Search This Blog

Friday, January 24, 2014

The psychology of political parties: Why conservatives fall in line and liberals don’t

Thursday, Jan 23, 2014 08:15 AM EST                         

Research suggests liberals suffer from a sense of false uniqueness -- and they strive to maintain their difference


                         
The psychology of political parties: Why conservatives fall in line and liberals don't     
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(Credit: istockphoto \ Iqoncept)
This article was originally published by Scientific American.
Scientific American
When he was President, Bill Clinton famously (and perhaps apocryphally) complained that getting Democrats to agree on a course of action was like herding cats, while the Republicans didn’t seem to have this problem. All political parties are large coalitions of people with varied interests and beliefs, but is it possible that ideological differences between the parties could play a decisive role here?

new paper by researchers at New York University, in press at Psychological Science, suggests that the answer is yes. A large body of psychological research has shown that people tend to overestimate how much others share their beliefs, feelings, and practices. But this new research suggests that this is not the case for those on the left end of the political spectrum – in fact, it’s quite the opposite.
Conservatives and moderates overestimated the degree to which other conservatives and moderates were like them, while liberals assumed they were more unique among party peers than they actually were. This “liberal uniqueness” perceptive bias could help to explain why it’s harder to get Democrats to fall in line than it is for Republicans.

Led by Chadly Stern, the scientists begin by contrasting the conservative Tea Party movement, which has successfully organized its own congressional caucus, with the liberal Occupy Wall Street movement, which was hobbled by its inability to reach consensus on issues both large (what’s our agenda?) and small (how should we respond to the NYPD’s request to take down signs?). While group member similarities (in goals, beliefs, preferences, and personalities) are crucial for organizational success, the authors wondered whether perceptions of in-group similarities were just as important. In other words, maybe if group members only thought they were the same, the group would function better.
 
In the first study, hundreds of people online answered forty questions about preferences and beliefs, half of them political (“America should strive to strengthen its military”) and half non-political (“I like poetry”). They then estimated what percentage of study participants who share their political beliefs (political in-group members) would agree with them on each item – in other words, if you’re a conservative, and you indicated that you liked poetry, you then estimated what percentage of other conservatives in the study liked poetry as well. Stern and colleagues then compared those estimateswith the actual figues to determine whether each participant overestimated their similarity to their political in-group (false consensus) or underestimated it (false uniqueness).

Conservatives overestimated how similar their preferences were to those of other conservatives (false consensus), while liberals underestimated how similar their preferences were to those of other liberals (false uniqueness). Political moderates also overestimated their similarity to other moderates, in line with previous findings that people in general overestimate how much other people share their preferences and beliefs. This was the case for both political (e.g., military spending) and non-political (e.g., poetry) preferences.

The second study replicated the design of the first, with one twist: everyone also filled out the Need for Uniqueness scale, with questions like “If I must die let it be an unusual death rather than an ordinary death in bed.” Again, conservatives and moderates overestimated how similar they were to their political in-group, while liberals underestimated their similarity to their political in-group.
Further, these ideological differences were in part accounted for by people’s need for uniqueness – the more you expressed the desire to be different from those around you, the more you underestimated how similar you were. This suggests that liberals think they’re unique among liberals in part because they want to be unique.

Anyone who’s ever been part of a liberal counter-cultural clique will recognize this pressure to be unique, which can easily turn into an arms race. You’ve got a tattoo? Well, my skin is nothing but tattoos. You make artisanal pickles? Well, I make artisanal horseradish. You have a pet ferret? Well, I have a pet camel. And so on. But it’s this motivation to be unique – even among other liberals – that makes liberals alike. It’s a bit like the scene from Monty Python’s Life of Brian where a crowd of hundreds chants in unison: “Yes, we are all individuals! Yes, we are all different!”

