Search This Blog

Friday, February 27, 2015

Current sea level rise



From Wikipedia, the free encyclopedia

Trends in global average absolute sea level, 1870–2008.[1]
Changes in sea level since the end of the last glacial episode.

Current sea level rise is about 3 mm/year worldwide. According to the US National Oceanic and Atmospheric Administration (NOAA), "this is a significantly larger rate than the sea-level rise averaged over the last several thousand years", and the rate may be increasing.[2] Sea level rises can considerably influence human populations in coastal and island regions[3] and natural environments like marine ecosystems.[4]

Between 1870 and 2004, global average sea levels rose a total of 195 mm (7.7 in), and 1.46 mm (0.057 in) per year.[5] From 1950 to 2009, measurements show an average annual rise in sea level of 1.7 ± 0.3 mm per year, with satellite data showing a rise of 3.3 ± 0.4 mm per year from 1993 to 2009,[6] The reason for recent increase is unclear, perhaps owing to decadal variation.[7] It is unclear whether the increased rate reflects an increase in the underlying long-term trend.[8]

There are two main mechanisms that contribute to observed sea level rise:[9] (1) thermal expansion: ocean water expands as it warms;[10] and (2) the melting of major stores of land ice like ice sheets and glaciers.

Sea level rise is one of several lines of evidence that support the view that the global climate has recently warmed.[11] In 2007, the Intergovernmental Panel on Climate Change (IPCC) stated that it is very likely human-induced (anthropogenic) warming contributed to the sea level rise observed in the latter half of the 20th century.[12] Sea level rise is expected to continue for centuries.[13] In 2013, the Intergovernmental Panel on Climate Change (IPCC) projected that during the 21st century, sea level will rise another 26cm to 82cm in its fifth assessment report.[14]

More recent projections assessed by the US National Research Council (2010)[15] suggest possible sea level rise over the 21st century of between 56 and 200 cm (22 and 79 in). The Third National Climate Assessment (NCA), released May 6th, 2014, projects a sea level rise of 1 to 4 feet by 2100(30-120 cm).[16]

On the timescale of centuries to millennia, the melting of ice sheets could result in even higher sea level rise. Partial deglaciation of the Greenland ice sheet, and possibly the West Antarctic ice sheet, could contribute 4 to 6 m (13 to 20 ft) or more to sea level rise.[17]

Work by a team led by Veerabhadran Ramanathan of the Scripps Institution of Oceanography suggests that a quick way to stave off impending sea level rise is to cut emissions of short-lived climate warmers such as methane and soot.[18][19]

Overview of sea-level change

Local and eustatic sea level


Water cycles between ocean, atmosphere, and glaciers.

Local mean sea level (LMSL) is defined as the height of the sea with respect to a land benchmark, averaged over a period of time (such as a month or a year) long enough that fluctuations caused by waves and tides are smoothed out. One must adjust perceived changes in LMSL to account for vertical movements of the land, which can be of the same order (mm/yr) as sea level changes. Some land movements occur because of isostatic adjustment of the mantle to the melting of ice sheets at the end of the last ice age. The weight of the ice sheet depresses the underlying land, and when the ice melts away the land slowly rebounds. Atmospheric pressure, ocean currents and local ocean temperature changes also can affect LMSL.

"Eustatic" change (as opposed to local change) results in an alteration to the global sea levels, such as changes in the volume of water in the world oceans or changes in the volume of an ocean basin.[20]

Short-term and periodic changes

Many factors can produce short-term (a few minutes to 18.6 years) changes in sea level.

Short-term (periodic) causes Time scale
(P = period)
Vertical effect
Periodic sea level changes
Diurnal and semidiurnal astronomical tides 12–24 h P 0.2–10+ m
Long-period tides
Rotational variations (Chandler wobble) 14 month P
Lunar Node astronomical tides 18.613 year
Meteorological and oceanographic fluctuations
Atmospheric pressure Hours to months −0.7 to 1.3 m
Winds (storm surges) 1–5 days Up to 5 m
Evaporation and precipitation (may also follow long-term pattern) Days to weeks
Ocean surface topography (changes in water density and currents) Days to weeks Up to 1 m
El Niño/southern oscillation 6 mo every 5–10 yr Up to 0.6 m
Seasonal variations
Seasonal water balance among oceans (Atlantic, Pacific, Indian)
Seasonal variations in slope of water surface
River runoff/floods 2 months 1 m
Seasonal water density changes (temperature and salinity) 6 months 0.2 m
Seiches
Seiches (standing waves) Minutes to hours Up to 5 m
Earthquakes
Tsunamis (generate catastrophic long-period waves) Hours Up to 10 m
Abrupt change in land level Minutes Up to 10 m

Longer-term changes

Various factors affect the volume or mass of the ocean, leading to long-term changes in eustatic sea level. The two primary influences are temperature (because the density of water depends on temperature), and the mass of water locked up on land and sea as fresh water in rivers, lakes, glaciers, polar ice caps, and sea ice. Over much longer geological timescales, changes in the shape of oceanic basins and in land–sea distribution affect sea level.

Observational and modelling studies of mass loss from glaciers and ice caps indicate a contribution to sea-level rise of 0.2–0.4 mm/yr, averaged over the 20th century.

Glaciers and ice caps

Each year about 8 mm of precipitation (liquid equivalent) falls on the ice sheets in Antarctica and Greenland, mostly as snow, which accumulates and over time forms glacial ice. Much of this precipitation began as water vapor evaporated from the ocean surface.[citation needed] If no ice returned to the oceans, sea level would drop 8 mm every year. To a first approximation, the same amount of water appeared to return to the ocean in icebergs and from ice melting at the edges. Scientists previously had estimated which is greater, ice going in or coming out, called the mass balance, important because a nonzero balance causes changes in global sea level. High-precision gravimetry from satellites in low-noise flight determined that Greenland was losing more than 200 billion tons of ice per year, in accord with loss estimates from ground measurement.[21] The rate of ice loss was accelerating,[22] having grown from 137 gigatons in 2002–2003.[23] The total global ice mass lost from Greenland, Antarctica and Earth's glaciers and ice caps during 2003–2010 was about 4.3 trillion tons (1,000 cubic miles), adding about 12 mm (0.5 in) to global sea level, enough ice to cover an area comparable to the United States 50 cm (1.5 ft) deep.[24]

Ice shelves float on the surface of the sea and, if they melt, to a first order, they do not change sea level. Likewise, shrinkage/expansion of the northern polar ice cap which is composed of floating pack ice does not significantly affect sea level. Because ice shelf water is fresh, however, melting would cause a very small increase in sea levels, so small that it is generally neglected.
  • The melting of small glaciers and polar ice caps on the margins of Greenland and the Antarctic Peninsula melt, would increase sea level around 0.5 m. Melting of the Greenland ice sheet or the Antarctic ice sheet would produce 7.2 m and 61.1 m of sea-level rise, respectively.[25] The collapse of the grounded interior reservoir of the West Antarctic Ice Sheet would raise sea level by 5–6 m.[26]
  • The interior of the Greenland and Antarctic ice sheets, as of 2009, was sufficiently high (and therefore cold) that is would require millennia before those sheets would be lost by direct melt alone.[citation needed] Those ice sheets would be substantially reduced in mass through acceleration in flow and enhanced iceberg calving long before a direct melt could occur, although direct melt and calving occur in tandem. With feedback factors including the lost heat reflectance of the retreating ice, melt at the fringes of the ice caps and sub-ice-shelf melting in Antarctica could continue to significantly increase.[citation needed]
  • Climate changes during the 20th century were estimated from modelling studies to have led to contributions of between −0.2 and 0.0 mm/yr from Antarctica (the results of increasing precipitation) and 0.0 to 0.1 mm/yr from Greenland (from changes in both precipitation and runoff).[citation needed]
  • Estimates suggest that Greenland and Antarctica have contributed 0.0 to 0.5 mm/yr over the 20th century as a result of long-term adjustment to the end of the last ice age[citation needed].
The current rise in sea level observed from tide gauges, of about 1.8 mm/yr, is within the estimate range from the combination of factors above[27] but active research continues in this field.

