Search This Blog

Saturday, February 21, 2015

Ether



From Wikipedia, the free encyclopedia


The general structure of an ether

Ethers /ˈθər/ are a class of organic compounds that contain an ether group — an oxygen atom connected to two alkyl or aryl groups — of general formula R–O–R'.[1] A typical example is the solvent and anesthetic diethyl ether, commonly referred to simply as "ether" (CH3-CH2-O-CH2-CH3). Ethers are common in organic chemistry and pervasive in biochemistry, as they are common linkages in carbohydrates and lignin.

Structure and bonding

Ethers feature C-O-C linkage defined by a bond angle of about 104° and C-O distances of about 140 pm. The barrier to rotation about the C-O bonds is low. The bonding of oxygen in ethers, alcohols, and water is similar. In the language of valence bond theory, the hybridization at oxygen is sp3.
Oxygen is more electronegative than carbon, thus the hydrogens alpha to ethers are more acidic than in simple hydrocarbons. They are far less acidic than hydrogens alpha to carbonyl groups (such as in ketones or aldehydes), however.
Depending on the groups at R and R', ethers are classified into two types:
  1. Simple ethers or symmetrical ethers; e.g., Diethyl ether, dimethyl ether, etc.
  2. Mixed ethers or asymmetrical ethers; e.g., Methyl ethyl ether, Methyl phenyl ether, etc.

Nomenclature

In the IUPAC nomenclature system, ethers are named using the general formula "alkoxyalkane", for example CH3-CH2-O-CH3 is methoxyethane. If the ether is part of a more complex molecule, it is described as an alkoxy substituent, so -OCH3 would be considered a "methoxy-" group. The simpler alkyl radical is written in front, so CH3-O-CH2CH3 would be given as methoxy(CH3O)ethane(CH2CH3).

Trivial Name

IUPAC rules are often not followed for simple ethers. The trivial names for simple ethers (i.e. those with none or few other functional groups) are a composite of the two substituents followed by "ether." For example, ethyl methyl ether (CH3OC2H5), diphenylether (C6H5OC6H5). As for other organic compounds, very common ethers acquired names before rules for nomenclature were formalized. Diethyl ether is simply called "ether," but was once called sweet oil of vitriol. Methyl phenyl ether is anisole, because it was originally found in aniseed. The aromatic ethers include furans. Acetals (α-alkoxy ethers R-CH(-OR)-O-R) are another class of ethers with characteristic properties.

Polyethers

Polyethers are compounds with more than one ether group.

The crown ethers are examples of low-molecular weight polyethers. Some toxins produced by dinoflagellates such as brevetoxin and ciguatoxin are in a class known as cyclic or ladder polyethers.

Polyether generally refers to polymers which contain the ether functional group in their main chain. The term glycol is reserved for low to medium range molar mass polymer when the nature of the end-group, which is usually a hydroxyl group, still matters. The term "oxide" or other terms are used for high molar mass polymer when end-groups no longer affect polymer properties.

Aliphatic polyethers

Name of the polymers with low to medium molar mass Name of the polymers with high molar mass Preparation Repeating unit Examples of trade names
Paraformaldehyde Polyoxymethylene (POM) or polyacetal or polyformaldehyde Step-growth polymerisation of formaldehyde -CH2O- Delrin from DuPont
Polyethylene glycol (PEG) Polyethylene oxide (PEO) or polyoxyethylene (POE) Ring-opening polymerization of ethylene oxide -CH2CH2O- Carbowax from Dow
Polypropylene glycol (PPG) Polypropylene oxide (PPOX) or polyoxypropylene) (POP) Anionic ring-opening polymerization of propylene oxide -CH2CH(CH3)O-
Polytetramethylene glycol (PTMG) or Polytetramethylene ether glycol (PTMEG) Polytetrahydrofuran (PTHF) Acid-catalyzed ring-opening polymerization of tetrahydrofuran -CH
2
CH
2
CH
2
CH
2
O-
Terathane from Invista and PolyTHF from BASF

Aromatic polyethers

The phenyl ether polymers are a class of polyethers containing aromatic cycles in their main chain: Polyphenyl ether (PPE) and Poly(p-phenylene oxide) (PPO).

Related compounds

Many classes of compounds with C-O-C linkages are not considered ethers: Esters (R-C(=O)-O-R), hemiacetals (R-CH(-OH)-O-R), carboxylic acid anhydrides (RC(=O)-O-C(=O)R).