While the findings make sense in light of ideological stereotypes like the gotta-be-different liberal hipster, or the conformist conservative soldier, they might not apply as well to contemporary American politics. These days you’re more likely to hear the “herding cats” phrase in reference to John Boehner’s attempts to reconcile the Tea Party faction with the rest of the Republicans in the House. It remains to be seen whether the conservative false consensus effect can lead to any real consensus in the GOP.

Scientists build ion-selective membrane for ultra-stable lithium sulfur batteries#nRlv

Scientists build ion-selective membrane for ultra-stable lithium sulfur batteries#nRlv

Scientists build ion-selective membrane for ultra-stable lithium sulfur batteries

Dec 24, 2013
Scientists build ion-selective membrane for ultra-stable lithium sulfur batteries       











Credit: Tsinghua University

Advanced energy storage systems are highly desired to fill the gap between currently available battery systems and high performance electronic devices or even electric vehicles. As the commonly-used lithium ion battery systems are approaching their theoretical energy density value, lithium-sulfur batteries are considered to be one promising candidate, exhibiting much higher theoretical energy density at 2600 Wh/kg (around 3-5 times that of the lithium ion batteries). However, the practical applications of lithium-sulfur batteries are hindered by the complexity of this electrochemical system, especially the insulate nature of sulfur and the so called "shuttle effect", which means the diffusion and reaction of the cathode intermediate polysulfide with the anode side.

Researchers from Tsinghua University in Beijing, led by professors Qiang Zhang and Fei Wei, have developed a new strategy to build ultra-stable lithium-sulfur batteries based on an ion selective membrane system. With this new membrane system, the cyclic degradation of the cell was significantly reduced to 0.08 % per cycle within the first 500 cycles. Meanwhile, the coulombic efficiency of the can also be improved by around 10 %, which may greatly benefit the energy efficiency of the battery system. The team has published their findings in a recent issue of Energy & Environment Science.

"Designs for cathode electrode structures for a lithium sulfur battery have been widely investigated, but a design to suppress the shuttle effect based on the whole has rarely been reported," Qiang Zhang said. "We employ a cation permselective membrane, which helped to 'separate' lithium ions and polysulfide ions based on their different charge nature. The electrostatic interaction allows diffusion across the membrane but prevents the permeation of polysulfide anions, which suppressed the shuttle effect." In their experiments, a facile coating method was employed to build a complete selective ion shield between the cathode and anode electrode. By using a visualized glass cell, one can clearly observe that the polysulfide was prevented from reaching the anode side when using the ion selective membrane.

Credit: Tsinghua University

As Prof. Zhang and Wei point out, this approach shed some light on building ultra-stable lithium-sulfur batteries by suppressing the "shuttle effect". This method is also fully applicable with other advanced electrodes. Going forward, the researchers hope to understand the other problems in the degradation of lithium sulfur cells and to build even better batteries.
 Explore further: Holistic cell design leads to high-performance, long cycle-life lithium-sulfur battery
More information: Ionic shield for polysulfides towards highly-stable lithium-sulfur batteries, Energy & Environment Science.
Journal reference: Energy & Environment Science search and more info website
Provided by Tsinghua University

 Read more at: http://phys.org/news/2013-12-scientists-ion-selective-membrane-ultra-stable-lithium.html#jCp

IceCube neutrino detector is running hot

Now that we know how to find high energy neutrinos, we're seeing lots.

The building that houses the IceCube servers.
With the IceCube detector now in operation at the South Pole, the first results are starting to come in, and boy are they interesting. IceCube monitors a volume of one cubic kilometer of ice for muons, the byproduct of neutrinos colliding with the ice. What makes IceCube different is that it is looking especially for very high energy neutrinos. In the lower energy range, neutrinos are products of things generated very locally (in astronomical terms). Although these events are interesting, they swamp those that are produced at great distances, making it difficult to use neutrinos as a window into the Universe.