In 1992, satellites began recording the change in sea level;[28][29] they display an acceleration in the rate of sea level change, but they have not been operating for long enough to work out whether this signals a permanent rate change, or an artifact of short-term variation.[citation needed]

Short-term variability and long-term trends

On the timescale of years and decades, sea level records contain a considerable amount of variability.[30] For example, approximately a 10 mm rise and fall of global mean sea level accompanied the 1997–1998 El Niño-Southern Oscillation (ENSO) event, and a temporary 5 mm fall accompanied the 2010–2011 event.[31] Interannual or longer variability is a major reason why no long-term acceleration of sea level has been identified using 20th century data alone. However, a range of evidence clearly shows that the rate of sea level rise increased between the mid-19th and mid-20th centuries.[32] Sea level acceleration up to the present has been about 0.01 mm/yr² and appears to have started at the end of the 18th century. Sea level rose by 6 cm during the 19th century and 19 cm in the 20th century.[33] Evidence for this includes geological observations, the longest instrumental records and the observed rate of 20th century sea level rise. For example, geological observations indicate that during the last 2,000 years, sea level change was small, with an average rate of only 0.0–0.2 mm per year. This compares to an average rate of 1.7 ± 0.5 mm per year for the 20th century.[34] In its Fifth Assessment Report, The IPCC found that recent observations of global average sea level rise at a rate of 3.2 [2.8 to 3.6] mm per year is consistent with the sum of contributions from observed thermal ocean expansion due to rising temperatures (1.1 [0.8 to 1.4] mm per year, glacier melt (0.76 [0.39 to 1.13] mm per year), Greenland ice sheet melt (0.33 [0.25 to 0.41] mm per year), Antarctic ice sheet melt (0.27 [0.16 to 0.38] mm per year), and changes to land water storage (0.38 [0.26 to 0.49] mm per year). The report had also concluded that if emissions continue to keep up with the worst case IPCC scenarios, global average sea level could rise by nearly 1m by 2100 (0.52−0.98 m from a 1986-2005 baseline). If emissions follow the lowest emissions scenario, then global average sea level is projected to rise by between 0.28−0.6 m by 2100 (compared to a 1986−2005 baseline).[35]

Past changes in sea level


Changes in sea level during the last 9,000 years

The sedimentary record

Sedimentary deposits follow cyclic patterns. Prevailing theories hold that this cyclicity primarily represents the response of depositional processes to the rise and fall of sea level. The rock record indicates that in earlier eras, sea level was both much lower than today and much higher than today. Such anomalies often appear worldwide. For instance, during the depths of the last ice age 18,000 years ago when hundreds of thousands of cubic miles of ice were stacked up on the continents as glaciers, sea level was 120 metres (390 ft) lower, locations that today support coral reefs were left high and dry, and coastlines were miles farther outward. During this time of very low sea level there was a dry land connection between Asia and Alaska over which humans are believed to have migrated to North America (see Bering Land Bridge).[36]

For the past 6,000 years, the world's sea level gradually approached the current level except during marine transgressions like the Older Peron. During the previous interglacial about 120,000 years ago, sea level was for a short time about 6 metres (20 ft) higher than today, as evidenced by wave-cut notches along cliffs in the Bahamas. There are also Pleistocene coral reefs left stranded about 3 metres above today's sea level along the southwestern coastline of West Caicos Island in the West Indies. These once-submerged reefs and nearby paleo-beach deposits indicate that sea level spent enough time at that higher level to allow reefs to grow (exactly where this extra sea water came from—Antarctica or Greenland—has not yet been determined). Similar evidence of geologically recent sea level positions is abundant around the world.[citation needed]

Estimates of past changes

See figure 11.4[37] in the Third Assessment Report for a graph of sea-level changes over the past 140,000 years.
  • Sea level rise estimates from satellite altimetry since 1993 are in the range of 2.9–3.4 mm/yr.[38][39][40][41][42]
  • Church and White (2006) report an acceleration of SLR since 1870.[5] This is a revision since 2001, when the TAR stated that measurements have detected no significant acceleration in the recent rate of sea level rise.
  • Based on tide gauge data, the rate of global average sea level rise during the 20th century lies in the range 0.8 to 3.3 mm/yr, with an average rate of 1.8 mm/yr.[43]
  • Recent studies of Roman wells in Caesarea and of Roman piscinae in Italy indicate that sea level stayed fairly constant from a few hundred years AD to a few hundred years ago.
  • Based on geological data, global average sea level may have risen at an average rate of about 0.5 mm/yr over the last 6,000 years and at an average rate of 0.1–0.2 mm/yr over the last 3,000 years.
  • Since the Last Glacial Maximum about 20,000 years ago, sea level has risen by more than 120 m (averaging 6 mm/yr) as a result of melting of major ice sheets. A rapid rise took place between 15,000 and 6,000 years ago at an average rate of 10 mm/yr which accounted for 90 m of the rise; thus in the period since 20,000 years BP (excluding the rapid rise from 15–6 kyr BP) the average rate was 3 mm/yr.
  • A significant event was Meltwater pulse 1A (mwp-1A), when sea level rose approximately 20 m over a 500-year period about 14,200 years ago. This is a rate of about 40 mm/yr. The primary source may have been meltwater from the Antarctic ice sheet, perhaps causing the south-to-north cold pulse marked by the Southern Hemisphere Huelmo/Mascardi Cold Reversal, which preceded the Northern Hemisphere Younger Dryas. Other recent studies suggest a Northern Hemisphere source for the meltwater in the Laurentide ice sheet.
  • Relative sea level rise at specific locations is often 1–2 mm/yr greater or less than the global average. Along the US mid-Atlantic and Gulf Coasts, for example, sea level is rising approximately 3 mm/yr

US tide gauge measurements


US sea-level trends 1900–2003

Tide gauges in the United States reveal considerable variation because some land areas are rising and some are sinking. For example, over the past 100 years, the rate of sea level rise varied from about an increase of 0.36 inches (9.1 mm) per year along the Louisiana Coast (due to land sinking), to a drop of a few inches per decade in parts of Alaska (due to post-glacial rebound). The rate of sea level rise increased during the 1993–2003 period compared with the longer-term average (1961–2003), although it is unclear whether the faster rate reflected a short-term variation or an increase in the long-term trend.[44]

One study showed no acceleration in sea level rise in US tide gauge records during the 20th century.[45] However, another study found that the rate of rise for the US Atlantic coast during the 20th century was far higher than during the previous two thousand years.[46]

Amsterdam sea level measurements

The longest running sea-level measurements are recorded at Amsterdam, in the Netherlands—part of which (about 25%) lies beneath sea level, beginning in 1700.[47] Since 1850, the rise averaged 1.5 mm/year.

Australian sea-level change

In Australia, data collected by the Commonwealth Scientific and Industrial Research Organisation (CSIRO) show the current global mean sea level trend to be 3.2 mm/yr.,[48] a doubling of the rate of the total increase of about 210mm that was measured from 1880 to 2009, which reflected an average annual rise over the entire 129-year period of about 1.6 mm/year.[49]

Australian record collection has a long time horizon, including measurements by an amateur meteorologist beginning in 1837 and measurements taken from a sea-level benchmark struck on a small cliff on the Isle of the Dead[50] near the Port Arthur convict settlement on 1 July 1841. These records, when compared with data recorded by modern tide gauges, reinforce the recent comparisons of the historic sea level rise of about 1.6 mm/year, with the sharp acceleration in recent decades.[51]

Continuing extensive sea level data collection by Australia's (CSIRO) is summarized in in its finding of mean sea level trend to be 3.2 mm/yr. As of 2003 the National Tidal Centre of the Bureau of Meteorology managed 32 tide gauges covering the entire Australian coastline, with some measurements available starting in 1880.[52]

Future sea-level rise

Projections

21st century

The 2007 Fourth Assessment Report (IPCC 4) projected century-end sea levels using the Special Report on Emissions Scenarios (SRES). SRES developed emissions scenarios to project climate-change impacts.[53] The projections based on these scenarios are not predictions,[54] but reflect plausible estimates of future social and economic development (e.g., economic growth, population level).[55] The six SRES "marker" scenarios projected sea level to rise by 18 to 59 centimetres (7.1 to 23.2 in).[56] Their projections were for the time period 2090–99, with the increase in level relative to average sea level over the 1980–99 period. This estimate did not include all of the possible contributions of ice sheets.