Physical properties

Ether molecules cannot form hydrogen bonds with each other, resulting in relatively low boiling points compared to those of the analogous alcohols. The difference, however, in the boiling points of the ethers and their isomeric alcohols becomes lower as the carbon chains become longer, as the van der Waals interactions of the extended carbon chain dominates over the presence of hydrogen bonding.

Ethers are slightly polar. The C-O-C bond angle in the functional group is about 110°, and the C-O dipoles do not cancel out. Ethers are more polar than alkenes but not as polar as alcohols, esters, or amides of comparable structure. However, the presence of two lone pairs of electrons on the oxygen atoms makes hydrogen bonding with water molecules possible.

Cyclic ethers such as tetrahydrofuran and 1,4-dioxane are miscible in water because of the more exposed oxygen atom for hydrogen bonding as compared to linear aliphatic ethers.

Selected data about some alkyl ethers
Ether Structure m.p. (°C) b.p. (°C) Solubility in 1 liter of H2O Dipole moment (D)
Dimethyl ether CH3-O-CH3 -138.5 -23.0 70 g 1.30
Diethyl ether CH3CH2-O-CH2CH3 -116.3 34.4 69 g 1.14
Tetrahydrofuran O(CH2)4 -108.4 66.0 Miscible 1.74
Dioxane O(C2H4)2O 11.8 101.3 Miscible 0.45

Other properties are:
  • The lower ethers are highly volatile and flammable.
  • Lower ethers also act as anaesthetics.
  • Ethers act as good organic solvents.

Reactions


Structure of the polymeric diethyl ether peroxide

Ethers are quite stable chemical compounds which do not react with bases, active metals, dilute acids, oxidising agents and reducing agents. Generally, they are of low chemical reactivity, but they are more reactive than alkanes (epoxides, ketals, and acetals are unrepresentative classes of ethers and are discussed in separate articles). Important reactions are listed below.[2]

Ether cleavage

Although ethers resist hydrolysis, their polar bonds are cloven by mineral acids such as hydrobromic acid and hydroiodic acid. Hydrogen chloride cleaves ethers only slowly. Methyl ethers typically afford methyl halides:
ROCH3 + HBr → CH3Br + ROH
These reactions proceed via onium intermediates, i.e. [RO(H)CH3]+Br.

Some ethers undergo rapid cleavage with boron tribromide (even aluminium chloride is used in some cases) to give the alkyl bromide.[3] Depending on the substituents, some ethers can be cloven with a variety of reagents, e.g. strong base.

Peroxide formation

When stored in the presence of air or oxygen, ethers tend to form explosive peroxides, such as diethyl ether peroxide. The reaction is accelerated by light, metal catalysts, and aldehydes. In addition to avoiding storage conditions likely to form peroxides, it is recommended, when an ether is used as a solvent, not to distill it to dryness, as any peroxides that may have formed, being less volatile than the original ether, will become concentrated in the last few drops of liquid.

Lewis bases

Ethers serve as Lewis bases and Bronsted bases. Strong acids protonate the oxygen to give "onium ions." For instance, diethyl ether forms a complex with boron trifluoride, i.e. diethyl etherate (BF3.OEt2). Ethers also coordinate to Mg(II) center in Grignard reagents.

Alpha-halogenation

This reactivity is akin to the tendency of ethers with alpha hydrogen atoms to form peroxides. Chlorine gives alpha-chloroethers.

Synthesis

Ethers can be prepared in the laboratory in several different ways.

Dehydration of alcohols

The Dehydration of alcohols affords ethers:
2 R-OH → R-O-R + H2O at high temperature
Symm2.svg
[4] This direct nucleophillic subsititution reaction requires elevated temperatures (about 125 °C). The reaction is catalyzed by acids, usually sulfuric acid. The method is effective for generating symmetrical ethers, but not unsymmetrical ethers, since either OH can be protonated, which would give a mixture of products. Diethyl ether is produced from ethanol by this method. Cyclic ethers are readily generated by this approach. Elimination reactions compete with dehydration of the alcohol:
R-CH2-CH2(OH) → R-CH=CH2 + H2O
The dehydration route often requires conditions incompatible with delicate molecules. Several milder methods exist to produce ethers.

