Search This Blog

Saturday, April 7, 2018

Evolution of the eye

From Wikipedia, the free encyclopedia
 
Major stages in the evolution of the eye in vertebrates.

The evolution of the eye is attractive to study, because the eye distinctively exemplifies an analogous organ found in many animal forms. Complex, image-forming eyes have evolved independently between 50 to 100 times.[1]

Complex eyes appeared first within the few million years of the Cambrian explosion. From before the Cambrian, no evidence of eyes has survived, but diverse eyes are known from the Burgess shale of the Middle Cambrian, and from the slightly older Emu Bay Shale.[2] Eyes are adapted to the various requirements of their owners. They vary in their visual acuity, the range of wavelengths they can detect, their sensitivity in low light, their ability to detect motion or to resolve objects, and whether they can discriminate colours.

History of research

The human eye, showing the iris

In 1802, philosopher William Paley called it a miracle of "design". Charles Darwin himself wrote in his Origin of Species, that the evolution of the eye by natural selection seemed at first glance "absurd in the highest possible degree". However, he went on that despite the difficulty in imagining it, its evolution was perfectly feasible:
...if numerous gradations from a simple and imperfect eye to one complex and perfect can be shown to exist, each grade being useful to its possessor, as is certainly the case; if further, the eye ever varies and the variations be inherited, as is likewise certainly the case and if such variations should be useful to any animal under changing conditions of life, then the difficulty of believing that a perfect and complex eye could be formed by natural selection, though insuperable by our imagination, should not be considered as subversive of the theory.[3]
He suggested a stepwise evolution from "an optic nerve merely coated with pigment, and without any other mechanism" to "a moderately high stage of perfection", and gave examples of existing intermediate steps.[3] Darwin's suggestions were soon shown to be correct, and current research is investigating the genetic mechanisms underlying eye development and evolution.[4]

Biologist D.E. Nilsson has independently theorized about four general stages in the evolution of a vertebrate eye from a patch of photoreceptors.[5] Nilsson and S. Pelger estimated in a classical paper how many generations are needed to evolve a complex eye in vertebrates.[6] Another researcher, G.C. Young, has used the fossil record to infer evolutionary conclusions, based on the structure of eye orbits and openings in fossilized skulls for blood vessels and nerves to go through.[7] All this adds to the growing amount of evidence that supports Darwin's theory.

Rate of evolution

The first fossils of eyes found to date are from the lower Cambrian period (about 540 million years ago).[8] The lower Cambrian had a burst of apparently rapid evolution, called the "Cambrian explosion". One of the many hypotheses for "causes" of the Cambrian explosion is the "Light Switch" theory of Andrew Parker: It holds that the evolution of eyes started an arms race that accelerated evolution.[9] Before the Cambrian explosion, animals may have sensed light, but did not use it for fast locomotion or navigation by vision.

The rate of eye evolution is difficult to estimate, because the fossil record, particularly of the lower Cambrian, is poor. How fast a circular patch of photoreceptor cells evolve into a fully functional vertebrate eye has been estimated based on rates of mutation, relative advantage to the organism, and natural selection. However, the time needed for each state was consistently overestimated and the generation time was set to one year, which is common in small animals. Even with these pessimistic values, the vertebrate eye would still evolve from a patch of photoreceptor cells in less than 364,000 years.[10][note 1]

One origin or many?

Whether the eye evolved once or many times depends on the definition of an eye. All eyed animals share much of the genetic machinery for eye development. This suggests that the ancestor of eyed animals had some form of light-sensitive machinery – even if it was not a dedicated optical organ. However, even photoreceptor cells may have evolved more than once from molecularly similar chemoreceptor cells. Probably, photoreceptor cells existed long before the Cambrian explosion.[11] Higher-level similarities – such as the use of the protein crystallin in the independently derived cephalopod and vertebrate lenses[12] – reflect the co-option of a more fundamental protein to a new function within the eye.[13]

A shared trait common to all light-sensitive organs are opsins. Opsins belong to a family of photo-sensitive proteins and fall into nine groups, which already existed in the urbilaterian, the last common ancestor of all bilateral symmetrical animals.[14] Additionally, the genetic toolkit for positioning eyes is shared by all animals: The PAX6 gene controls where eyes develop in animals ranging from octopuses[15] to mice and fruit flies.[16][17][18] Such high-level genes are, by implication, much older than many of the structures that they control today; they must originally have served a different purpose, before they were co-opted for eye development.[13]

Eyes and other sensory organs probably evolved before the brain: There is no need for an information-processing organ (brain) before there is information to process.[19]

Stages of eye evolution

The stigma (2) of the euglena hides a light-sensitive spot.

The earliest predecessors of the eye were photoreceptor proteins that sense light, found even in unicellular organisms, called "eyespots". Eyespots can only sense ambient brightness: they can distinguish light from dark, sufficient for photoperiodism and daily synchronization of circadian rhythms. They are insufficient for vision, as they cannot distinguish shapes or determine the direction light is coming from. Eyespots are found in nearly all major animal groups, and are common among unicellular organisms, including euglena. The euglena's eyespot, called a stigma, is located at its anterior end. It is a small splotch of red pigment which shades a collection of light sensitive crystals. Together with the leading flagellum, the eyespot allows the organism to move in response to light, often toward the light to assist in photosynthesis,[20] and to predict day and night, the primary function of circadian rhythms. Visual pigments are located in the brains of more complex organisms, and are thought to have a role in synchronising spawning with lunar cycles. By detecting the subtle changes in night-time illumination, organisms could synchronise the release of sperm and eggs to maximise the probability of fertilisation.[citation needed]

Vision itself relies on a basic biochemistry which is common to all eyes. However, how this biochemical toolkit is used to interpret an organism's environment varies widely: eyes have a wide range of structures and forms, all of which have evolved quite late relative to the underlying proteins and molecules.[20]

At a cellular level, there appear to be two main "designs" of eyes, one possessed by the protostomes (molluscs, annelid worms and arthropods), the other by the deuterostomes (chordates and echinoderms).[20]

The functional unit of the eye is the photoreceptor cell, which contains the opsin proteins and responds to light by initiating a nerve impulse. The light sensitive opsins are borne on a hairy layer, to maximise the surface area. The nature of these "hairs" differs, with two basic forms underlying photoreceptor structure: microvilli and cilia.[21] In the eyes of protostomes, they are microvilli: extensions or protrusions of the cellular membrane. But in the eyes of deuterostomes, they are derived from cilia, which are separate structures.[20] However, outside the eyes an organism may use the other type of photoreceptor cells, for instance the clamworm Platynereis dumerilii uses microvilliar cells in the eyes but has additionally deep brain ciliary photoreceptor cells.[22] The actual derivation may be more complicated, as some microvilli contain traces of cilia — but other observations appear to support a fundamental difference between protostomes and deuterostomes.[20] These considerations centre on the response of the cells to light – some use sodium to cause the electric signal that will form a nerve impulse, and others use potassium; further, protostomes on the whole construct a signal by allowing more sodium to pass through their cell walls, whereas deuterostomes allow less through.[20]

This suggests that when the two lineages diverged in the Precambrian, they had only very primitive light receptors, which developed into more complex eyes independently.