More recent research from 2008 observed rapid declines in ice-mass balance from both Greenland and Antarctica, and concluded that sea-level rise by 2100 is likely to be at least twice as large as that presented by IPCC AR4, with an upper limit of about two meters.[57]

A literature assessment published in 2010 by the US National Research Council described the above IPCC projections as "conservative," and summarized the results of more recent studies.[15] These projections ranged from 56–200 centimetres (22–79 in), based on the same period as IPCC 4.

In 2011, Rignot and others projected a rise of 32 centimetres (13 in) by 2050. Their projection included increased contributions from the Antarctic and Greenland ice sheets. Use of two completely different approaches reinforced the Rignot projection.[58][59]

Most recently, the Third National Climate Assessment (NCA), released May 6th, 2014, projected a sea level rise of 1 to 4 feet by 2100. Decision makers who are particularly susceptible to risk may wish to use a wider range of scenarios from 8 inches to 6.6 feet by 2100.[60]

After 2100

Refer to caption and image description
This graph shows the projected change in global sea level rise if atmospheric carbon dioxide (CO2) concentrations were to either quadruple or double. [61] The projection is based on several multi-century integrations of a GFDL global coupled ocean-atmosphere model. These projections are the expected changes due to thermal expansion of sea water alone, and do not include the effect of melted continental ice sheets. With the effect of ice sheets included, the total rise could be larger by a substantial factor.[61] Image credit: NOAA GFDL.

There is a widespread consensus that substantial long-term sea-level rise will continue for centuries to come.[13] IPCC 4 estimated that at least a partial deglaciation of the Greenland ice sheet, and possibly the West Antarctic ice sheet, would occur given a global average temperature increase of 1–4 °C (relative to temperatures over the years 1990–2000).[62] This estimate was given about a 50% chance of being correct.[63] The estimated timescale was centuries to millennia, and would contribute 4 to 6 metres (13 to 20 ft) or more to sea levels over this period.

There is the possibility of a rapid change in glaciers, ice sheets, and hence sea level.[64] Predictions of such a change are highly uncertain due to a lack of scientific understanding. Modeling of the processes associated with a rapid ice-sheet and glacier change could potentially increase future projections of sea-level rise.

Projected impacts

Future sea level rise could lead to potentially catastrophic difficulties for shore-based communities in the next centuries: for example, many major cities such as London, New Orleans, and New York [65] already need storm-surge defenses, and would need more if the sea level rose, though they also face issues such as subsidence.[66] Sea level rise could also displace many shore-based populations: for example it is estimated that a sea level rise of just 200 mm could create 740,000 homeless people in Nigeria.[67] Maldives, Tuvalu, and other low-lying countries are among the areas that are at the highest level of risk. The UN's environmental panel has warned that, at current rates, sea level would be high enough to make the Maldives uninhabitable by 2100.[68][69]

Future sea-level rise, like the recent rise, is not expected to be globally uniform (details below). Some regions show a sea-level rise substantially more than the global average (in many cases of more than twice the average), and others a sea level fall.[70] However, models disagree as to the likely pattern of sea level change.[71]

In September 2008, the Delta Commission (Deltacommissie (2007)) presided by Dutch politician Cees Veerman advised in a report that the Netherlands would need a massive new building program to strengthen the country's water defenses against the anticipated effects of global warming for the next 190 years. This commission was created in September 2007, after the damage caused by Hurricane Katrina prompted reflection and preparations. Those included drawing up worst-case plans for evacuations. The plan included more than €100 billion (US$144 bn), in new spending through the year 2100 to take measures, such as broadening coastal dunes and strengthening sea and river dikes.

The commission said the country must plan for a rise in the North Sea up to 1.3 metres (4 ft 3 in) by 2100, rather than the previously projected 0.80 metres (2 ft 7 in), and plan for a 2–4 metre (6.5–13 feet) rise by 2200.[72]

Australia

The impact of future sea level rise on the Australian coastline can be assessed using the Canute online Decision Support Tool.

IPCC Third Assessment

The results from the IPCC Third Assessment Report (TAR) sea level chapter are given below.

IPCC change factors 1990–2100 IS92a prediction SRES projection/
Thermal expansion 110 to 430 mm
Glaciers 10 to 230 mm[73]
(or 50 to 110 mm)[74]
Greenland ice −20 to 90 mm
Antarctic ice −170 to 20 mm
Terrestrial storage −83 to 30 mm
Ongoing contributions from ice sheets in response to past climate change 0 to 55 mm
Thawing of permafrost 0 to 5 mm
Deposition of sediment not specified
Total global-average sea level rise
(IPCC result, not sum of above)[73]
110 to 770 mm 90 to 880 mm
(central value of 480 mm)

The sum of these components indicates a rate of eustatic sea level rise (corresponding to a change in ocean volume) from 1910 to 1990 ranging from −0.8 to 2.2 mm/yr, with a central value of 0.7 mm/yr. The upper bound is close to the observational upper bound (2.0 mm/yr), but the central value is less than the observational lower bound (1.0 mm/yr), i.e., the sum of components is biased low compared to the observational estimates. The sum of components indicates an acceleration of only 0.2 (mm/yr)/century, with a range from −1.1 to +0.7 (mm/yr)/century, consistent with observational finding of no acceleration in sea-level rise during the 20th century. The estimated rate of sea-level rise from anthropogenic climate change from 1910 to 1990 (from modeling studies of thermal expansion, glaciers and ice sheets) ranges from 0.3 to 0.8 mm/yr. It is very likely that 20th-century warming has contributed significantly to the observed sea-level rise, through the thermal expansion of sea water and the widespread loss of land ice.[73]

A common perception is that the rate of sea-level rise should have accelerated during the latter half of the 20th century, but tide gauge data for the 20th century show no significant acceleration. Estimates obtained are based on atmosphere-ocean general circulation models (abbreviated AOGCMs) for the terms directly related to anthropogenic climate change in the 20th century, i.e., thermal expansion, ice sheets, glaciers and ice caps ... The total computed rise indicates an acceleration of only 0.2 (mm/yr)/century, with a range from −1.1 to +0.7 (mm/yr)/century, consistent with observational finding of no acceleration in sea-level rise during the 20th century.[75] The sum of terms not related to recent climate change is −1.1 to +0.9 mm/yr (i.e., excluding thermal expansion, glaciers and ice caps, and changes in the ice sheets due to 20th century climate change). This range is less than the observational lower bound of sea-level rise. Hence it is very likely that these terms alone are an insufficient explanation, implying that 20th century climate change has made a contribution to 20th century sea-level rise.[27] Recent figures of human, terrestrial impoundment came too late for the 3rd Report, and would revise levels upward for much of the 20th century.

Uncertainty in TAR sea-level projections

The different SRES emissions scenarios used for the TAR sea-level projections were not assigned probabilities, and no scenario is assumed by the IPCC to be more probable than another.[76] For the first part of the 21st century, the variation between the different SRES scenarios is relatively small.[77] The range spanned by the SRES scenarios by 2040 is only 0.02 m or less. By 2100, this range increases to 0.18 m. Of the six illustrative SRES scenarios, A1FI gives the largest sea-level rise and B1 the smallest (see the SRES article for a description of the different scenarios).

For the TAR sea-level projections, uncertainty in the climate sensitivity and heat uptake of the oceans, as represented by the spread of models (specifically, atmosphere–ocean general circulation models, or AOGCMs), is more important than the uncertainty from the choice of emissions scenario.[77] This differs from the TAR's projections of global warming (i.e., the future increase in global mean temperature), where the uncertainty in emissions scenario and climate sensitivity are comparable in size.