Williamson ether synthesis

Nucleophilic displacement of alkyl halides by alkoxides
R-ONa + R'-X → R-O-R' + NaX
This reaction is called the Williamson ether synthesis. It involves treatment of a parent alcohol with a strong base to form the alkoxide, followed by addition of an appropriate aliphatic compound bearing a suitable leaving group (R-X). Suitable leaving groups (X) include iodide, bromide, or sulfonates.
This method usually does not work well for aryl halides (e.g. bromobenzene (see Ullmann condensation below). Likewise, this method only gives the best yields for primary halides. Secondary and tertiary halides are prone to undergo E2 elimination on exposure to the basic alkoxide anion used in the reaction due to steric hindrance from the large alkyl groups.

In a related reaction, alkyl halides undergo nucleophilic displacement by phenoxides. The R-X cannot be used to react with the alcohol. However, phenols can be used to replace the alcohol, while maintaining the alkyl halide. Since phenols are acidic, they readily react with a strong base like sodium hydroxide to form phenoxide ions. The phenoxide ion will then substitute the -X group in the alkyl halide, forming an ether with an aryl group attached to it in a reaction with an SN2 mechanism.
C6H5OH + OH → C6H5-O + H2O
C6H5-O + R-X → C6H5OR

Ullmann condensation

The Ullmann condensation is similar to the Williamson method except that the substrate is an aryl halide. Such reactions generally require a catalyst, such as copper.

Electrophilic addition of alcohols to alkenes

Alcohols add to electrophilically activated alkenes.
R2C=CR2 + R-OH → R2CH-C(-O-R)-R2
Acid catalysis is required for this reaction. Often, mercury trifluoroacetate (Hg(OCOCF3)2) is used as a catalyst for the reaction, generating an ether with Markovnikov regiochemistry. Using similar reactions, tetrahydropyranyl ethers are used as protective groups for alcohols.

Preparation of epoxides

Epoxides are typically prepared by oxidation of alkenes. The most important epoxide in terms of industrial scale is ethylene oxide, which is produced by oxidation of ethylene with oxygen. Other epoxides are produced by one of two routes:
  • By the oxidation of alkenes with a peroxyacid such as m-CPBA.
  • By the base intramolecular nucleophilic substitution of a halohydrin.

Important ethers

Chemical structure of ethylene oxide Ethylene oxide The smallest cyclic ether. Also the simplest epoxide.
Chemical structure of dimethyl ether Dimethyl ether An aerosol spray propellant. A potential renewable alternative fuel for diesel engines with a cetane rating as high as 56-57.
Chemical structure of diethyl ether Diethyl ether A common low boiling solvent (b.p. 34.6 °C) and an early anaesthetic. Used as starting fluid for diesel engines. Also used as a refrigerant and in the manufacture of smokeless gunpowder, along with use in perfumery.
Chemical structure of dimethoxyethane Dimethoxyethane (DME) A high boiling solvent (b.p. 85 °C):
Chemical structure of dioxane Dioxane A cyclic ether and high boiling solvent (b.p. 101.1 °C).
Chemical structure of THF Tetrahydrofuran (THF) A cyclic ether, one of the most polar simple ethers that is used as a solvent.
Chemical structure of anisole Anisole (methoxybenzene) An aryl ether and a major constituent of the essential oil of anise seed.
Chemical structure of 18-crown-6 Crown ethers Cyclic polyethers that are used as phase transfer catalysts.
Chemical structure of polyethylene glycol Polyethylene glycol (PEG) A linear polyether, e.g. used in cosmetics and pharmaceuticals.

Alcohol



From Wikipedia, the free encyclopedia


Ball-and-stick model of the hydroxyl (-OH) functional group in an alcohol molecule (R3COH). The three "R's" stand for carbon substituents or hydrogen atoms.[1]

The hydroxyl (-OH) functional group with bond angle

In chemistry, an alcohol is any organic compound in which the hydroxyl functional group (-O H) is bound to a saturated carbon atom.[2] The term alcohol originally referred to the primary alcohol ethyl alcohol (ethanol), the predominant alcohol in alcoholic beverages. Muhammad ibn Zakariya al-Razi first discovered alcohol (ethanol) in its pure form in Persia.

The suffix -ol appears in the IUPAC chemical name of all substances where the hydroxyl group is the functional group with the highest priority; in substances where a higher priority group is present the prefix hydroxy- will appear in the IUPAC name. The suffix -ol in non-systematic names (such as paracetamol or cholesterol) also typically indicates that the substance includes a hydroxyl functional group and, so, can be termed an alcohol. But many substances, particularly sugars (examples glucose and sucrose) contain hydroxyl functional groups without using the suffix. An important class of alcohols are the simple acyclic alcohols, the general formula for which is CnH2n+1OH.