Early eyes

The basic light-processing unit of eyes is the photoreceptor cell, a specialized cell containing two types of molecules in a membrane: the opsin, a light-sensitive protein, surrounding the chromophore, a pigment that distinguishes colors. Groups of such cells are termed "eyespots", and have evolved independently somewhere between 40 and 65 times. These eyespots permit animals to gain only a very basic sense of the direction and intensity of light, but not enough to discriminate an object from its surroundings.[20]

Developing an optical system that can discriminate the direction of light to within a few degrees is apparently much more difficult, and only six of the thirty-some phyla[note 2] possess such a system. However, these phyla account for 96% of living species.[20]

The planarian has "cup" eyespots that can slightly distinguish light direction.

These complex optical systems started out as the multicellular eyepatch gradually depressed into a cup, which first granted the ability to discriminate brightness in directions, then in finer and finer directions as the pit deepened. While flat eyepatches were ineffective at determining the direction of light, as a beam of light would activate exactly the same patch of photo-sensitive cells regardless of its direction, the "cup" shape of the pit eyes allowed limited directional differentiation by changing which cells the lights would hit depending upon the light's angle. Pit eyes, which had arisen by the Cambrian period, were seen in ancient snails,[clarification needed] and are found in some snails and other invertebrates living today, such as planaria. Planaria can slightly differentiate the direction and intensity of light because of their cup-shaped, heavily pigmented retina cells, which shield the light-sensitive cells from exposure in all directions except for the single opening for the light. However, this proto-eye is still much more useful for detecting the absence or presence of light than its direction; this gradually changes as the eye's pit deepens and the number of photoreceptive cells grows, allowing for increasingly precise visual information.[23]

When a photon is absorbed by the chromophore, a chemical reaction causes the photon's energy to be transduced into electrical energy and relayed, in higher animals, to the nervous system. These photoreceptor cells form part of the retina, a thin layer of cells that relays visual information,[24] including the light and day-length information needed by the circadian rhythm system, to the brain. However, some jellyfish, such as Cladonema, have elaborate eyes but no brain. Their eyes transmit a message directly to the muscles without the intermediate processing provided by a brain.[19]

During the Cambrian explosion, the development of the eye accelerated rapidly, with radical improvements in image-processing and detection of light direction.[25]

The primitive nautilus eye functions similarly to a pinhole camera.

After the photosensitive cell region invaginated, there came a point when reducing the width of the light opening became more efficient at increasing visual resolution than continued deepening of the cup.[10] By reducing the size of the opening, organisms achieved true imaging, allowing for fine directional sensing and even some shape-sensing. Eyes of this nature are currently found in the nautilus. Lacking a cornea or lens, they provide poor resolution and dim imaging, but are still, for the purpose of vision, a major improvement over the early eyepatches.[26]

Overgrowths of transparent cells prevented contamination and parasitic infestation. The chamber contents, now segregated, could slowly specialize into a transparent humour, for optimizations such as colour filtering, higher refractive index, blocking of ultraviolet radiation, or the ability to operate in and out of water. The layer may, in certain classes, be related to the moulting of the organism's shell or skin. An example of this can be observed in Onychophorans where the cuticula of the shell continues to the cornea. The cornea is composed of either one or two cuticular layers depending on how recently the animal has moulted.[27] Along with the lens and two humors, the cornea is responsible for converging light and aiding the focusing of it on the back of the retina. The cornea protects the eyeball while at the same time accounting for approximately 2/3 of the eye’s total refractive power.[28]

It is likely that a key reason eyes specialize in detecting a specific, narrow range of wavelengths on the electromagnetic spectrum—the visible spectrum—is because the earliest species to develop photosensitivity were aquatic, and only two specific wavelength ranges of electromagnetic radiation, blue and green visible light, can travel through water. This same light-filtering property of water also influenced the photosensitivity of plants.[29][30][31]

Lens formation and diversification

Light from a distant object and a near object being focused by changing the curvature of the lens

In a lensless eye, the light emanating from a distant point hits the back of the eye with about the same size as the eye's aperture. With the addition of a lens this incoming light is concentrated on a smaller surface area, without reducing the overall intensity of the stimulus.[6] The focal length of an early lobopod with lens-containing simple eyes focused the image behind the retina, so while no part of the image could be brought into focus, the intensity of light allowed the organism to see in deeper (and therefore darker) waters.[27] A subsequent increase of the lens's refractive index probably resulted in an in-focus image being formed.[27]

The development of the lens in camera-type eyes probably followed a different trajectory. The transparent cells over a pinhole eye's aperture split into two layers, with liquid in between.[citation needed] The liquid originally served as a circulatory fluid for oxygen, nutrients, wastes, and immune functions, allowing greater total thickness and higher mechanical protection. In addition, multiple interfaces between solids and liquids increase optical power, allowing wider viewing angles and greater imaging resolution. Again, the division of layers may have originated with the shedding of skin; intracellular fluid may infill naturally depending on layer depth.[citation needed]

Note that this optical layout has not been found, nor is it expected to be found. Fossilization rarely preserves soft tissues, and even if it did, the new humour would almost certainly close as the remains desiccated, or as sediment overburden forced the layers together, making the fossilized eye resemble the previous layout.