However, very distant and highly energetic events should produce neutrinos with a correspondingly high energy. If we can detect them, maybe they can tell us about those high-energy events. This idea is more than 30 years old—until now, the technology has simply not been up to the task.
IceCube consists of some 8000 photomultiplier tubes (light detectors), strung out on strings, buried under the ice of the Antarctic. Each photomultiplier tube contains its own data processing computer that provides some preliminary filtering and enables event signals to be synchronized to within 2ns.
These signals are then sent to a local computing center that sits at the center of the array (yes, in Antarctica), which does more processing before sending it out to the world.
Both the instrument and neutrino physics are exquisitely well understood, so the scientists working with the detector have just a single percent uncertainty in their models and another ten percent uncertainty in the instrumentation. Considering everything, that is a fine piece of hardware. However, even buried deeply in the ice, IceCube has a devil of a time finding the neutrinos it is looking for. The instrument records 2700 cosmic rays per second, and a locally produced neutrino turns up every six minutes. The cosmic signal, in contrast is ten neutrinos... per year.
After a fairly long run and a particular type of analysis, the collaboration running IceCube was rather confused; they hadn't found any neutrinos of interest yet. So they took a look inside their processing and found a particular type of event that was being incorrectly filtered out. The problem was an assumption about the energy range they were after.
At high energies (but not too high), a neutrino will tend to collide with an atom outside the volume occupied by the detectors. The resulting high energy muon streaks off like a meteor through the ice, losing energy through radiation, production of electrons and positrons, and other things. IceCube looks for these tracks and figures out where the neutrino came from. (It should be noted that some of these neutrinos have traveled through the entire Earth before being detected.)
Once you go to even higher energies, however, neutrinos that are detected are a result of collisions from within the detector. Again the muon motors off, causing havoc, but the event track began from within the detector volume—a pattern that the researchers initially excluded. They are now actually spotting neutrinos in the 1000TeV range (The LHC operates around 14TeV).
At these energies, the particles have quite a high probability of interacting with atoms, so they don't make it through the Earth; instead, they're detected quite close to the surface of the ice. Even better, because the tracks begin within the detector volume, the energy of the neutrinos can be calculated with high accuracy
After recognizing the problem, a reanalysis produced around 30 neutrinos, and many more are expected to be reported in May. The big question is whether these neutrinos are evenly distributed across the sky (as low energy neutrinos are), or if they have specific sources. At present, there is not enough data to say. As with any small data set, it has a few blobs that look like they may be specific sources, but we should expect those to disappear as more neutrinos are detected.

Pope Francis explains why the Internet is a 'gift from God'

    
21 hours ago
Pope's Twitter account
Twitter
 
Not as many followers as Justin Bieber, but not bad.
This pope has wasted no time in embracing the Internet.
A week after Jorge Mario Bergoglio was declared pope in a puff of white smoke in March, he sent out his first tweet as Pope Francis, which was retweeted 36,457 times. His account, @Pontifex, now has more than 3.5 million followers.

His predecessor, Pope Benedict XVI , also embraced social media, calling it "a great opportunity" for users to establish a "Christian-style presence" online. He started the papal Twitter account, launched a Vatican YouTube channel and even released a Facebook application called Pope2You.
Francis, despite not having a Twitter account as a cardinal, has praised the Internet as well, calling it a "gift from God" in a statement on Thursday. Still, the pope, like most people, has some reservations about our new digital age.
  • This pretty much sums up Twitter: "The speed with which information is communicated exceeds our capacity for reflection and judgement, and this does not make for more balanced and proper forms of self-expression." 
  • On the Internet "filter bubble": "The variety of opinions being aired can be seen as helpful, but it also enables people to barricade themselves behind sources of information which only confirm their own wishes and ideas, or political and economic interests."  
  • Beware, World of Warcraft players: "The desire for digital connectivity can have the effect of isolating us from our neighbours, from those closest to us."  
Overall, however, the pope seemed bullish on the Internet. He certainly hasn't been shy in utilizing it, occasionally angering both conservatives and liberals with his 140-character messages. He angered the free-market crowd with tweets like this.
 