Occurrence in nature

Alcohols have been found outside the Solar System where they can be found in low densities in star and planetary-system-forming regions of space.[3][non-primary source needed]

Toxicity


Ball-and-stick model of tert-Amyl alcohol, which is 20 times more intoxicating than ethanol and like all tertiary alcohols, cannot be metabolised to toxic aldehydes.[4][5][better source needed][6][better source needed]

Ethanol is thought to cause harm partly as a result of direct damage to DNA caused by its metabolites.[7]

Most significant of the possible long-term effects of ethanol. In addition, in pregnant women, it causes fetal alcohol syndrome.

Ethanol's toxicity is largely caused by its primary metabolite, acetaldehyde (systematically ethanal)[8][9] and secondary metabolite, acetic acid.[9][10][11][12] All primary alcohols are broken down into aldehydes then to carboxylic acids whose toxicities are similar to acetaldehyde and acetic acid.[citation needed] Metabolite toxicity is reduced in rats fed N-acetylcysteine[8][13] and thiamine.[14]

Tertiary alcohols cannot be metabolized into aldehydes[15] and as a result they cause no hangover or toxicity through this mechanism.

Some secondary and tertiary alcohols are less poisonous than ethanol because the liver is unable to metabolize them into toxic by-products.[16] This makes them more suitable for recreational and medicinal[17] use as the chronic harms are lower.[medical citation needed] Ethchlorvynol and tert-amyl alcohol are tertiary alcohols which have seen both medicinal and recreational use.[18]

Other alcohols are substantially more poisonous than ethanol, partly because they take much longer to be metabolized and partly because their metabolism produces substances that are even more toxic. Methanol (wood alcohol), for instance, is oxidized to formaldehyde and then to the poisonous formic acid in the liver by alcohol dehydrogenase and formaldehyde dehydrogenase enzymes, respectively; accumulation of formic acid can lead to blindness or death.[19] Likewise, poisoning due to other alcohols such as ethylene glycol or diethylene glycol are due to their metabolites, which are also produced by alcohol dehydrogenase.[20][21]

Methanol itself, while poisonous (LD50 5628 mg/kg, oral, rat[22]), has a much weaker sedative effect than ethanol.

Isopropyl alcohol is oxidized to form acetone by alcohol dehydrogenase in the liver but has occasionally been abused by alcoholics, leading to a range of adverse health effects.[23][better source needed][24][better source needed]

Treatment

An effective treatment to prevent toxicity after methanol or ethylene glycol ingestion is to administer ethanol. Alcohol dehydrogenase has a higher affinity for ethanol, thus preventing methanol from binding and acting as a substrate. Any remaining methanol will then have time to be excreted through the kidneys.[19][25][26]

Nomenclature

Systematic names

IUPAC nomenclature is used in scientific publications and where precise identification of the substance is important, especially in cases where the relative complexity of the molecule does not make such a systematic name unwieldy. In the IUPAC system, in naming simple alcohols, the name of the alkane chain loses the terminal "e" and adds "ol", e.g., as in "methanol" and "ethanol".[27] When necessary, the position of the hydroxyl group is indicated by a number between the alkane name and the "ol": propan-1-ol for CH3CH2CH2OH, propan-2-ol for CH3CH(OH)CH3. If a higher priority group is present (such as an aldehyde, ketone, or carboxylic acid), then the prefix "hydroxy" is used,[27] e.g., as in 1-hydroxy-2-propanone (CH3C(O)CH2OH).[28]

Some examples of simple alcohols and how to name them

Common names

In other less formal contexts, an alcohol is often called with the name of the corresponding alkyl group followed by the word "alcohol", e.g., methyl alcohol, ethyl alcohol. Propyl alcohol may be n-propyl alcohol or isopropyl alcohol, depending on whether the hydroxyl group is bonded to the end or middle carbon on the straight propane chain. As described under systematic naming, if another group on the molecule takes priority, the alcohol moiety is often indicated using the "hydroxy-" prefix.

Alcohols are then classified into primary, secondary (sec-, s-), and tertiary (tert-, t-), based upon the number of carbon atoms connected to the carbon atom that bears the hydroxyl functional group. (The respective numeric shorthands 1°, 2°, and 3° are also sometimes used in informal settings.[citation needed]) The primary alcohols have general formulas RCH2OH; methanol (CH3OH is the simplest primary alcohol (R=H), and after it, ethanol (R=CH3). Secondary alcohols can be referred to with the shorthand RR'CHOH; 2-propanol is the simplest example (R=R'=CH3). Tertiary alcohols can be referred to with the shorthand RR'R"COH; tert-butanol (2-methylpropan-2-ol) is the simplest example (R=R'=R"=CH3). In these shorthands, R, R', and R" represent substituents, alkyl or other attached, generally organic groups.