Compound eye of Antarctic krill

Vertebrate lenses are composed of adapted epithelial cells which have high concentrations of the protein crystallin. These crystallins belong to two major families, the α-crystallins and the βγ-crystallins. Both were categories of proteins originally used for other functions in organisms, but eventually were adapted for the sole purpose of vision in animal eyes.[32] In the embryo, the lens is living tissue, but the cellular machinery is not transparent so must be removed before the organism can see. Removing the machinery means the lens is composed of dead cells, packed with crystallins. These crystallins are special because they have the unique characteristics required for transparency and function in the lens such as tight packing, resistance to crystallization, and extreme longevity, as they must survive for the entirety of the organism’s life.[32] The refractive index gradient which makes the lens useful is caused by the radial shift in crystallin concentration in different parts of the lens, rather than by the specific type of protein: it is not the presence of crystallin, but the relative distribution of it, that renders the lens useful.[33]

It is biologically difficult to maintain a transparent layer of cells. Deposition of transparent, nonliving, material eased the need for nutrient supply and waste removal. Trilobites used calcite, a mineral which today is known to be used for vision only in a single species of brittle star.[34] In other compound eyes[verification needed] and camera eyes, the material is crystallin. A gap between tissue layers naturally forms a biconvex shape, which is optically and mechanically ideal for substances of normal[clarification needed] refractive index. A biconvex lens confers not only optical resolution, but aperture and low-light ability, as resolution is now decoupled from hole size – which slowly increases again, free from the circulatory constraints.

Independently, a transparent layer and a nontransparent layer may split forward from the lens: a separate cornea and iris. (These may happen before or after crystal deposition, or not at all.) Separation of the forward layer again forms a humour, the aqueous humour. This increases refractive power and again eases circulatory problems. Formation of a nontransparent ring allows more blood vessels, more circulation, and larger eye sizes. This flap around the perimeter of the lens also masks optical imperfections, which are more common at lens edges. The need to mask lens imperfections gradually increases with lens curvature and power, overall lens and eye size, and the resolution and aperture needs of the organism, driven by hunting or survival requirements. This type is now functionally identical to the eye of most vertebrates, including humans. Indeed, "the basic pattern of all vertebrate eyes is similar."[35]

Other developments

Color vision

Five classes of visual pigmentation are found in vertebrates. All but one of these developed prior to the divergence of cyclometers and fish.[36] Various adaptations within these five classes give rise to suitable eyes depending on the spectrum encountered. As light travels through water, longer wavelengths, such as reds and yellows, are absorbed more quickly than the shorter wavelengths of the greens and blues. This can create a gradient of light types as the depth of water increases. The visual receptors in fish are more sensitive to the range of light present in their habitat level. However, this phenomenon does not occur in land environments, creating little variation in pigment sensitivities among terrestrial vertebrates. The homogeneous nature of the pigment sensitivities directly contributes to the significant presence of communication colors.[36] This presents distinct selective advantages, such as better recognition of predators, food, and mates. Indeed, it is thought[by whom?] that simple sensory-neural mechanisms may selectively control general behavior patterns, such as escape, foraging, and hiding. Many examples of wavelength-specific behavior patterns have been identified, in two primary groups: less than 450 nm, associated with natural light sources, and greater than 450 nm, associated with reflected light sources.[37] As opsin molecules were subtly fine-tuned to detect different wavelengths of light, at some point color vision developed when photo-receptor cells developed multiple pigments.[24] As a chemical adaptation rather than a mechanical one, this may have occurred at any of the early stages of the eye's evolution, and the capability may have disappeared and reappeared as organisms became predator or prey. Similarly, night and day vision emerged when receptors differentiated into rods and cones, respectively.[citation needed]

Polarization vision

As discussed earlier, the properties of light under water differ from those in air. One example of this is the polarization of light. Polarization is the organization of originally disordered light, from the sun, into linear arrangements. This occurs when light passes through slit like filters, as well as when passing into a new medium. Sensitivity to polarized light is especially useful for organisms whose habitats are located more than a few meters under water. In this environment, color vision is less dependable, and therefore a weaker selective factor. While most photoreceptors have the ability to distinguish partially polarized light, terrestrial vertebrates’ membranes are orientated perpendicularly, such that they are insensitive to polarized light.[38] However, some fish can discern polarized light, demonstrating that they possess some linear photoreceptors. Additionally, cuttlefish are capable of perceiving the polarization of light with high visual fidelity, although they appear to lack any significant capacity for color differentiation.[39] Like color vision, sensitivity to polarization can aid in an organism's ability to differentiate surrounding objects and individuals. Because of the marginal reflective interference of polarized light, it is often used for orientation and navigation, as well as distinguishing concealed objects, such as disguised prey.[38]

Focusing mechanism

By utilizing the iris sphincter muscle, some species move the lens back and forth, some stretch the lens flatter. Another mechanism regulates focusing chemically and independently of these two, by controlling growth of the eye and maintaining focal length. In addition, the pupil shape can be used to predict the focal system being utilized. A slit pupil can indicate the common multifocal system, while a circular pupil usually specifies a monofocal system. When using a circular form, the pupil will constrict under bright light, increasing the focal length, and will dilate when dark in order to decrease the depth of focus.[40] Note that a focusing method is not a requirement. As photographers know, focal errors increase as aperture increases. Thus, countless organisms with small eyes are active in direct sunlight and survive with no focus mechanism at all. As a species grows larger, or transitions to dimmer environments, a means of focusing need only appear gradually.

Location

Prey generally have eyes on the sides of their head so to have a larger field of view, from which to avoid predators. Predators, however, have eyes in front of their head in order to have better depth perception.[41][42] Flatfish are predators which lie on their side on the bottom, and have eyes placed asymmetrically on the same side of the head. A transitional fossil from the common symmetric position is Amphistium.

Evolutionary baggage

Vertebrates and octopodes developed the camera eye independently. In the vertebrate version the nerve fibers pass in front of the retina, and there is a blind spot where the nerves pass through the retina. In the vertebrate example, 4 represents the blind spot, which is notably absent from the octopus eye. In both vertebrates and octopodes, 1 represents the retina, 2 represents the nerve fibers, and 3 represents the optic nerve.