Minority uncertainties and criticisms regarding IPCC results

  • Tide records with a rate of 180 mm/century going back to the 19th century show no measurable acceleration throughout the late 19th and first half of the 20th century. The IPCC attributes about 60 mm/century to melting and other eustatic processes, leaving a residual of 120 mm of 20th-century rise to be accounted for. Global ocean temperatures by Levitus et al. are in accord with coupled ocean/atmosphere modelling of greenhouse warming, with heat-related change of 30 mm. Melting of polar ice-sheets at the upper limit of the IPCC estimates could close the gap, but severe limits are imposed by the observed perturbations in Earth rotation. (Munk 2002)
  • By the time of the IPCC TAR, attribution of sea-level changes had a large unexplained gap between direct and indirect estimates of global sea-level rise. Most direct estimates from tide gauges give 1.5–2.0 mm/yr, whereas indirect estimates based on the two processes responsible for global sea-level rise, namely mass and volume change, are significantly below this range. Estimates of the volume increase due to ocean warming give a rate of about 0.5 mm/yr and the rate due to mass increase, primarily from the melting of continental ice, is thought to be even smaller. One study confirmed tide-gauge data is correct, and concluded there must be a continental source of 1.4 mm/yr of fresh water. (Miller 2004)
  • From (Douglas 2002): "In the last dozen years, published values of 20th century GSL rise have ranged from 1.0 to 2.4 mm/yr. In its Third Assessment Report, the IPCC discusses this lack of consensus at length and is careful not to present a best estimate of 20th century GSL rise. By design, the panel presents a snapshot of published analysis over the previous decade or so and interprets the broad range of estimates as reflecting the uncertainty of our knowledge of GSL rise. We disagree with the IPCC interpretation. In our view, values much below 2 mm/yr are inconsistent with regional observations of sea-level rise and with the continuing physical response of Earth to the most recent episode of deglaciation."
  • The strong 1997–1998 El Niño caused regional and global sea-level variations, including a temporary global increase of perhaps 20 mm. The IPCC TAR's examination of satellite trends says: "the major 1997/98 El Niño-Southern Oscillation (ENSO) event could bias the above estimates of sea-level rise and also indicate the difficulty of separating long-term trends from climatic variability".[75]

Glacier contribution

It is well known that glaciers are subject to surges in their rate of movement with consequent melting when they reach lower altitudes and/or the sea. The contributors to Annals of Glaciology [3], Volume 36 [78] (2003) discussed this phenomenon extensively and it appears that slow advance and rapid retreat have persisted throughout the mid to late Holocene in nearly all of Alaska's glaciers. Historical reports of surge occurrences in Iceland's glaciers go back several centuries. Thus rapid retreat can have several other causes than CO2 increase in the atmosphere.

The results from Dyurgerov show a sharp increase in the contribution of mountain and subpolar glaciers to sea-level rise since 1996 (0.5 mm/yr) to 1998 (2 mm/yr) with an average of about 0.35 mm/yr since 1960.[79]

Of interest also is Arendt et al.,[80] who estimate the contribution of Alaskan glaciers of 0.14±0.04 mm/yr between the mid-1950s to the mid-1990s, increasing to 0.27 mm/yr in the middle and late 1990s.

Greenland contribution

Krabill et al.[81] estimate a net contribution from Greenland to be at least 0.13 mm/yr in the 1990s. Joughin et al.[82] have measured a doubling of the speed of Jakobshavn Isbræ between 1997 and 2003. This is Greenland's largest outlet glacier; it drains 6.5% of the ice sheet, and is thought to be responsible for increasing the rate of sea-level rise by about 0.06 millimetres per year, or roughly 4% of the 20th-century rate of sea-level increase.[83] In 2004, Rignot et al.[84] estimated a contribution of 0.04±0.01 mm/yr to sea-level rise from southeast Greenland.

Rignot and Kanagaratnam[85] produced a comprehensive study and map of the outlet glaciers and basins of Greenland. They found widespread glacial acceleration below 66 N in 1996 which spread to 70 N by 2005; and that the ice sheet loss rate in that decade increased from 90 to 200 cubic km/yr; this corresponds to an extra 0.25–0.55 mm/yr of sea level rise.

In July 2005 it was reported[86] that the Kangerdlugssuaq glacier, on Greenland's east coast, was moving towards the sea three times faster than a decade earlier. Kangerdlugssuaq is around 1,000 m thick, 7.2 km (4.5 miles) wide, and drains about 4% of the ice from the Greenland ice sheet. Measurements of Kangerdlugssuaq in 1988 and 1996 showed it moving at between 5 and 6 km/yr (3.1–3.7 miles/yr), while in 2005 that speed had increased to 14 km/yr (8.7 miles/yr).

According to the 2004 Arctic Climate Impact Assessment, climate models project that local warming in Greenland will exceed 3 °C during this century. Also, ice-sheet models project that such a warming would initiate the long-term melting of the ice sheet, leading to a complete melting of the Greenland ice sheet over several millennia, resulting in a global sea level rise of about seven metres.[87]

Antarctic contribution

On the Antarctic continent itself, the large volume of ice present stores around 70% of the world's fresh water.[88] This ice sheet is constantly gaining ice from snowfall and losing ice through outflow to the sea. West Antarctica is currently experiencing a net outflow of glacial ice, which will increase global sea level over time. A review of the scientific studies looking at data from 1992 to 2006 suggested a net loss of around 50 gigatons of ice per year was a reasonable estimate (around 0.14 mm of sea-level rise),[89] although significant acceleration of outflow glaciers in the Amundsen Sea Embayment could have more than doubled this figure for the year 2006.[90]
East Antarctica is a cold region with a ground-base above sea level and occupies most of the continent. This area is dominated by small accumulations of snowfall which becomes ice and thus eventually seaward glacial flows. The mass balance of the East Antarctic Ice Sheet as a whole is thought to be slightly positive (lowering sea level) or near to balance.[89][90] However, increased ice outflow has been suggested in some regions.[90][91]

In 2011 ice-penetrating radar led to the creation of the first high-resolution topographic map of one of the last uncharted regions of Earth: the Aurora Subglacial Basin, an immense ice-buried lowland in East Antarctica larger than Texas. The map reveals some of the largest fjords or ice cut channels on Earth. Because the basin lies kilometres below sea level, seawater could penetrate beneath the ice, causing portions of the ice sheet to collapse and float off to sea. The map is expected to improve models of ice sheet dynamics.[92]

Sheperd et al. 2012, found that different satellite methods were in good agreement and combing methods leads to more certainty with East Antarctica, West Antarctica, and the Antarctic Peninsula changing in mass by +14 ± 43, –65 ± 26, and –20 ± 14 gigatonnes per year.[93]

Effects of snowline and permafrost

The snowline altitude is the altitude of the lowest elevation interval in which minimum annual snow cover exceeds 50%. This ranges from about 5,500 metres above sea-level at the equator down to sea level at about 65° N&S latitude, depending on regional temperature amelioration effects.
Permafrost then appears at sea level and extends deeper below sea-level pole-wards. The depth of permafrost and the height of the ice-fields in both Greenland and Antarctica means that they are largely invulnerable to rapid melting. Greenland Summit is at 3,200 metres, where the average annual temperature is minus 32 °C. So even a projected 4 °C rise in temperature leaves it well below the melting point of ice. Frozen Ground 28, December 2004, has a very significant map of permafrost affected areas in the Arctic. The continuous permafrost zone includes all of Greenland, the North of Labrador, NW Territories, Alaska north of Fairbanks, and most of NE Siberia north of Mongolia and Kamchatka. Continental ice above permafrost is very unlikely to melt quickly. As most of the Greenland and Antarctic ice sheets lie above the snowline and/or base of the permafrost zone, they cannot melt in a timeframe much less than several millennia; therefore they are unlikely to contribute significantly to sea-level rise in the coming century.

Polar ice

The sea level will rise above its current level if more polar ice melts. However, compared to the heights of the ice ages, today there are very few continental ice sheets remaining to be melted. It is estimated that Antarctica, if fully melted, would contribute more than 60 metres of sea level rise, and Greenland would contribute more than 7 metres. Small glaciers and ice caps on the margins of Greenland and the Antarctic Peninsula might contribute about 0.5 metres. While the latter figure is much smaller than for Antarctica or Greenland it could occur relatively quickly (within the coming century) whereas melting of Greenland would be slow (perhaps 1,500 years to fully deglaciate at the fastest likely rate) and Antarctica even slower.[94] However, this calculation does not account for the possibility that as meltwater flows under and lubricates the larger ice sheets, they could begin to move much more rapidly towards the sea.[95][96]

In 2002, Rignot and Thomas[97] found that the West Antarctic and Greenland ice sheets were losing mass, while the East Antarctic ice sheet was probably in balance (although they could not determine the sign of the mass balance for The East Antarctic ice sheet). Kwok and Comiso (J. Climate, v15, 487–501, 2002) also discovered that temperature and pressure anomalies around West Antarctica and on the other side of the Antarctic Peninsula correlate with recent Southern Oscillation events.