 Chemical Formula   IUPAC Name   Common Name 
Monohydric alcohols
CH3OH Methanol Wood alcohol
C2H5OH Ethanol Alcohol
C3H7OH Isopropyl alcohol Rubbing alcohol
C4H9OH Butyl alcohol Butanol
C5H11OH Pentanol Amyl alcohol
C16H33OH Hexadecan-1-ol Cetyl alcohol
Polyhydric alcohols
C2H4(OH)2 Ethane-1,2-diol Ethylene glycol
C3H6(OH)2 Propane-1,2-diol Propylene Glycol
C3H5(OH)3 Propane-1,2,3-triol Glycerol
C4H6(OH)4 Butane-1,2,3,4-tetraol Erythritol, Threitol
C5H7(OH)5 Pentane-1,2,3,4,5-pentol Xylitol
C6H8(OH)6 Hexane-1,2,3,4,5,6-hexol Mannitol, Sorbitol
C7H9(OH)7 Heptane-1,2,3,4,5,6,7-heptol Volemitol
Unsaturated aliphatic alcohols
C3H5OH Prop-2-ene-1-ol Allyl alcohol
C10H17OH 3,7-Dimethylocta-2,6-dien-1-ol Geraniol
C3H3OH Prop-2-in-1-ol Propargyl alcohol
Alicyclic alcohols
C6H6(OH)6 Cyclohexane-1,2,3,4,5,6-hexol Inositol
C10H19OH 2 - (2-propyl)-5-methyl-cyclohexane-1-ol Menthol

Alkyl chain variations in alcohols

Short-chain alcohols have alkyl chains of 1-3 carbons. Medium-chain alcohols have alkyl chains of 4-7 carbons. Long-chain alcohols (also known as fatty alcohols) have alkyl chains of 8-21 carbons, and very long-chain alcohols have alkyl chains of 22 carbons or longer.[29]

Simple alcohols

"Simple alcohols" appears to be a completely undefined term. However, simple alcohols are often referred to by common names derived by adding the word "alcohol" to the name of the appropriate alkyl group. For instance, a chain consisting of one carbon (a methyl group, CH3) with an OH group attached to the carbon is called "methyl alcohol" while a chain of two carbons (an ethyl group, CH2CH3) with an OH group connected to the CH2 is called "ethyl alcohol." For more complex alcohols, the IUPAC nomenclature must be used.[30]

Simple alcohols, in particular ethanol and methanol, possess denaturing and inert rendering properties, leading to their use as anti-microbial agents in medicine, pharmacy, and industry.[citation needed]

Higher alcohols

Encyclopædia Britannica states, "The higher alcohols - those containing 4 to 10 carbon atoms – are somewhat viscous, or oily, and they have heavier fruity odours. Some of the highly branched alcohols and many alcohols containing more than 12 carbon atoms are solids at room temperature."[31]

Like ethanol, butanol can be produced by fermentation processes. Saccharomyces yeast are known to produce these higher alcohols at temperatures above 75 °F (24 °C). The bacterium Clostridium acetobutylicum can feeds on cellulose to produce butanol on an industrial scale.

Etymology

The word alcohol appears in English as a term for a very fine powder in the sixteenth century. It was borrowed from French, which took it from medical Latin.

Ultimately the word is from the Arabic كحل (al-kuḥl, "kohl, a powder used as an eyeliner"). Al- is the Arabic definitive article, equivalent to the in English; alcohol was originally used for the very fine powder produced by the sublimation of the natural mineral stibnite to form antimony sulfide Sb2S3 (hence the essence or "spirit" of the substance), which was used as an antiseptic, eyeliner, and cosmetic (see kohl (cosmetics)). Bartholomew Traheron, in his 1543 translation of John of Vigo, introduces the word as a term used by "barbarous" (Moorish) authors for "fine powder." Vigo wrote: the barbarous auctours use alcohol, or (as I fynde it sometymes wryten) alcofoll, for moost fine poudre.