The eyes of many animals record their evolutionary history in their contemporary anatomy. The vertebrate eye, for instance, is built "backwards and upside down", requiring "photons of light to travel through the cornea, lens, aqueous fluid, blood vessels, ganglion cells, amacrine cells, horizontal cells, and bipolar cells before they reach the light-sensitive rods and cones that transduce the light signal into neural impulses, which are then sent to the visual cortex at the back of the brain for processing into meaningful patterns."[43] While such a construct has some drawbacks, it also allows the outer retina of the vertebrates to sustain higher metabolic activities as compared to the non-inverted design.[44] It also allowed for the evolution of the choroid layer, including the retinal pigment epithelial (RPE) cells, which play an important role in protecting the photoreceptive cells from photo-oxidative damage.[45][46]

The camera eyes of cephalopods, in contrast, are constructed the "right way out", with the nerves attached to the rear of the retina. This means that they do not have a blind spot. This difference may be accounted for by the origins of eyes; in cephalopods they develop as an invagination of the head surface whereas in vertebrates they originate as an extension of the brain.[47]

Friday, March 30, 2018

Emergence

From Wikipedia, the free encyclopedia
The formation of complex symmetrical and fractal patterns in snowflakes exemplifies emergence in a physical system
 
A termite "cathedral" mound produced by a termite colony offers a classic example of emergence in nature

In philosophy, systems theory, science, and art, emergence is a phenomenon whereby larger entities arise through interactions among smaller or simpler entities such that the larger entities exhibit properties the smaller/simpler entities do not exhibit.

Emergence plays a central role in theories of integrative levels and of complex systems. For instance, the phenomenon of life as studied in biology is an emergent property of chemistry, and psychological phenomena emerge from the neurobiological phenomena of living things.

In philosophy, theories that emphasize emergent properties have been called[by whom?] emergentism. Almost all accounts of emergentism include a form of epistemic or ontological irreducibility to the lower levels.[1]

In philosophy

In philosophy, emergence is often understood to be a claim about the etiology of a system's properties. An emergent property of a system, in this context, is one that is not a property of any component of that system, but is still a feature of the system as a whole. Nicolai Hartmann, one of the first modern philosophers to write on emergence, termed this categorial novum (new category).

Definitions

This idea of emergence has been around since at least the time of Aristotle.[2]  John Stuart Mill[3] and Julian Huxley[4] are two of many scientists and philosophers who have written on the concept.

The term "emergent" was coined by philosopher G. H. Lewes, who wrote:
Every resultant is either a sum or a difference of the co-operant forces; their sum, when their directions are the same – their difference, when their directions are contrary. Further, every resultant is clearly traceable in its components, because these are homogeneous and commensurable. It is otherwise with emergents, when, instead of adding measurable motion to measurable motion, or things of one kind to other individuals of their kind, there is a co-operation of things of unlike kinds. The emergent is unlike its components insofar as these are incommensurable, and it cannot be reduced to their sum or their difference.[5][6]
Economist Jeffrey Goldstein provided a current definition of emergence in the journal Emergence.[7] Goldstein initially defined emergence as: "the arising of novel and coherent structures, patterns and properties during the process of self-organization in complex systems".

Goldstein's definition can be further elaborated to describe the qualities of this definition in more detail:
The common characteristics are: (1) radical novelty (features not previously observed in systems); (2) coherence or correlation (meaning integrated wholes that maintain themselves over some period of time); (3) A global or macro "level" (i.e. there is some property of "wholeness"); (4) it is the product of a dynamical process (it evolves); and (5) it is "ostensive" (it can be perceived).[8]
Systems scientist Peter Corning also says that living systems cannot be reduced to underlying laws of physics:
Rules, or laws, have no causal efficacy; they do not in fact “generate” anything. They serve merely to describe regularities and consistent relationships in nature. These patterns may be very illuminating and important, but the underlying causal agencies must be separately specified (though often they are not). But that aside, the game of chess illustrates ... why any laws or rules of emergence and evolution are insufficient. Even in a chess game, you cannot use the rules to predict “history” – i.e., the course of any given game. Indeed, you cannot even reliably predict the next move in a chess game. Why? Because the “system” involves more than the rules of the game. It also includes the players and their unfolding, moment-by-moment decisions among a very large number of available options at each choice point. The game of chess is inescapably historical, even though it is also constrained and shaped by a set of rules, not to mention the laws of physics. Moreover, and this is a key point, the game of chess is also shaped by teleonomic, cybernetic, feedback-driven influences. It is not simply a self-ordered process; it involves an organized, “purposeful” activity.[8]

Strong and weak emergence

Usage of the notion "emergence" may generally be subdivided into two perspectives, that of "weak emergence" and "strong emergence". In terms of physical systems, weak emergence is a type of emergence in which the emergent property is amenable to computer simulation. This is opposed to the older notion of strong emergence, in which the emergent property cannot be simulated by a computer.

Some common points between the two notions are that emergence concerns new properties produced as the system grows, which is to say ones which are not shared with its components or prior states. Also, it is assumed that the properties are supervenient rather than metaphysically primitive (Bedau 1997).

Weak emergence describes new properties arising in systems as a result of the interactions at an elemental level. However, it is stipulated that the properties can be determined by observing or simulating the system, and not by any process of a priori analysis.

Bedau notes that weak emergence is not a universal metaphysical solvent, as weak emergence leads to the conclusion that matter itself contains elements of awareness to it. However, Bedau concludes that adopting this view would provide a precise notion that emergence is involved in consciousness, and second, the notion of weak emergence is metaphysically benign.(Bedau 1997)

Strong emergence describes the direct causal action of a high-level system upon its components; qualities produced this way are irreducible to the system's constituent parts (Laughlin 2005). The whole is other than the sum of its parts. An example from physics of such emergence is water, being seemingly unpredictable even after an exhaustive study of the properties of its constituent atoms of hydrogen and oxygen.[9] It follows then that no simulation of the system can exist, for such a simulation would itself constitute a reduction of the system to its constituent parts.(Bedau 1997)