In 2004 Rignot et al.[84] estimated a contribution of 0.04 ± 0.01 mm/yr to sea level rise from South East Greenland. In the same year, Thomas et al.[98] found evidence of an accelerated contribution to sea level rise from West Antarctica. The data showed that the Amundsen Sea sector of the West Antarctic Ice Sheet was discharging 250 cubic kilometres of ice every year, which was 60% more than precipitation accumulation in the catchment areas. This alone was sufficient to raise sea level at 0.24 mm/yr. Further, thinning rates for the glaciers studied in 2002–03 had increased over the values measured in the early 1990s. The bedrock underlying the glaciers was found to be hundreds of metres deeper than previously known, indicating exit routes for ice from further inland in the Byrd Subpolar Basin. Thus the West Antarctic ice sheet may not be as stable as has been supposed.

In 2005 it was reported that during 1992–2003, East Antarctica thickened at an average rate of about 18 mm/yr while West Antarctica showed an overall thinning of 9 mm/yr. associated with increased precipitation. A gain of this magnitude is enough to slow sea-level rise by 0.12 ± 0.02 mm/yr.[99]

Effects of sea-level rise

Based on the projected increases stated above, the IPCC TAR WGII report (Impacts, Adaptation Vulnerability) notes that current and future climate change would be expected to have a number of impacts, particularly on coastal systems.[100] Such impacts may include increased coastal erosion, higher storm-surge flooding, inhibition of primary production processes, more extensive coastal inundation, changes in surface water quality and groundwater characteristics, increased loss of property and coastal habitats, increased flood risk and potential loss of life, loss of non-monetary cultural resources and values, impacts on agriculture and aquaculture through decline in soil and water quality, and loss of tourism, recreation, and transportation functions.

There is an implication that many of these impacts will be detrimental—especially for the three-quarters of the world's poor who depend on agriculture systems.[101] The report does, however, note that owing to the great diversity of coastal environments; regional and local differences in projected relative sea level and climate changes; and differences in the resilience and adaptive capacity of ecosystems, sectors, and countries, the impacts will be highly variable in time and space.

Statistical data on the human impact of sea-level rise is scarce. A study in the April, 2007 issue of Environment and Urbanization reports that 634 million people live in coastal areas within 30 feet (9.1 m) of sea level. The study also reported that about two thirds of the world's cities with over five million people are located in these low-lying coastal areas. The IPCC report of 2007 estimated that accelerated melting of the Himalayan ice caps and the resulting rise in sea levels would likely increase the severity of flooding in the short term during the rainy season and greatly magnify the impact of tidal storm surges during the cyclone season. A sea-level rise of just 400 mm in the Bay of Bengal would put 11 percent of the Bangladesh's coastal land underwater, creating 7–10 million climate refugees.

Island nations

IPCC assessments suggest that deltas and small island states are particularly vulnerable to sea-level rise caused by both thermal expansion and ocean volume. Sea level changes have not yet been conclusively proven to have directly resulted in environmental, humanitarian, or economic losses to small island states, but the IPCC and other bodies have found this a serious risk scenario in coming decades.[102]

Many media reports have focused on the island nations of the Pacific, notably the Polynesian islands of Tuvalu, which based on more severe flooding events in recent years, were thought to be "sinking" due to sea level rise.[103] A scientific review in 2000 reported that based on University of Hawaii gauge data, Tuvalu had experienced a negligible increase in sea level of 0.07 mm a year over the past two decades, and that ENSO had been a larger factor in Tuvalu's higher tides in recent years.[104] A subsequent study by John Hunter from the University of Tasmania, however, adjusted for ENSO effects and the movement of the gauge (which was thought to be sinking). Hunter concluded that Tuvalu had been experiencing sea-level rise of about 1.2 mm per year.[104][105] The recent more frequent flooding in Tuvalu may also be due to an erosional loss of land during and following the actions of 1997 cyclones Gavin, Hina, and Keli.[106]

Besides the issues that flooding brings (soil salinisation, ...) for these islands states, the islands states themselves would also become dissolved over time, as the islands becomes uninhabitable or becomes completely submerged by the sea. Once this happens, all rights on the surrounding area (sea) are removed. This area can be huge as rights extend to a radius of 224 nautical miles (414 km) around the entire island state. Any resources (fossil oil, minerals, metals, ...) within this area can be freely dug up by anyone and sold without needing to pay any commission to the (now dissolved) island state.[107]

Numerous options have been proposed that would assist island nations to adapt to rising sea level.[108]

Cities

Map of major cities of the world most vulnerable to sea level rise

Miami has been listed as "the number-one most vulnerable city worldwide" in terms of potential damage to property from storm-related flooding and sea-level rise.[109]

Satellite sea level measurement

Satellite Measurement of Sea Level.
1993–2012 Sea level trends from satellite altimetry.

Current rates of sea level rise from satellite altimetry have been estimated in the range of 2.9–3.4 ± 0.4–0.6 mm per year for 1993–2010.[38][39][40][41][42] This exceeds those from tide gauges. It is unclear whether this represents an increase over the last decades; variability; true differences between satellites and tide gauges; or problems with satellite calibration.[75] Knowing the current altitude of a satellite which can measure sea level to a precision of about 20 millimetres (e.g. the Topex/Poseidon system) is primarily complicated by orbital decay and the difference between the assumed orbit and the earth geoid.[110] This problem is partially corrected by regular re-calibration of satellite altimeters from land stations whose height from MSL is known by surveying. Over water, the height is calibrated from tide gauge data which is needed to correct for tides and atmospheric effects on sea level.[citation needed]

Individual studies

Ablain et al. (2008) looked at trends in mean sea level (MSL).[111]:194–195 A global MSL curve was plotted using data for the 1993–2008 period. Their estimates for mean rate of sea level rise over this time period was 3.11 mm per year. A correction was applied to this resulting in a higher estimate of 3.4 mm per year. Over the 2005 to 2008 time period, the MSL rate was estimated to be 1.09 mm per year. This is a reduction of 60% on the rate observed between 1993 and 2005.[111]:193

MSL was also plotted using data between the years 1994 and 2007.[111]:194–195 Their data for this time period show two peaks (maxima) in MSL rates for the years 1997 and 2002. These maxima very likely reflected the influence of the ENSO on MSL. Using the 1994–2007 MSL data, they estimated MSL rates using moving windows of three and five years. Lower rates were observed during La Niña events in 1999 and 2007. They concluded that the recently observed reduction in the MSL rate was likely to be real, since it coincided with an exceptionally strong La Niña event. Preliminary analyses suggested that an acceleration of the MSL trend would likely occur in relationship with the end of the 2007–08 La Niña event.[111]:200[112]

White (2011) reported measurements of near-global sea level made using satellite altimeters.[41] Over the time period January 1993 to April 2011, these data show a steady increase in global mean sea level (GMSL) of around 3.2 mm per year, with a range of plus or minus 0.4 mm per year. This is 50% larger than the average rate observed over the 20th century. White (2011) was, however, unsure of whether or not this represented a long-term increase in the rate.

The Centre National d'Etudes Spatiales/Collecte Localisation Satellites (CNES/CLS, 2011) reported on the estimated increase in GMSL between 1993 and 2011.[40] Their estimate was an increase of 3.22 mm per year, with an error range in this trend (i.e., the slope over the 1993 to 2011 time period) of approximately 0.6 mm per year.

The CU Sea Level Research Group (CUSLRG, 2011) estimated the rate of GMSL between 1993 and 2011.[39] The rate was estimated at 3.2 mm per year, with a range of plus or minus 0.4 mm per year.
The Laboratory for Satellite Altimetry (LSA, 2011) estimated the trend in GMSL over the time period 1992 to 2011.[42] Their estimate was a trend of 2.9 mm per year, with a range of plus or minus 0.4 mm per year. According to the LSA (2011): "[the] estimates of sea level rise do not include glacial isostatic adjustment effects on the geoid, which are modeled to be +0.2 to +0.5 mm/year when globally averaged."