The 1657 Lexicon Chymicum by William Johnson glosses the word as antimonium sive stibium. By extension, the word came to refer to any fluid obtained by distillation, including "alcohol of wine," the distilled essence of wine. Libavius in Alchymia (1594) refers to vini alcohol vel vinum alcalisatum. Johnson (1657) glosses alcohol vini as quando omnis superfluitas vini a vino separatur, ita ut accensum ardeat donec totum consumatur, nihilque fæcum aut phlegmatis in fundo remaneat. The word's meaning became restricted to "spirit of wine" (the chemical known today as ethanol) in the 18th century and was extended to the class of substances so-called as "alcohols" in modern chemistry after 1850.

The current Arabic name for alcohol (ethanol) is الغول al-ġawl – properly meaning "spirit" or "demon" – with the sense "the thing that gives the wine its headiness" (in the Qur'an sura 37 verse 47).[32] The term ethanol was invented 1838, modeled on the German word äthyl (Liebig), which is in turn based on Greek aither ether and hyle "stuff."[33]

Physical and chemical properties

Alcohols have an odor that is often described as “biting” and as “hanging” in the nasal passages. Ethanol has a slightly sweeter (or more fruit-like) odor than the other alcohols.

In general, the hydroxyl group makes the alcohol molecule polar. Those groups can form hydrogen bonds to one another and to other compounds (except in certain large molecules where the hydroxyl is protected by steric hindrance of adjacent groups[34]). This hydrogen bonding means that alcohols can be used as protic solvents. Two opposing solubility trends in alcohols are: the tendency of the polar OH to promote solubility in water, and the tendency of the carbon chain to resist it. Thus, methanol, ethanol, and propanol are miscible in water because the hydroxyl group wins out over the short carbon chain. Butanol, with a four-carbon chain, is moderately soluble because of a balance between the two trends. Alcohols of five or more carbons such as pentanol and higher are effectively insoluble in water because of the hydrocarbon chain's dominance. All simple alcohols are miscible in organic solvents.

Because of hydrogen bonding, alcohols tend to have higher boiling points than comparable hydrocarbons and ethers. The boiling point of the alcohol ethanol is 78.29 °C, compared to 69 °C for the hydrocarbon hexane (a common constituent of gasoline), and 34.6 °C for diethyl ether.

Alcohols, like water, can show either acidic or basic properties at the -OH group. With a pKa of around 16-19, they are, in general, slightly weaker acids than water, but they are still able to react with strong bases such as sodium hydride or reactive metals such as sodium. The salts that result are called alkoxides, with the general formula RO M+.

Meanwhile, the oxygen atom has lone pairs of nonbonded electrons that render it weakly basic in the presence of strong acids such as sulfuric acid. For example, with methanol:
Acidity & basicity of methanol

Alcohols can also undergo oxidation to give aldehydes, ketones, or carboxylic acids, or they can be dehydrated to alkenes. They can react to form ester compounds, and they can (if activated first) undergo nucleophilic substitution reactions. The lone pairs of electrons on the oxygen of the hydroxyl group also makes alcohols nucleophiles. For more details, see the reactions of alcohols section below.

As one moves from primary to secondary to tertiary alcohols with the same backbone, the hydrogen bond strength, the boiling point, and the acidity typically decrease.

Applications


Total recorded alcohol per capita consumption (15+), in litres of pure alcohol[35]

Alcohol has a long history of several uses worldwide. It is found in alcoholic beverages sold to adults, as fuel, and also has many scientific, medical, and industrial uses. The term alcohol-free is often used to describe a product that does not contain alcohol. Some consumers of some commercially prepared products may view alcohol as an undesirable ingredient, particularly in products intended for children.

Alcoholic beverages

Alcoholic beverages, typically containing 3–40% ethanol by volume, have been produced and consumed by humans since pre-historic times. Other alcohols such as 2-methyl-2-butanol (found in beer) and γ-hydroxybutyric acid are also consumed by humans for their psychoactive effects.

Antifreeze

A 50% v/v (by volume) solution of ethylene glycol in water is commonly used as an antifreeze.

Antiseptics

Ethanol can be used as an antiseptic to disinfect the skin before injections are given, often along with iodine. Ethanol-based soaps are becoming common in restaurants and are convenient because they do not require drying due to the volatility of the compound. Alcohol based gels have become common as hand sanitizers.

Fuels

Some alcohols, mainly ethanol and methanol, can be used as an alcohol fuel. Fuel performance can be increased in forced induction internal combustion engines by injecting alcohol into the air intake after the turbocharger or supercharger has pressurized the air. This cools the pressurized air, providing a denser air charge, which allows for more fuel, and therefore more power.

