insect pest. Chemical controls can dramatically reduce pest populations in the short term, yet by unavoidably killing (or starving) natural control insects and animals, cause an increase in the pest population in the long term, thereby creating an ever increasing problem. Repeated use of insecticides and herbicides also encourages rapid natural selection of resistant insects, plants and other organisms, necessitating increased use, or requiring new, more powerful controls.

In contrast, organic horticulture tends to tolerate some pest populations while taking the long view. Organic pest control requires a thorough understanding of pest life cycles and interactions, and involves the cumulative effect of many techniques, including:[8]
• Allowing for an acceptable level of pest damage
• Encouraging predatory beneficial insects to flourish and eat pests
• Encouraging beneficial microorganisms
• Careful plant selection, choosing disease-resistant varieties
• Planting companion crops that discourage or divert pests
• Using row covers to protect crop plants during pest migration periods
• Rotating crops to different locations from year to year to interrupt pest reproduction cycles
• Using insect traps to monitor and control insect populations

Each of these techniques also provides other benefits, such as soil protection and improvement, fertilization, pollination, water conservation and season extension. These benefits are both complementary and cumulative in overall effect on site health. Organic pest control and biological pest control can be used as part of integrated pest management (IPM). However, IPM can include the use of chemical pesticides that are not part of organic or biological techniques.[9]

Child abandonment

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Child_abandonment ...