Glacier



From Wikipedia, the free encyclopedia


The Baltoro Glacier in the Karakoram, Baltistan, Northern Pakistan. At 62 kilometres (39 mi) in length, it is one of the longest alpine glaciers on earth.

Ice calving from the terminus of the Perito Moreno Glacier in western Patagonia, Argentina

The Aletsch Glacier, the largest glacier of the Alps, in Switzerland

The Quelccaya Ice Cap is the largest glaciated area in the tropics, in Peru

A glacier (US /ˈɡlʃər/ or UK /ˈɡlæsiə/) is a persistent body of dense ice that is constantly moving under its own weight; it forms where the accumulation of snow exceeds its ablation (melting and sublimation) over many years, often centuries. Glaciers slowly deform and flow due to stresses induced by their weight, creating crevasses, seracs, and other distinguishing features. They also abrade rock and debris from their substrate to create landforms such as cirques and moraines. Glaciers form only on land and are distinct from the much thinner sea ice and lake ice that form on the surface of bodies of water.

On Earth, 99% of glacial ice is contained within vast ice sheets in the polar regions, but glaciers may be found in mountain ranges on every continent except Australia, and on a few high-latitude oceanic islands. Between 35°N and 35°S, glaciers occur only in the Himalayas, Andes, Rocky Mountains, a few high mountains in East Africa, Mexico, New Guinea and on Zard Kuh in Iran.[1]

Glacial ice is the largest reservoir of freshwater on Earth.[2] Many glaciers from temperate, alpine and seasonal polar climates store water as ice during the colder seasons and release it later in the form of meltwater as warmer summer temperatures cause the glacier to melt, creating a water source that is especially important for plants, animals and human uses when other sources may be scant. Within high altitude and Antarctic environments, the seasonal temperature difference is often not sufficient to release meltwater.

Because glacial mass is affected by long-term climate changes, e.g., precipitation, mean temperature, and cloud cover, glacial mass changes are considered among the most sensitive indicators of climate change and are a major source of variations in sea level.

Etymology and related terms

The word glacier comes from French. It is derived from the Vulgar Latin glacia and ultimately from Latin glacies meaning "ice".[3] The processes and features caused by glaciers and related to them are referred to as glacial. The process of glacier establishment, growth and flow is called glaciation. The corresponding area of study is called glaciology. Glaciers are important components of the global cryosphere.

Types


Mouth of the Schlatenkees Glacier near Innergschlöß, Austria

Glaciers are categorized by their morphology, thermal characteristics, and behavior. Alpine glaciers, also known as mountain glaciers or cirque glaciers, form on the crests and slopes of mountains. An alpine glacier that fills a valley is sometimes called a valley glacier. A large body of glacial ice astride a mountain, mountain range, or volcano is termed an ice cap or ice field.[4] Ice caps have an area less than 50,000 km² (20,000 mile²) by definition.

Glacial bodies larger than 50,000 km² are called ice sheets or continental glaciers.[5] Several kilometers deep, they obscure the underlying topography. Only nunataks protrude from their surfaces. The only extant ice sheets are the two that cover most of Antarctica and Greenland. They contain vast quantities of fresh water, enough that if both melted, global sea levels would rise by over 70 meters.[6] Portions of an ice sheet or cap that extend into water are called ice shelves; they tend to be thin with limited slopes and reduced velocities.[7] Narrow, fast-moving sections of an ice sheet are called ice streams.[8][9] In Antarctica, many ice streams drain into large ice shelves. Some drain directly into the sea, often with an ice tongue, like Mertz Glacier.

Sightseeing boat in front of a tidewater glacier, Kenai Fjords National Park, Alaska

Tidewater glaciers are glaciers that terminate in the sea, including most glaciers flowing from Greenland, Antarctica, Baffin and Ellesmere Islands in Canada, Southeast Alaska, and the Northern and Southern Patagonian Ice Fields. As the ice reaches the sea, pieces break off, or calve, forming icebergs. Most tidewater glaciers calve above sea level, which often results in a tremendous impact as the iceberg strikes the water. Tidewater glaciers undergo centuries-long cycles of advance and retreat that are much less affected by the climate change than those of other glaciers.

Thermally, a temperate glacier is at melting point throughout the year, from its surface to its base. The ice of a polar glacier is always below freezing point from the surface to its base, although the surface snowpack may experience seasonal melting. A sub-polar glacier includes both temperate and polar ice, depending on depth beneath the surface and position along the length of the glacier. In a similar way, the thermal regime of a glacier is often described by the temperature at its base alone. A cold-based glacier is below freezing at the ice-ground interface, and is thus frozen to the underlying substrate. A warm-based glacier is above or at freezing at the interface, and is able to slide at this contact.[10] This contrast is thought to a large extent to govern the ability of a glacier to effectively erode its bed, as sliding ice promotes plucking at rock from the surface below.[11] Glaciers which are partly cold-based and partly warm-based are known as polythermal.[10]

Formation


Gorner Glacier in Switzerland

Glaciers form where the accumulation of snow and ice exceeds ablation. The area in which a glacier forms is called a cirque (corrie or cwm) - a typically armchair-shaped geological feature (such as a depression between mountains enclosed by arêtes) - which collects and compresses through gravity the snow which falls into it. This snow collects and is compacted by the weight of the snow falling above it forming névé. Further crushing of the individual snowflakes and squeezing the air from the snow turns it into 'glacial ice'. This glacial ice will fill the cirque until it 'overflows' through a geological weakness or vacancy, such as the gap between two mountains. When the mass of snow and ice is sufficiently thick, it begins to move due to a combination of surface slope, gravity and pressure. On steeper slopes, this can occur with as little as 15 m (50 ft) of snow-ice.

In temperate glaciers, snow repeatedly freezes and thaws, changing into granular ice called firn. Under the pressure of the layers of ice and snow above it, this granular ice fuses into denser and denser firn. Over a period of years, layers of firn undergo further compaction and become glacial ice. Glacier ice is slightly less dense than ice formed from frozen water because it contains tiny trapped air bubbles.

Glacial ice has a distinctive blue tint because it absorbs some red light due to an overtone of the infrared OH stretching mode of the water molecule. Liquid water is blue for the same reason. The blue of glacier ice is sometimes misattributed to Rayleigh scattering due to bubbles in the ice.[12]

A glacier cave located on the Perito Moreno Glacier in Argentina.

Structure

A glacier originates at a location called its glacier head and terminates at its glacier foot, snout, or terminus.

Glaciers are broken into zones based on surface snowpack and melt conditions.[13] The ablation zone is the region where there is a net loss in glacier mass. The equilibrium line separates the ablation zone and the accumulation zone; it is the altitude where the amount of new snow gained by accumulation is equal to the amount of ice lost through ablation. The upper part of a glacier, where accumulation exceeds ablation, is called the accumulation zone. In general, the accumulation zone accounts for 60–70% of the glacier's surface area, more if the glacier calves icebergs. Ice in the accumulation zone is deep enough to exert a downward force that erodes underlying rock. After a glacier melts, it often leaves behind a bowl- or amphitheater-shaped depression that ranges in size from large basins like the Great Lakes to smaller mountain depressions known as cirques.

The accumulation zone can be subdivided based on its melt conditions.
  1. The dry snow zone is a region where no melt occurs, even in the summer, and the snowpack remains dry.
  2. The percolation zone is an area with some surface melt, causing meltwater to percolate into the snowpack. This zone is often marked by refrozen ice lenses, glands, and layers. The snowpack also never reaches melting point.
  3. Near the equilibrium line on some glaciers, a superimposed ice zone develops. This zone is where meltwater refreezes as a cold layer in the glacier, forming a continuous mass of ice.
  4. The wet snow zone is the region where all of the snow deposited since the end of the previous summer has been raised to 0 °C.
The "health" of a glacier is usually assessed by determining the glacier mass balance or observing terminus behavior. Healthy glaciers have large accumulation zones, more than 60% of their area snowcovered at the end of the melt season, and a terminus with vigorous flow.