Preservative

Alcohol is often used as a preservative for specimens in the fields of science and medicine.

Solvents

Hydroxyl groups (-OH), found in alcohols, are polar and therefore hydrophilic (water loving) but their carbon chain portion is non-polar which make them hydrophobic. The molecule increasingly becomes overall more nonpolar and therefore less soluble in the polar water as the carbon chain becomes longer.[36] Methanol has the shortest carbon chain of all alcohols (one carbon atom) followed by ethanol (two carbon atoms.)

Alcohols have applications in industry and science as reagents or solvents. Because of its relatively low toxicity compared with other alcohols and ability to dissolve non-polar substances, ethanol can be used as a solvent in medical drugs, perfumes, and vegetable essences such as vanilla. In organic synthesis, alcohols serve as versatile intermediates.

Production

Ziegler and oxo processes

In the Ziegler process, linear alcohols are produced from ethylene and triethylaluminium followed by oxidation and hydrolysis.[37] An idealized synthesis of 1-octanol is shown:
Al(C2H5)3 + 9 C2H4 → Al(C8H17)3
Al(C8H17)3 + 3 O + 3 H2O → 3 HOC8H17 + Al(OH)3
The process generates a range of alcohols that are separated by distillation.

Many higher alcohols are produced by hydroformylation of alkenes followed by hydrogenation. When applied to a terminal alkene, as is common, one typically obtains a linear alcohol:[37]
RCH=CH2 + H2 + CO → RCH2CH2CHO
RCH2CH2CHO + 3 H2 → RCH2CH2CH2OH
Such processes give fatty alcohols, which are useful for detergents.

Hydration reactions

Low molecular weight alcohols of industrial importance are produced by the addition of water to alkenes. Ethanol, isopropanol, 2-butanol, and tert-butanol are produced by this general method. Two implementations are employed, the direct and indirect methods. The direct method avoids the formation of stable intermediates, typically using acid catalysts. In the indirect method, the alkene is converted to the sulfate ester, which is subsequently hydrolyzed. The direct hydration using ethylene (ethylene hydration)[38] or other alkenes from cracking of fractions of distilled crude oil.

Hydration is also used industrially to produce the diol ethylene glycol from ethylene oxide.

Biological routes

Ethanol is obtained by fermentation using glucose produced from sugar from the hydrolysis of starch, in the presence of yeast and temperature of less than 37 °C to produce ethanol. For instance, such a process might proceed by the conversion of sucrose by the enzyme invertase into glucose and fructose, then the conversion of glucose by the enzyme zymase into ethanol (and carbon dioxide).

Several of the benign bacteria[which?] in the intestine use fermentation as a form of anaerobic metabolism. This metabolic reaction produces ethanol as a waste product, just like aerobic respiration produces carbon dioxide and water. Thus, human bodies contain some quantity of alcohol endogenously produced by these bacteria. In rare cases, this can be sufficient to cause "auto-brewery syndrome" in which intoxicating quantities of alcohol are produced.[39][40][41]

Laboratory synthesis

Several methods exist for the preparation of alcohols in the laboratory.

Substitution

Primary alkyl halides react with aqueous NaOH or KOH mainly to primary alcohols in nucleophilic aliphatic substitution. (Secondary and especially tertiary alkyl halides will give the elimination (alkene) product instead). Grignard reagents react with carbonyl groups to secondary and tertiary alcohols. Related reactions are the Barbier reaction and the Nozaki-Hiyama reaction.

Reduction

Aldehydes or ketones are reduced with sodium borohydride or lithium aluminium hydride (after an acidic workup). Another reduction by aluminiumisopropylates is the Meerwein-Ponndorf-Verley reduction. Noyori asymmetric hydrogenation is the asymmetric reduction of β-keto-esters.

Hydrolysis

Alkenes engage in an acid catalysed hydration reaction using concentrated sulfuric acid as a catalyst that gives usually secondary or tertiary alcohols. The hydroboration-oxidation and oxymercuration-reduction of alkenes are more reliable in organic synthesis. Alkenes react with NBS and water in halohydrin formation reaction. Amines can be converted to diazonium salts, which are then hydrolyzed.