Some liberals, on the other hand, took offense on Wednesday when he tweeted this in support of an anti-abortion rally.

Despite the Internet's flaws, His Holiness isn't likely to cancel the Vatican's broadband plan anytime soon. The pontiff's advice: The Internet is cool, as long as it leads to good deeds IRL.
"While these drawbacks are real, they do not justify rejecting social media; rather, they remind us that communication is ultimately a human rather than technological achievement," he wrote. "It is not enough to be passersby on the digital highways, simply 'connected'; connections need to grow into true encounters."

Keith Wagstaff writes about technology for NBC News. He previously covered the tech beat for TIME's Techland and wrote about politics as a staff writer at TheWeek.com. You can follow him on Twitter at @kwagstaff and reach him by email at: Keith.Wagstaff@nbcuni.com

La. Teacher Tells Buddhist Student He's 'Stupid' And Bible is '100 Percent True'

 
article image
The American Civil Liberties Union of Louisiana is suing the Sabine Parish School Board on behalf of a family who alleges that their son, a Buddhist, suffered from racial discrimination at his school. His teacher told students that Buddhists were “stupid” and led the class to laugh at him. The school regularly proselytized the Christian faith.

According to the ACLU complaint filed in the U.S. District Court in Louisiana, the main offender, science teacher Rita Roark at Negreet High School, teaches students that evolution is “impossible” while the Bible is “100 percent true.”

Roark’s science tests include questions like “"ISN'T IT AMAZING WHAT THE _____________ HAS MADE!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!" According to Scott Lane, the stepfather of “C.C.,” Roark marked his test wrong when he wrote “Lord Buddha” and “belittled him in front of the entire class” when he wrote nothing.

A student stated in class that "people are stupid if they think God is not real." Roark responded, "Yes! That is right! I had a student miss that on his test," to which the whole class laughed.

C.C, who is of Thai descent, has been a Buddhist his whole life. Yet he was subject to regular Christian prayer in class, religious iconography, Bible versus scrolling on the electronic marquee in front of the building, and a large picture of Jesus over the school’s main doors.

C.C.’s parents tried to bring up their complaints with school board superintendent Sarah Ebarb. Ebarb responded, “this is the Bible belt,” and advised C.C. to “change” his religion. She also suggested that the Lanes transfer C.C. to a school where “there are more Asians.” They did, in fact, transfer him—C.C. was having such bad anxiety at that it made him physically ill—but they encountered discrimination there, too.

"The treatment this child and his family have endured is not only disgraceful, it's unconstitutional," said Heather L. Weaver, senior staff attorney for the ACLU Program on Freedom of Religion and Belief. 

The U.S. Department of Education and U.S. Department of Justice will also investigate the school board at the ACLU’s request.

Sources: ACLU (2)

Thursday, January 23, 2014

A new wrinkle in the control of waves: Flexible materials could provide new ways to control sound and light

by David Chandler


Flexible, layered materials textured with nanoscale wrinkles could provide a new way of controlling the wavelengths and distribution of waves, whether of sound or light. The new method, developed by researchers at MIT, could eventually find applications from nondestructive testing of materials to sound suppression, and could also provide new insights into soft biological systems and possibly lead to new diagnostic tools.
The findings are described in a paper published this week in the journal Physical Review Letters, written by MIT postdoc Stephan Rudykh and Mary Boyce, a former professor of mechanical engineering at MIT who is now dean of the Fu Foundation School of Engineering and Applied Science at Columbia University.
While materials' properties are known to affect the propagation of light and sound, in most cases these properties are fixed when the material is made or grown, and are difficult to alter later. But in these layered materials, changing the properties—for example, to "tune" a material to filter out specific colors of light—can be as simple as stretching the flexible material.