However, "the debate about whether or not the whole can be predicted from the properties of the parts misses the point. Wholes produce unique combined effects, but many of these effects may be co-determined by the context and the interactions between the whole and its environment(s)" (Corning 2002). In accordance with his Synergism Hypothesis, (Corning 1983 2005) Corning also stated, "It is the synergistic effects produced by wholes that are the very cause of the evolution of complexity in nature." Novelist Arthur Koestler used the metaphor of Janus (a symbol of the unity underlying complements like open/shut, peace/war) to illustrate how the two perspectives (strong vs. weak or holistic vs. reductionistic) should be treated as non-exclusive, and should work together to address the issues of emergence.(Koestler 1969) Further,
The ability to reduce everything to simple fundamental laws does not imply the ability to start from those laws and reconstruct the universe. The constructionist hypothesis breaks down when confronted with the twin difficulties of scale and complexity. At each level of complexity entirely new properties appear. Psychology is not applied biology, nor is biology applied chemistry. We can now see that the whole becomes not merely more, but very different from the sum of its parts.(Anderson 1972)
The plausibility of strong emergence is questioned by some as contravening our usual understanding of physics. Mark A. Bedau observes:
Although strong emergence is logically possible, it is uncomfortably like magic. How does an irreducible but supervenient downward causal power arise, since by definition it cannot be due to the aggregation of the micro-level potentialities? Such causal powers would be quite unlike anything within our scientific ken. This not only indicates how they will discomfort reasonable forms of materialism. Their mysteriousness will only heighten the traditional worry that emergence entails illegitimately getting something from nothing.[10]
Strong emergence can be criticized for being causally overdetermined. The canonical example concerns emergent mental states (M and M∗) that supervene on physical states (P and P∗) respectively. Let M and M∗ be emergent properties. Let M∗ supervene on base property P∗. What happens when M causes M∗? Jaegwon Kim says:
In our schematic example above, we concluded that M causes M∗ by causing P∗. So M causes P∗. Now, M, as an emergent, must itself have an emergence base property, say P. Now we face a critical question: if an emergent, M, emerges from basal condition P, why cannot P displace M as a cause of any putative effect of M? Why cannot P do all the work in explaining why any alleged effect of M occurred? If causation is understood as nomological (law-based) sufficiency, P, as M’s emergence base, is nomologically sufficient for it, and M, as P∗’s cause, is nomologically sufficient for P∗. It follows that P is nomologically sufficient for P∗ and hence qualifies as its cause…If M is somehow retained as a cause, we are faced with the highly implausible consequence that every case of downward causation involves overdetermination (since P remains a cause of P∗ as well). Moreover, this goes against the spirit of emergentism in any case: emergents are supposed to make distinctive and novel causal contributions.[11]
If M is the cause of M∗, then M∗ is overdetermined because M∗ can also be thought of as being determined by P. One escape route that a strong emergentist could take would be to deny downward causation. However, this would deny that emergent mental states must supervene on physical states, which in turn would deny physicalism, and thus be unpalatable for some philosophers and physicists.

Meanwhile, others have worked towards developing analytical evidence of strong emergence. In 2009, Gu et al. presented a class of physical systems that exhibits non-computable macroscopic properties.[12][13] More precisely, if one could compute certain macroscopic properties of these systems from the microscopic description of these systems, then one would be able to solve computational problems known to be undecidable in computer science. They concluded that
Although macroscopic concepts are essential for understanding our world, much of fundamental physics has been devoted to the search for a `theory of everything', a set of equations that perfectly describe the behavior of all fundamental particles. The view that this is the goal of science rests in part on the rationale that such a theory would allow us to derive the behavior of all macroscopic concepts, at least in principle. The evidence we have presented suggests that this view may be overly optimistic. A `theory of everything' is one of many components necessary for complete understanding of the universe, but is not necessarily the only one. The development of macroscopic laws from first principles may involve more than just systematic logic, and could require conjectures suggested by experiments, simulations or insight.[12]
Emergent structures are patterns that emerge via collective actions of many individual entities. To explain such patterns, one might conclude, per Aristotle,[2] that emergent structures are other than the sum of their parts on the assumption that the emergent order will not arise if the various parts simply interact independently of one another. However, there are those who disagree.[14] According to this argument, the interaction of each part with its immediate surroundings causes a complex chain of processes that can lead to order in some form. In fact, some systems in nature are observed to exhibit emergence based upon the interactions of autonomous parts, and some others exhibit emergence that at least at present cannot be reduced in this way. In particular renormalization are methods in theoretical physics which enables scientists to study systems that are not tractable as the combination of their parts.[15]

Objective or subjective quality

The properties of complexity and organization of any system are considered by Crutchfield to be subjective qualities determined by the observer.
Defining structure and detecting the emergence of complexity in nature are inherently subjective, though essential, scientific activities. Despite the difficulties, these problems can be analysed in terms of how model-building observers infer from measurements the computational capabilities embedded in non-linear processes. An observer’s notion of what is ordered, what is random, and what is complex in its environment depends directly on its computational resources: the amount of raw measurement data, of memory, and of time available for estimation and inference. The discovery of structure in an environment depends more critically and subtly, though, on how those resources are organized. The descriptive power of the observer’s chosen (or implicit) computational model class, for example, can be an overwhelming determinant in finding regularity in data.(Crutchfield 1994)[citation needed]
On the other hand, Peter Corning argues "Must the synergies be perceived/observed in order to qualify as emergent effects, as some theorists claim? Most emphatically not. The synergies associated with emergence are real and measurable, even if nobody is there to observe them."(Corning 2002)

In religion, art and humanities

In religion, emergence grounds expressions of religious naturalism and syntheism in which a sense of the sacred is perceived in the workings of entirely naturalistic processes by which more complex forms arise or evolve from simpler forms. Examples are detailed in The Sacred Emergence of Nature by Ursula Goodenough & Terrence Deacon and Beyond Reductionism: Reinventing the Sacred by Stuart Kauffman, both from 2006, and in Syntheism – Creating God in The Internet Age by Alexander Bard & Jan Söderqvist from 2014. An early argument (1904–05) for the emergence of social formations, in part stemming from religion, can be found in Max Weber's most famous work, The Protestant Ethic and the Spirit of Capitalism.[16]

In art, emergence is used to explore the origins of novelty, creativity, and authorship. Some art/literary theorists (Wheeler, 2006;[17] Alexander, 2011[18]) have proposed alternatives to postmodern understandings of "authorship" using the complexity sciences and emergence theory. They contend that artistic selfhood and meaning are emergent, relatively objective phenomena. Michael J. Pearce has used emergence to describe the experience of works of art in relation to contemporary neuroscience.[19]

In international development, concepts of emergence have been used within a theory of social change termed SEED-SCALE to show how standard principles interact to bring forward socio-economic development fitted to cultural values, community economics, and natural environment (local solutions emerging from the larger socio-econo-biosphere). These principles can be implemented utilizing a sequence of standardized tasks that self-assemble in individually specific ways utilizing recursive evaluative criteria.[20]

In postcolonial studies, the term "Emerging Literature" refers to a contemporary body of texts that is gaining momentum in the global literary landscape (v. esp.: J.M. Grassin, ed. Emerging Literatures, Bern, Berlin, etc. : Peter Lang, 1996). By opposition, "emergent literature" is rather a concept used in the theory of literature.