Following the Little Ice Age's end around 1850, glaciers around the Earth have retreated substantially. A slight cooling led to the advance of many alpine glaciers between 1950–1985, but since 1985 glacier retreat and mass loss has become larger and increasingly ubiquitous.[14][15][16]

Motion


Shear or herring-bone crevasses on Emmons Glacier (Mount Rainier); such crevasses often form near the edge of a glacier where interactions with underlying or marginal rock impede flow. In this case, the impediment appears to be some distance from the near margin of the glacier.

Glaciers move, or flow, downhill due to gravity and the internal deformation of ice.[17] Ice behaves like a brittle solid until its thickness exceeds about 50 m (160 ft). The pressure on ice deeper than 50 m causes plastic flow. At the molecular level, ice consists of stacked layers of molecules with relatively weak bonds between layers. When the stress on the layer above exceeds the inter-layer binding strength, it moves faster than the layer below.[18]

Glaciers also move through basal sliding. In this process, a glacier slides over the terrain on which it sits, lubricated by the presence of liquid water. The water is created from ice that melts under high pressure from frictional heating. Basal sliding is dominant in temperate, or warm-based glaciers.

Fracture zone and cracks


Ice cracks in the Titlis Glacier

The top 50 metres (160 ft) of a glacier are rigid because they are under low pressure. This upper section is known as the fracture zone; it mostly moves as a single unit over the plastically flowing lower section. When a glacier moves through irregular terrain, cracks called crevasses develop in the fracture zone. Crevasses form due to differences in glacier velocity. If two rigid sections of a glacier move at different speeds and directions, shear forces cause them to break apart, opening a crevasse. Crevasses are seldom more than 150 feet (46 m) deep but in some cases can be 1,000 feet (300 m) or even deeper. Beneath this point, the plasticity of the ice is too great for cracks to form. Intersecting crevasses can create isolated peaks in the ice, called seracs.

Crevasses can form in several different ways. Transverse crevasses are transverse to flow and form where steeper slopes cause a glacier to accelerate. Longitudinal crevasses form semi-parallel to flow where a glacier expands laterally. Marginal crevasses form from the edge of the glacier, due to the reduction in speed caused by friction of the valley walls. Marginal crevasses are usually largely transverse to flow. Moving glacier ice can sometimes separate from stagnant ice above, forming a bergschrund. Bergschrunds resemble crevasses but are singular features at a glacier's margins.

Crevasses make travel over glaciers hazardous, especially when they are hidden by fragile snow bridges.

Crossing a crevasse on the Easton Glacier, Mount Baker, in the North Cascades, United States

Below the equilibrium line, glacial meltwater is concentrated in stream channels. Meltwater can pool in proglacial lakes on top of a glacier or descend into the depths of a glacier via moulins. Streams within or beneath a glacier flow in englacial or sub-glacial tunnels. These tunnels sometimes reemerge at the glacier's surface.[19]

Speed

The speed of glacial displacement is partly determined by friction. Friction makes the ice at the bottom of the glacier move more slowly than ice at the top. In alpine glaciers, friction is also generated at the valley's side walls, which slows the edges relative to the center.

Mean speeds vary greatly, but is typically around 1 meter per day.[20] There may be no motion in stagnant areas; for example, in parts of Alaska, trees can establish themselves on surface sediment deposits. In other cases, glaciers can move as fast as 20–30 m per day, such as in Greenland's Jakobshavn Isbræ (Greenlandic: Sermeq Kujalleq). Velocity increases with increasing slope, increasing thickness, increasing snowfall, increasing longitudinal confinement, increasing basal temperature, increasing meltwater production and reduced bed hardness.

A few glaciers have periods of very rapid advancement called surges. These glaciers exhibit normal movement until suddenly they accelerate, then return to their previous state. During these surges, the glacier may reach velocities far greater than normal speed.[21] These surges may be caused by failure of the underlying bedrock, the pooling of meltwater at the base of the glacier[22] — perhaps delivered from a supraglacial lake — or the simple accumulation of mass beyond a critical "tipping point".[23]

In glaciated areas where the glacier moves faster than one km per year, glacial earthquakes occur. These are large scale temblors that have seismic magnitudes as high as 6.1.[24][25] The number of glacial earthquakes in Greenland peaks every year in July, August and September and is increasing over time. In a study using data from January 1993 through October 2005, more events were detected every year since 2002, and twice as many events were recorded in 2005 as there were in any other year. This increase in the numbers of glacial earthquakes in Greenland may be a response to global warming.[24][25]

Ogives

Ogives are alternating wave crests and valleys that appear as dark and light bands of ice on glacier surfaces. They are linked to seasonal motion of glaciers; the width of one dark and one light band generally equals the annual movement of the glacier. Ogives are formed when ice from an icefall is severely broken up, increasing ablation surface area during summer. This creates a swale and space for snow accumulation in the winter, which in turn creates a ridge.[26] Sometimes ogives consist only of undulations or color bands and are described as wave ogives or band ogives.[27]

Geography

Black ice glacier near Aconcagua, Argentina

Glaciers are present on every continent and approximately fifty countries, excluding those (Australia, South Africa) that have glaciers only on distant subantarctic island territories. Extensive glaciers are found in Antarctica, Chile, Canada, Alaska, Greenland and Iceland. Mountain glaciers are widespread, especially in the Andes, the Himalayas, the Rocky Mountains, the Caucasus, and the Alps. Mainland Australia currently contains no glaciers, although a small glacier on Mount Kosciuszko was present in the last glacial period.[28] In New Guinea, small, rapidly diminishing, glaciers are located on its highest summit massif of Puncak Jaya.[29] Africa has glaciers on Mount Kilimanjaro in Tanzania, on Mount Kenya and in the Rwenzori Mountains. Oceanic islands with glaciers occur on Iceland, Svalbard, New Zealand, Jan Mayen and the subantarctic islands of Marion, Heard, Grande Terre (Kerguelen) and Bouvet. During glacial periods of the Quaternary, Taiwan, Hawaii on Mauna Kea[30] and Tenerife also had large alpine glaciers, while the Faroe and Crozet Islands[31] were completely glaciated.

The permanent snow cover necessary for glacier formation is affected by factors such as the degree of slope on the land, amount of snowfall and the winds. Glaciers can be found in all latitudes except from 20° to 27° north and south of the equator where the presence of the descending limb of the Hadley circulation lowers precipitation so much that with high insolation snow lines reach above 6,500 metres (21,330 ft). Between 19˚N and 19˚S, however, precipitation is higher and the mountains above 5,000 metres (16,400 ft) usually have permanent snow.

Even at high latitudes, glacier formation is not inevitable. Areas of the Arctic, such as Banks Island, and the McMurdo Dry Valleys in Antarctica are considered polar deserts where glaciers cannot form because they receive little snowfall despite the bitter cold. Cold air, unlike warm air, is unable to transport much water vapor. Even during glacial periods of the Quaternary, Manchuria, lowland Siberia,[32] and central and northern Alaska,[33] though extraordinarily cold, had such light snowfall that glaciers could not form.[34][35]

In addition to the dry, unglaciated polar regions, some mountains and volcanoes in Bolivia, Chile and Argentina are high (4,500 metres (14,800 ft) - 6,900 m (22,600 ft)) and cold, but the relative lack of precipitation prevents snow from accumulating into glaciers. This is because these peaks are located near or in the hyperarid Atacama Desert.

Glacial geology


Diagram of glacial plucking and abrasion

Glacially plucked granitic bedrock near Mariehamn, Åland Islands

Glaciers erode terrain through two principal processes: abrasion and plucking.

As glaciers flow over bedrock, they soften and lift blocks of rock into the ice. This process, called plucking, is caused by subglacial water that penetrates fractures in the bedrock and subsequently freezes and expands. This expansion causes the ice to act as a lever that loosens the rock by lifting it. Thus, sediments of all sizes become part of the glacier's load. If a retreating glacier gains enough debris, it may become a rock glacier, like the Timpanogos Glacier in Utah.

Abrasion occurs when the ice and its load of rock fragments slide over bedrock and function as sandpaper, smoothing and polishing the bedrock below. The pulverized rock this process produces is called rock flour and is made up of rock grains between 0.002 and 0.00625 mm in size. Abrasion leads to steeper valley walls and mountain slopes in alpine settings, which can cause avalanches and rock slides. These add even more material to the glacier.