"These effects are highly tunable, reversible, and controllable," Rudykh says. "For example, we could change the color of the material, or potentially make it optically or acoustically invisible."

The materials can be made through a layer-by-layer deposition process, refined by researchers at MIT and elsewhere, that can be controlled with high precision. The process allows the thickness of each layer to be determined to within a fraction of a . The material is then compressed, creating within it a series of precise wrinkles whose spacing can cause scattering of selected frequencies of (of either sound or light).

Surprisingly, Rudykh says, these effects work even in materials where the alternating layers have almost identical densities. "We can use polymers with very similar densities and still get the effect," he says. "How waves propagate through a material, or not, depends on the microstructure, and we can control it," he says.

By designing that microstructure to produce a desired set of effects, then altering those properties by deforming the material, "we can actually control these effects through external stimuli," Rudykh says.
"You can design a material that will wrinkle to a different wavelength and amplitude. If you know you want to control a particular range of frequencies, you can design it that way."

The research, which is based on computer modeling, could also provide insights into the properties of natural biological materials, Rudykh says. "Understanding how the waves propagate through biological tissues could be useful for ," he says.

For example, current diagnostic techniques for certain cancers involve painful and invasive procedures. In principle, ultrasound could provide the same information noninvasively, but today's ultrasound systems lack sufficient resolution. The new work with wrinkled materials could lead to more precise control of these ultrasound waves, and thus to systems with better resolution, Rudykh says.

The system could also be used for sound cloaking—an advanced form of noise cancellation in which outside sounds could be completely blocked from a certain volume of space rather than just a single spot, as in current noise-canceling headphones.

"The microstructure we start with is very simple," Rudykh says, and is based on well-established, layer-by-layer manufacturing. "From this layered material, we can extend to more complicated microstructures, and get effects you could never get" from conventional . Ultimately, such systems could be used to control a variety of effects in the propagation of light, sound, and even heat.

The technology is being patented, and the researchers are already in discussions with companies about possible commercialization, Rudykh says.
Explore further: Light and sound fire scientists' imaginations: Researchers lead review of photonic, phononic metamaterials
   


How Grazing Cows Can Save the Planet, and Other Surprising Ways of Healing the Earth

January 12, 2014
By Dr. Mercola
Judith Schwartz is a freelance writer and author of the book Cows Save the Planet: And Other Improbable Ways of Restoring Soil to Heal the Earth. I recently met Judy at a conference held by Allan Savory of the Savory Institute in Boulder, Colorado.
The Savory Institute helps farmers to holistically manage their livestock in order to improve soil quality and heal the environment. In fact, according to Savory, an African ecologist, dramatically increasing the number of grazing livestock is the only thing that can reverse desertification (when land turns to desert).
This was Savory's first conference, and turned out to be quite a memorable event. Judy has summarized a big portion of what was presented in that conference in her book. But what made her hone in on the issue of soil health to begin with?
Surprisingly, it all began with an investigation into the economy. Around 2008, just before the economic downturn, she'd started writing about the transition movement:
"One of the things that transition initiatives were dealing with was local currencies," she says"Looking into local currencies kind of helped me understand how local economies work and primed me to ask questions when the economic downturn hit, like 'What is money? What is wealth?'
I was on that trajectory, writing about environmental economics and new economics... Basically, it's the notion that our economy can and should serve the people the planet as opposed to the other way around.

This I fear is the scenario that we've kind of gotten stuck in – that people and the planet, meaning all of our natural systems, exist to serve the economy.
From that framework, I started looking at ecology and observed the disconnect between our financial system and the natural world, which just cannot be separate. That disconnect doesn't work."

The Environmental Impact of Conventional Farming

This led her to learn more about soil health, economical land use, and how modern agricultural practices affect our environment.
 