Emergent properties and processes

An emergent behavior or emergent property can appear when a number of simple entities (agents) operate in an environment, forming more complex behaviors as a collective. If emergence happens over disparate size scales, then the reason is usually a causal relation across different scales. In other words, there is often a form of top-down feedback in systems with emergent properties.[21] The processes causing emergent properties may occur in either the observed or observing system, and are commonly identifiable by their patterns of accumulating change, generally called 'growth'. Emergent behaviours can occur because of intricate causal relations across different scales and feedback, known as interconnectivity. The emergent property itself may be either very predictable or unpredictable and unprecedented, and represent a new level of the system's evolution. The complex behaviour or properties are not a property of any single such entity, nor can they easily be predicted or deduced from behaviour in the lower-level entities, and might in fact be irreducible to such behavior. The shape and behaviour of a flock of birds [1] or school of fish are good examples of emergent properties.

One reason emergent behaviour is hard to predict is that the number of interactions between a system components increases exponentially with the number of components, thus allowing for many new and subtle types of behaviour to emerge. Emergence is often a product of particular patterns of interaction. Negative feedback introduces constraints that serve to fix structures or behaviours. In contrast, positive feedback promotes change, allowing local variations to grow into global patterns. Another way in which interactions leads to emergent properties is dual-phase evolution. This occurs where interactions are applied intermittently, leading to two phases: one in which patterns form or grow, the other in which they are refined or removed.

On the other hand, merely having a large number of interactions is not enough by itself to guarantee emergent behaviour; many of the interactions may be negligible or irrelevant, or may cancel each other out. In some cases, a large number of interactions can in fact hinder the emergence of interesting behaviour, by creating a lot of "noise" to drown out any emerging "signal"; the emergent behaviour may need to be temporarily isolated from other interactions before it reaches enough critical mass to self-support. Thus it is not just the sheer number of connections between components which encourages emergence; it is also how these connections are organised. A hierarchical organisation is one example that can generate emergent behaviour (a bureaucracy may behave in a way quite different from that of the individual humans in that bureaucracy); but perhaps more interestingly, emergent behaviour can also arise from more decentralized organisational structures, such as a marketplace. In some cases, the system has to reach a combined threshold of diversity, organisation, and connectivity before emergent behaviour appears.

Unintended consequences and side effects are closely related to emergent properties. Luc Steels writes: "A component has a particular functionality but this is not recognizable as a subfunction of the global functionality. Instead a component implements a behaviour whose side effect contributes to the global functionality [...] Each behaviour has a side effect and the sum of the side effects gives the desired functionality".(Steels 1990) In other words, the global or macroscopic functionality of a system with "emergent functionality" is the sum of all "side effects", of all emergent properties and functionalities.

Systems with emergent properties or emergent structures may appear to defy entropic principles and the second law of thermodynamics, because they form and increase order despite the lack of command and central control. This is possible because open systems can extract information and order out of the environment.

Emergence helps to explain why the fallacy of division is a fallacy.

Emergent structures in nature

Ripple patterns in a sand dune created by wind or water is an example of an emergent structure in nature.
 
Giant's Causeway in Northern Ireland is an example of a complex emergent structure.

Emergent structures can be found in many natural phenomena, from the physical to the biological domain. For example, the shape of weather phenomena such as hurricanes are emergent structures. The development and growth of complex, orderly crystals, as driven by the random motion of water molecules within a conducive natural environment, is another example of an emergent process, where randomness can give rise to complex and deeply attractive, orderly structures.

Water crystals forming on glass demonstrate an emergent, fractal process occurring under appropriate conditions of temperature and humidity.

However, crystalline structure and hurricanes are said to have a self-organizing phase.

It is useful to distinguish three forms of emergent structures. A first-order emergent structure occurs as a result of shape interactions (for example, hydrogen bonds in water molecules lead to surface tension). A second-order emergent structure involves shape interactions played out sequentially over time (for example, changing atmospheric conditions as a snowflake falls to the ground build upon and alter its form). Finally, a third-order emergent structure is a consequence of shape, time, and heritable instructions. For example, an organism's genetic code sets boundary conditions on the interaction of biological systems in space and time.

Nonliving, physical systems

In physics, emergence is used to describe a property, law, or phenomenon which occurs at macroscopic scales (in space or time) but not at microscopic scales, despite the fact that a macroscopic system can be viewed as a very large ensemble of microscopic systems.

An emergent property need not be more complicated than the underlying non-emergent properties which generate it. For instance, the laws of thermodynamics are remarkably simple, even if the laws which govern the interactions between component particles are complex. The term emergence in physics is thus used not to signify complexity, but rather to distinguish which laws and concepts apply to macroscopic scales, and which ones apply to microscopic scales.

Some examples include:
  • Classical mechanics: The laws of classical mechanics can be said to emerge as a limiting case from the rules of quantum mechanics applied to large enough masses. This is particularly strange since quantum mechanics is generally thought of as more complicated than classical mechanics.
  • Friction: Forces between elementary particles are conservative. However, friction emerges when considering more complex structures of matter, whose surfaces can convert mechanical energy into heat energy when rubbed against each other. Similar considerations apply to other emergent concepts in continuum mechanics such as viscosity, elasticity, tensile strength, etc.
  • Patterned ground: the distinct, and often symmetrical geometric shapes formed by ground material in periglacial regions.
  • Statistical mechanics was initially derived using the concept of a large enough ensemble that fluctuations about the most likely distribution can be all but ignored. However, small clusters do not exhibit sharp first order phase transitions such as melting, and at the boundary it is not possible to completely categorize the cluster as a liquid or solid, since these concepts are (without extra definitions) only applicable to macroscopic systems. Describing a system using statistical mechanics methods is much simpler than using a low-level atomistic approach.
  • Electrical networks: The bulk conductive response of binary (RC) electrical networks with random arrangements can be seen as emergent properties of such physical systems. Such arrangements can be used as simple physical prototypes for deriving mathematical formulae for the emergent responses of complex systems.[22]
  • Weather
Temperature is sometimes used as an example of an emergent macroscopic behaviour. In classical dynamics, a snapshot of the instantaneous momenta of a large number of particles at equilibrium is sufficient to find the average kinetic energy per degree of freedom which is proportional to the temperature. For a small number of particles the instantaneous momenta at a given time are not statistically sufficient to determine the temperature of the system. However, using the ergodic hypothesis, the temperature can still be obtained to arbitrary precision by further averaging the momenta over a long enough time.