Glacial abrasion is commonly characterized by glacial striations. Glaciers produce these when they contain large boulders that carve long scratches in the bedrock. By mapping the direction of the striations, researchers can determine the direction of the glacier's movement. Similar to striations are chatter marks, lines of crescent-shape depressions in the rock underlying a glacier. They are formed by abrasion when boulders in the glacier are repeatedly caught and released as they are dragged along the bedrock.

The rate of glacier erosion is variable. Six factors control erosion rate:
  • Velocity of glacial movement
  • Thickness of the ice
  • Shape, abundance and hardness of rock fragments contained in the ice at the bottom of the glacier
  • Relative ease of erosion of the surface under the glacier
  • Thermal conditions at the glacier base
  • Permeability and water pressure at the glacier base
Material that becomes incorporated in a glacier is typically carried as far as the zone of ablation before being deposited. Glacial deposits are of two distinct types:
  • Glacial till: material directly deposited from glacial ice. Till includes a mixture of undifferentiated material ranging from clay size to boulders, the usual composition of a moraine.
  • Fluvial and outwash sediments: sediments deposited by water. These deposits are stratified by size.
Larger pieces of rock that are encrusted in till or deposited on the surface are called "glacial erratics". They range in size from pebbles to boulders, but as they are often moved great distances, they may be drastically different from the material upon which they are found. Patterns of glacial erratics hint at past glacial motions.

Moraines


Glacial moraines above Lake Louise, Alberta, Canada

Glacial moraines are formed by the deposition of material from a glacier and are exposed after the glacier has retreated. They usually appear as linear mounds of till, a non-sorted mixture of rock, gravel and boulders within a matrix of a fine powdery material. Terminal or end moraines are formed at the foot or terminal end of a glacier. Lateral moraines are formed on the sides of the glacier. Medial moraines are formed when two different glaciers merge and the lateral moraines of each coalesce to form a moraine in the middle of the combined glacier. Less apparent are ground moraines, also called glacial drift, which often blankets the surface underneath the glacier downslope from the equilibrium line.

The term moraine is of French origin. It was coined by peasants to describe alluvial embankments and rims found near the margins of glaciers in the French Alps. In modern geology, the term is used more broadly, and is applied to a series of formations, all of which are composed of till. Moraines can also create moraine dammed lakes.

Drumlins


A drumlin field forms after a glacier has modified the landscape. The teardrop-shaped formations denote the direction of the ice flow.

Drumlins are asymmetrical, canoe shaped hills made mainly of till. Their heights vary from 15 to 50 meters and they can reach a kilometer in length. The steepest side of the hill faces the direction from which the ice advanced (stoss), while a longer slope is left in the ice's direction of movement (lee).

Drumlins are found in groups called drumlin fields or drumlin camps. One of these fields is found east of Rochester, New York; it is estimated to contain about 10,000 drumlins.

Although the process that forms drumlins is not fully understood, their shape implies that they are products of the plastic deformation zone of ancient glaciers. It is believed that many drumlins were formed when glaciers advanced over and altered the deposits of earlier glaciers.

Glacial valleys, cirques, arêtes, and pyramidal peaks


Features of a glacial landscape

Before glaciation, mountain valleys have a characteristic "V" shape, produced by eroding water. During glaciation, these valleys are widened, deepened, and smoothed, forming a "U"-shaped glacial valley. The erosion that creates glacial valleys eliminates the spurs of earth that extend across mountain valleys, creating triangular cliffs called truncated spurs. Within glacial valleys, depressions created by plucking and abrasion can be filled by lakes, called paternoster lakes. If a glacial valley runs into a large body of water, it forms a fjord.

Many glaciers deepen their valleys more than their smaller tributaries. Therefore, when glaciers recede, the valleys of the tributary glaciers remain above the main glacier's depression and are called hanging valleys.

At the start of a classic valley glacier is a bowl-shaped cirque, which has escarped walls on three sides but is open on the side that descends into the valley. Cirques are where ice begins to accumulate in a glacier. Two glacial cirques may form back to back and erode their backwalls until only a narrow ridge, called an arête is left. This structure may result in a mountain pass. If multiple cirques encircle a single mountain, they create pointed pyramidal peaks; particularly steep examples are called horns.

Roche moutonnée

Some rock formations in the path of a glacier are sculpted into small hills called roche moutonnée, or "sheepback" rock. Roche moutonnée are elongated, rounded, and asymmetrical bedrock knobs can be produced by glacier erosion. They range in length from less than a meter to several hundred meters long.[36] Roche moutonnée have a gentle slope on their up-glacier sides and a steep to vertical face on their down-glacier sides. The glacier abrades the smooth slope on the upstream side as it flows along, but tears loose and carries away rock from the downstream side via plucking.

Alluvial stratification

As the water that rises from the ablation zone moves away from the glacier, it carries fine eroded sediments with it. As the speed of the water decreases, so does its capacity to carry objects in suspension. The water thus gradually deposits the sediment as it runs, creating an alluvial plain. When this phenomenon occurs in a valley, it is called a valley train. When the deposition is in an estuary, the sediments are known as bay mud.

Outwash plains and valley trains are usually accompanied by basins known as "kettles". These are small lakes formed when large ice blocks that are trapped in alluvium melt and produce water-filled depressions. Kettle diameters range from 5 m to 13 km, with depths of up to 45 meters. Most are circular in shape because the blocks of ice that formed them were rounded as they melted.[37]

Glacial deposits


Landscape produced by a receding glacier

When a glacier's size shrinks below a critical point, its flow stops and it becomes stationary. Meanwhile, meltwater within and beneath the ice leaves stratified alluvial deposits. These deposits, in the forms of columns, terraces and clusters, remain after the glacier melts and are known as "glacial deposits".

Glacial deposits that take the shape of hills or mounds are called kames. Some kames form when meltwater deposits sediments through openings in the interior of the ice. Others are produced by fans or deltas created by meltwater. When the glacial ice occupies a valley, it can form terraces or kames along the sides of the valley.

Long, sinuous glacial deposits are called eskers. Eskers are composed of sand and gravel that was deposited by meltwater streams that flowed through ice tunnels within or beneath a glacier. They remain after the ice melts, with heights exceeding 100 meters and lengths of as long as 100 km.

Loess deposits

Very fine glacial sediments or rock flour is often picked up by wind blowing over the bare surface and may be deposited great distances from the original fluvial deposition site. These eolian loess deposits may be very deep, even hundreds of meters, as in areas of China and the Midwestern United States of America. Katabatic winds can be important in this process.

Isostatic rebound

Isostatic pressure by a glacier on the Earth's crust

Large masses, such as ice sheets or glaciers, can depress the crust of the Earth into the mantle. The depression usually totals a third of the ice sheet or glacier's thickness. After the ice sheet or glacier melts, the mantle begins to flow back to its original position, pushing the crust back up. This post-glacial rebound, which proceeds very slowly after the melting of the ice sheet or glacier, is currently occurring in measurable amounts in Scandinavia and the Great Lakes region of North America.

A geomorphological feature created by the same process on a smaller scale is known as dilation-faulting. It occurs where previously compressed rock is allowed to return to its original shape more rapidly than can be maintained without faulting. This leads to an effect similar to what would be seen if the rock were hit by a large hammer. Dilation faulting can be observed in recently de-glaciated parts of Iceland and Cumbria.

On Mars


Northern polar ice cap on Mars

The polar ice caps of Mars show geologic evidence of glacial deposits. The south polar cap is especially comparable to glaciers on Earth.[38] Topographical features and computer models indicate the existence of more glaciers in Mars' past.[39]

At mid-latitudes, between 35° and 65° north or south, Martian glaciers are affected by the thin Martian atmosphere. Because of the low atmospheric pressure, ablation near the surface is solely due to sublimation, not melting. As on Earth, many glaciers are covered with a layer of rocks which insulates the ice. A radar instrument on board the Mars Reconnaissance Orbiter found ice under a thin layer of rocks in formations called lobate debris aprons (LDAs).[40][41][42][43][44]

The pictures below illustrate how landscape features on Mars closely resemble those on the Earth.

Regulation of nanotechnology

From Wikipedia, the free encyclopedia Because of the ongoing controversy on...