For example, did you know that our modern agricultural system is responsible for putting more carbon dioxide into the atmosphere than the actual burning of fossil fuels? Understanding this reveals an obvious answer to pressing global problems.
There are only three places for carbon to go: land, air and water. Our agricultural practices have removed massive amounts of valuable carbon from land, transferring it into air and water. By paying greater attention to carbon management, we have the opportunity to make a dramatic difference in this area, which is having major negative consequences to our agriculture, and the pollution of our water and air.
As explained by Judy, early this past summer, concentrations of atmospheric CO2 crossed the 400 parts per million-threshold—the highest it's been in thousands of years. According to an organization called 350.org, scientists believe our CO2 levels need to be around 350 parts per million in order to maintain favorable living conditions on earth.
Carbon management is a critical aspect of environmental health and the growing of food.
That said, CO2 levels are not constantly or continuously rising in a straight line. The level rises and falls, and this is a clue to what's going on.
"Depending on the season, depending on how much photosynthesis is happening, it dips down, and then goes up again," Judy explains. "When we've got a lot of plants, as we get towards the warmer part of the year, more photosynthesis is happening, and the CO2 levels drop slightly.
That's so important to know, because photosynthesis is key to what we're talking about.
When I talk about bringing carbon back into the soil, I'm talking about supporting and stimulating the process of photosynthesis – in other words, growing more plants. Those plants then take in the CO2. They make carbon compounds. Those carbon compounds are drawn down, and they go into the soil."
Sequestering carbon in the Earth's soils is a good thing. There's actually more carbon in our world soils than in all plants, including trees, and the atmosphere together. However, due to modern agricultural methods, we've lost between 50 and 80 percent of the carbon that used to be in the soil... This means there's plenty of "room" to put it back in.
"It's useful to understand that the notion of bringing carbon back into the soil, one thing that it does is withdraw carbon down from the atmosphere. That's hugely important," Judy says.
"Carbon is the main component of soil organic matter. That's the good stuff that you want in soil anyway for fertility. It also absorbs water. When you have carbon-rich soil, you also have soil that is resilient to floods and drought. When you start looking at soil carbon, the news keeps getting better and better."

The Importance of Holistic Herd Management

Another major factor that needs to be considered is the management of livestock. Herds raised according to modern, conventional practices contribute to desertification—turning land into desert—which, of course, doesn't support plant life and photosynthesis, thereby shifting the equation in the wrong direction. When land turns to desert, it no longer holds water, and it loses the ability to sustain microbial life and nourish plant growth...
One of the reasons Allan Savory has become so popular is his promotion of holistic herd management, which causes desert areas to convert back to grasslands that support plant life. As explained by Judy:
"It occurred to him that the land needed the animals in the same way that the animals needed the land. He began to really observe how animals functioned on land, and came to understand the really intricate dynamics, the system, that had been naturally in operation.
Basically, when grazing animals graze, they're nibbling on the grasses in a way that exposes their growth points to sunlight and stimulates growth... Their trampling [of the land also] did several things: it breaks any capped earth so that the soil is aerated. It presses in seeds [giving them] a chance to germinate, so you have a greater diversity of plants. [Grazing herds] also press down dying and decaying grasses, so that they can be better acted upon by microorganisms in the soil. It keeps the decaying process going. Their waste also fertilizes the soil."
This natural symbiotic relationship between animals, soils and plants—where each benefits the other mutually—is a powerful insight. And it's one that can be replicated with great benefit. Besides the environmental benefits, grass-fed, pastured livestock is also an excellent source of high quality meat. In fact, it's the only type of meat I recommend eating, as raising cattle in confined animal feeding operations (CAFOs) alters the nutritional composition of the meat—not to mention such animals are fed antibiotics, growth promoters and other veterinary drugs.