Convection in a liquid or gas is another example of emergent macroscopic behaviour that makes sense only when considering differentials of temperature. Convection cells, particularly Bénard cells, are an example of a self-organizing system (more specifically, a dissipative system) whose structure is determined both by the constraints of the system and by random perturbations: the possible realizations of the shape and size of the cells depends on the temperature gradient as well as the nature of the fluid and shape of the container, but which configurations are actually realized is due to random perturbations (thus these systems exhibit a form of symmetry breaking).

In some theories of particle physics, even such basic structures as mass, space, and time are viewed as emergent phenomena, arising from more fundamental concepts such as the Higgs boson or strings. In some interpretations of quantum mechanics, the perception of a deterministic reality, in which all objects have a definite position, momentum, and so forth, is actually an emergent phenomenon, with the true state of matter being described instead by a wavefunction which need not have a single position or momentum. Most of the laws of physics themselves as we experience them today appear to have emerged during the course of time making emergence the most fundamental principle in the universe[according to whom?] and raising the question of what might be the most fundamental law of physics from which all others emerged. Chemistry can in turn be viewed as an emergent property of the laws of physics. Biology (including biological evolution) can be viewed as an emergent property of the laws of chemistry. Similarly, psychology could be understood as an emergent property of neurobiological laws. Finally, free-market theories understand economy as an emergent feature of psychology.

According to Laughlin (2005), for many particle systems, nothing can be calculated exactly from the microscopic equations, and macroscopic systems are characterised by broken symmetry: the symmetry present in the microscopic equations is not present in the macroscopic system, due to phase transitions. As a result, these macroscopic systems are described in their own terminology, and have properties that do not depend on many microscopic details. This does not mean that the microscopic interactions are irrelevant, but simply that you do not see them anymore — you only see a renormalized effect of them. Laughlin is a pragmatic theoretical physicist: if you cannot, possibly ever, calculate the broken symmetry macroscopic properties from the microscopic equations, then what is the point of talking about reducibility?

Living, biological systems

Emergence and evolution

Life is a major source of complexity, and evolution is the major process behind the varying forms of life. In this view, evolution is the process describing the growth of complexity in the natural world and in speaking of the emergence of complex living beings and life-forms, this view refers therefore to processes of sudden changes in evolution.
Life is thought to have emerged in the early RNA world when RNA chains began to express the basic conditions necessary for natural selection to operate as conceived by Darwin: heritability, variation of type, and competition for limited resources. Fitness of an RNA replicator (its per capita rate of increase) would likely be a function of adaptive capacities that were intrinsic (in the sense that they were determined by the nucleotide sequence) and the availability of resources.[23][24] The three primary adaptive capacities may have been (1) the capacity to replicate with moderate fidelity (giving rise to both heritability and variation of type); (2) the capacity to avoid decay; and (3) the capacity to acquire and process resources.[23][24] These capacities would have been determined initially by the folded configurations of the RNA replicators (see “Ribozyme”) that, in turn, would be encoded in their individual nucleotide sequences. Competitive success among different replicators would have depended on the relative values of these adaptive capacities.

Regarding causality in evolution Peter Corning observes:
Synergistic effects of various kinds have played a major causal role in the evolutionary process generally and in the evolution of cooperation and complexity in particular... Natural selection is often portrayed as a “mechanism”, or is personified as a causal agency... In reality, the differential “selection” of a trait, or an adaptation, is a consequence of the functional effects it produces in relation to the survival and reproductive success of a given organism in a given environment. It is these functional effects that are ultimately responsible for the trans-generational continuities and changes in nature.(Corning 2002)
Per his definition of emergence, Corning also addresses emergence and evolution:
[In] evolutionary processes, causation is iterative; effects are also causes. And this is equally true of the synergistic effects produced by emergent systems. In other words, emergence itself... has been the underlying cause of the evolution of emergent phenomena in biological evolution; it is the synergies produced by organized systems that are the key.(Corning 2002)
Swarming is a well-known behaviour in many animal species from marching locusts to schooling fish to flocking birds. Emergent structures are a common strategy found in many animal groups: colonies of ants, mounds built by termites, swarms of bees, shoals/schools of fish, flocks of birds, and herds/packs of mammals.

An example to consider in detail is an ant colony. The queen does not give direct orders and does not tell the ants what to do. Instead, each ant reacts to stimuli in the form of chemical scent from larvae, other ants, intruders, food and buildup of waste, and leaves behind a chemical trail, which, in turn, provides a stimulus to other ants. Here each ant is an autonomous unit that reacts depending only on its local environment and the genetically encoded rules for its variety of ant. Despite the lack of centralized decision making, ant colonies exhibit complex behavior and have even demonstrated the ability to solve geometric problems. For example, colonies routinely find the maximum distance from all colony entrances to dispose of dead bodies.[25]

It appears that environmental factors may play a role in influencing emergence. Research suggests induced emergence of the bee species Macrotera portalis. In this species, the bees emerge in a pattern consistent with rainfall. Specifically, the pattern of emergence is consistent with southwestern deserts' late summer rains and lack of activity in the spring.[26]

Organization of life

A broader example of emergent properties in biology is viewed in the biological organisation of life, ranging from the subatomic level to the entire biosphere. For example, individual atoms can be combined to form molecules such as polypeptide chains, which in turn fold and refold to form proteins, which in turn create even more complex structures. These proteins, assuming their functional status from their spatial conformation, interact together and with other molecules to achieve higher biological functions and eventually create an organism. Another example is how cascade phenotype reactions, as detailed in chaos theory, arise from individual genes mutating respective positioning.[27] At the highest level, all the biological communities in the world form the biosphere, where its human participants form societies, and the complex interactions of meta-social systems such as the stock market.