The formation of a secondary alcohol via reduction and hydration is shown:
Preparation of a secondary alcohol

Reactions

Deprotonation

Alcohols can behave as weak acids, undergoing deprotonation. The deprotonation reaction to produce an alkoxide salt is performed either with a strong base such as sodium hydride or n-butyllithium or with sodium or potassium metal.
2 R-OH + 2 NaH → 2 R-ONa+ + 2H2
2 R-OH + 2 Na → 2 R-ONa+ + H2
2 CH3CH2-OH + 2 Na → 2 CH3-CH2-ONa+ + H2
Water is similar in pKa to many alcohols, so with sodium hydroxide there is an equilibrium set-up, which usually lies to the left:
R-OH + NaOH ⇌ R-ONa+ + H2O (equilibrium to the left)
It should be noted, however, that the bases used to deprotonate alcohols are strong themselves. The bases used and the alkoxides created are both highly moisture-sensitive chemical reagents.

The acidity of alcohols is also affected by the overall stability of the alkoxide ion. Electron-withdrawing groups attached to the carbon containing the hydroxyl group will serve to stabilize the alkoxide when formed, thus resulting in greater acidity. On the other hand, the presence of electron-donating group will result in a less stable alkoxide ion formed. This will result in a scenario whereby the unstable alkoxide ion formed will tend to accept a proton to reform the original alcohol.

With alkyl halides alkoxides give rise to ethers in the Williamson ether synthesis.

Nucleophilic substitution

The OH group is not a good leaving group in nucleophilic substitution reactions, so neutral alcohols do not react in such reactions. However, if the oxygen is first protonated to give R−OH2+, the leaving group (water) is much more stable, and the nucleophilic substitution can take place. For instance, tertiary alcohols react with hydrochloric acid to produce tertiary alkyl halides, where the hydroxyl group is replaced by a chlorine atom by unimolecular nucleophilic substitution. If primary or secondary alcohols are to be reacted with hydrochloric acid, an activator such as zinc chloride is needed. In alternative fashion, the conversion may be performed directly using thionyl chloride.[1]
Some simple conversions of alcohols to alkyl chlorides
Alcohols may, likewise, be converted to alkyl bromides using hydrobromic acid or phosphorus tribromide, for example:
3 R-OH + PBr3 → 3 RBr + H3PO3
In the Barton-McCombie deoxygenation an alcohol is deoxygenated to an alkane with tributyltin hydride or a trimethylborane-water complex in a radical substitution reaction.

Dehydration

Alcohols are themselves nucleophilic, so R−OH2+ can react with ROH to produce ethers and water in a dehydration reaction, although this reaction is rarely used except in the manufacture of diethyl ether.

More useful is the E1 elimination reaction of alcohols to produce alkenes. The reaction, in general, obeys Zaitsev's Rule, which states that the most stable (usually the most substituted) alkene is formed. Tertiary alcohols eliminate easily at just above room temperature, but primary alcohols require a higher temperature.

This is a diagram of acid catalysed dehydration of ethanol to produce ethene:
DehydrationOfAlcoholWithH-.png
A more controlled elimination reaction is the Chugaev elimination with carbon disulfide and iodomethane.

Esterification

To form an ester from an alcohol and a carboxylic acid the reaction, known as Fischer esterification, is usually performed at reflux with a catalyst of concentrated sulfuric acid:
R-OH + R'-COOH → R'-COOR + H2O
In order to drive the equilibrium to the right and produce a good yield of ester, water is usually removed, either by an excess of H2SO4 or by using a Dean-Stark apparatus. Esters may also be prepared by reaction of the alcohol with an acid chloride in the presence of a base such as pyridine.

Other types of ester are prepared in a similar manner – for example, tosyl (tosylate) esters are made by reaction of the alcohol with p-toluenesulfonyl chloride in pyridine.

Oxidation

Primary alcohols (R-CH2-OH) can be oxidized either to aldehydes (R-CHO) or to carboxylic acids (R-CO2H), while the oxidation of secondary alcohols (R1R2CH-OH) normally terminates at the ketone (R1R2C=O) stage. Tertiary alcohols (R1R2R3C-OH) are resistant to oxidation.
The direct oxidation of primary alcohols to carboxylic acids normally proceeds via the corresponding aldehyde, which is transformed via an aldehyde hydrate (R-CH(OH)2) by reaction with water before it can be further oxidized to the carboxylic acid.



Mechanism of oxidation of primary alcohols to carboxylic acids via aldehydes and aldehyde hydrates

Reagents useful for the transformation of primary alcohols to aldehydes are normally also suitable for the oxidation of secondary alcohols to ketones. These include Collins reagent and Dess-Martin periodinane. The direct oxidation of primary alcohols to carboxylic acids can be carried out using potassium permanganate or the Jones reagent.

Hercule Poirot

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Hercule_Poirot ...