You Can Make a Difference in More Ways Than One  

As for recommendations for what we can do to get us going in the right direction with regards to improving not only animal and human health but the health of the planet, Judy says:
"Most recommendations are very simple. The simplest thing is to avoid having bare soil. Because when you have bare uncovered soil, the land degradation process begins. When you have bare soil, that means that the carbon is binding with oxygen and becoming carbon dioxide."
We also need to shift our focus to emphasize the biological system as a whole. Soil is not a static "thing." It's a living symbiotic system, and soil microorganisms also play a very important role in this system. When I visited Elaine Ingham at the Rodale Institute, I learned the value of compost tea for promoting beneficial soil microbes, and I now use a vortex compost tea brewing system to revitalize my own garden. Interestingly, the better you farm or garden, the less land you need. According to Judy, a biological farmer using appropriate methods can grow on 1,000 acres the same amount of food another farmer might need 5,000 acres to produce...
 
Another factor is the importance of integrating animals on the land. Most biological farmers understand this, and will tell you that in order for soil to get to its highest potential of productivity and health, there needs to be animals on the land. (According to Savory, grazing large herds of livestock on half of the world's barren or semi-barren grasslands could also take enough carbon from the atmosphere to bring us back to preindustrial levels!) But what if you're not a gardener yet, or a farmer? How can you help achieve this much needed shift?
"I think people can make a difference in all sorts of ways that people make decisions every day, such as asking yourself how the food you're buying was grown," Judy says. "Because once you start asking where the food comes from, even posing that question, will lead you to make different choices.
Apart from food, what decisions are being made in your community about the use of land? Can your community save money by working with soil rather than, say, putting in an expensive waste or water treatment plant? That's another thing, getting involved on a local level. There are all kinds of organizations that are working on different environmental and different food aspects locally and nationally, etc."

Biological Farming Solves Many Pressing Problems

My first passion and career was being a physician, then an Internet educator, and now I'm moving into high-performance biological agriculture because I really believe it's the next step in our evolution. We must shift the way we produce food because the current system is unsustainable. And while this information really is ancient, it's not widely discussed. There's only a small segment of the population that even understands this natural system, and the potential it has for radically transforming the way we feed the masses AND protect the environment at the same time.
 
I thoroughly agree with the recommendation to get involved personally, because it's so exciting. For me, it's become a rather addictive hobby. Once you integrate biological farming principles, you can get plant performances that are 200-400 percent greater than what you would typically get from a plant! What's more, not only does it improve the quantity, it also improves the quality of the food you're growing. These facts should really be at the forefront of everybody's mind when they think about farming, as it's the solution to so many pressing problems. Judy agrees, noting:
"The challenge is that we've been led to believe that our agricultural model, which is an extractive model, is the way it needs to be. But we can shift to a regenerative model. That's where we need to go."

Final Thoughts

As Judy says, there's a lot to be optimistic about, because whether we're talking about the degradation of the environment or our food supply, there are answers!
"Many people just sort of give up and say, 'I can't do anything about this.' I was speaking to someone the other day who said that her son, who just finished college, said, 'You know, it's over. We're doomed.' To me, that is just so sad. How can we let the next generation feel that way? I think that betrays a huge lack of imagination. Because when we talk about our environmental challenges, one thing we don't talk about is nature's desire to heal itself. Once we ally with that natural process, it's amazing what we can do."
Ending the burning of fossil fuels is not the one and only way for us to turn the tide on rising carbon dioxide levels. Granted, solar energy and wind power would certainly be preferable to burning fossil fuels. But even if we didn't stop burning fossil fuels, we can still reverse rising CO2 levels by addressing the way we farm, using sound, time-honored agricultural principles.

And—something else to consider—even if we completely stop burning fossil fuels but do not change agriculture, we'll still be left with problems like lands turning to desert, flooding, and drought for example. In short, we really must address how we manage our lands and soils... You can learn more about biological farming by reviewing the related articles listed in the right-hand side bar on this page. I also highly recommend Judy's book, Cows Save the Planet: And Other Improbable Ways of Restoring Soil to Heal the Earth. It's a great read for anyone wanting to learn more about this topic.

Inequality (mathematics)

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Inequality...