Emergence of mind

Among the considered phenomena in the evolutionary account of life, as a continuous history, marked by stages at which fundamentally new forms have appeared - the origin of sapiens intelligence.[28] The emergence of mind and its evolution is researched and considered as a separate phenomenon in a special system knowledge noogenesis[29]

In humanity

Spontaneous order

Groups of human beings, left free to each regulate themselves, tend to produce spontaneous order, rather than the meaningless chaos often feared. This has been observed in society at least since Chuang Tzu in ancient China. A classic traffic roundabout is a good example, with cars moving in and out with such effective organization that some modern cities have begun replacing stoplights at problem intersections with traffic circles [2], and getting better results. Open-source software and Wiki projects form an even more compelling illustration.
Emergent processes or behaviors can be seen in many other places, such as cities, cabal and market-dominant minority phenomena in economics, organizational phenomena in computer simulations and cellular automata. Whenever there is a multitude of individuals interacting, an order emerges from disorder; a pattern, a decision, a structure, or a change in direction occurs.[30]

Economics

The stock market (or any market for that matter) is an example of emergence on a grand scale. As a whole it precisely regulates the relative security prices of companies across the world, yet it has no leader; when no central planning is in place, there is no one entity which controls the workings of the entire market. Agents, or investors, have knowledge of only a limited number of companies within their portfolio, and must follow the regulatory rules of the market and analyse the transactions individually or in large groupings. Trends and patterns emerge which are studied intensively by technical analysts.[citation needed].

World Wide Web and the Internet

The World Wide Web is a popular example of a decentralized system exhibiting emergent properties. There is no central organization rationing the number of links, yet the number of links pointing to each page follows a power law in which a few pages are linked to many times and most pages are seldom linked to. A related property of the network of links in the World Wide Web is that almost any pair of pages can be connected to each other through a relatively short chain of links. Although relatively well known now, this property was initially unexpected in an unregulated network. It is shared with many other types of networks called small-world networks.(Barabasi, Jeong, & Albert 1999, pp. 130–31)

Internet traffic can also exhibit some seemingly emergent properties. In the congestion control mechanism, TCP flows can become globally synchronized at bottlenecks, simultaneously increasing and then decreasing throughput in coordination. Congestion, widely regarded as a nuisance, is possibly an emergent property of the spreading of bottlenecks across a network in high traffic flows which can be considered as a phase transition [see review of related research in (Smith 2008, pp. 1–31)].

Another important example of emergence in web-based systems is social bookmarking (also called collaborative tagging). In social bookmarking systems, users assign tags to resources shared with other users, which gives rise to a type of information organisation that emerges from this crowdsourcing process. Recent research which analyzes empirically the complex dynamics of such systems[31] has shown that consensus on stable distributions and a simple form of shared vocabularies does indeed emerge, even in the absence of a central controlled vocabulary. Some believe that this could be because users who contribute tags all use the same language, and they share similar semantic structures underlying the choice of words. The convergence in social tags may therefore be interpreted as the emergence of structures as people who have similar semantic interpretation collaboratively index online information, a process called semantic imitation.[32] [33]

Architecture and cities

Traffic patterns in cities can be seen as an example of spontaneous order[citation needed]

Emergent structures appear at many different levels of organization or as spontaneous order. Emergent self-organization appears frequently in cities where no planning or zoning entity predetermines the layout of the city.(Krugman 1996, pp. 9–29) The interdisciplinary study of emergent behaviors is not generally considered a homogeneous field, but divided across its application or problem domains.

Architects may not design all the pathways of a complex of buildings. Instead they might let usage patterns emerge and then place pavement where pathways have become worn, such as a desire path.

The on-course action and vehicle progression of the 2007 Urban Challenge could possibly be regarded as an example of cybernetic emergence. Patterns of road use, indeterministic obstacle clearance times, etc. will work together to form a complex emergent pattern that can not be deterministically planned in advance.

The architectural school of Christopher Alexander takes a deeper approach to emergence, attempting to rewrite the process of urban growth itself in order to affect form, establishing a new methodology of planning and design tied to traditional practices, an Emergent Urbanism. Urban emergence has also been linked to theories of urban complexity (Batty 2005) and urban evolution.(Marshall 2009)

Building ecology is a conceptual framework for understanding architecture and the built environment as the interface between the dynamically interdependent elements of buildings, their occupants, and the larger environment. Rather than viewing buildings as inanimate or static objects, building ecologist Hal Levin views them as interfaces or intersecting domains of living and non-living systems.[34] The microbial ecology of the indoor environment is strongly dependent on the building materials, occupants, contents, environmental context and the indoor and outdoor climate. The strong relationship between atmospheric chemistry and indoor air quality and the chemical reactions occurring indoors. The chemicals may be nutrients, neutral or biocides for the microbial organisms. The microbes produce chemicals that affect the building materials and occupant health and well being. Humans manipulate the ventilation, temperature and humidity to achieve comfort with the concomitant effects on the microbes that populate and evolve.[34][35][36]

Eric Bonabeau's attempt to define emergent phenomena is through traffic: "traffic jams are actually very complicated and mysterious. On an individual level, each driver is trying to get somewhere and is following (or breaking) certain rules, some legal (the speed limit) and others societal or personal (slow down to let another driver change into your lane). But a traffic jam is a separate and distinct entity that emerges from those individual behaviors. Gridlock on a highway, for example, can travel backward for no apparent reason, even as the cars are moving forward." He has also likened emergent phenomena to the analysis of market trends and employee behavior.[37]

Computational emergent phenomena have also been utilized in architectural design processes, for example for formal explorations and experiments in digital materiality.[38]

Computer AI

Some artificially intelligent (AI) computer applications utilize emergent behavior for animation. One example is Boids, which mimics the swarming behavior of birds.

Language

It has been argued that the structure and regularity of language grammar, or at least language change, is an emergent phenomenon (Hopper 1998). While each speaker merely tries to reach his or her own communicative goals, he or she uses language in a particular way. If enough speakers behave in that way, language is changed (Keller 1994). In a wider sense, the norms of a language, i.e. the linguistic conventions of its speech society, can be seen as a system emerging from long-time participation in communicative problem-solving in various social circumstances (Määttä 2000).

Emergent change processes

Within the field of group facilitation and organization development, there have been a number of new group processes that are designed to maximize emergence and self-organization, by offering a minimal set of effective initial conditions. Examples of these processes include SEED-SCALE, Appreciative Inquiry, Future Search, the World Cafe or Knowledge Cafe, Open Space Technology, and others (Holman, 2010[39]).

Cryogenics

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Cryogenics...