Search This Blog

Friday, September 12, 2014

Cobalt

Cobalt

From Wikipedia, the free encyclopedia

Cobalt   27Co
Kobalt electrolytic and 1cm3 cube.jpg
General properties
Name, symbol cobalt, Co
Pronunciation /ˈkbɒlt/
KOH-bolt
Appearance hard lustrous gray metal
Cobalt in the periodic table
Hydrogen (diatomic nonmetal)

Helium (noble gas)
Lithium (alkali metal)
Beryllium (alkaline earth metal)

Boron (metalloid)
Carbon (polyatomic nonmetal)
Nitrogen (diatomic nonmetal)
Oxygen (diatomic nonmetal)
Fluorine (diatomic nonmetal)
Neon (noble gas)
Sodium (alkali metal)
Magnesium (alkaline earth metal)

Aluminium (post-transition metal)
Silicon (metalloid)
Phosphorus (polyatomic nonmetal)
Sulfur (polyatomic nonmetal)
Chlorine (diatomic nonmetal)
Argon (noble gas)
Potassium (alkali metal)
Calcium (alkaline earth metal)

Scandium (transition metal)
Titanium (transition metal)
Vanadium (transition metal)
Chromium (transition metal)
Manganese (transition metal)
Iron (transition metal)
Cobalt (transition metal)
Nickel (transition metal)
Copper (transition metal)
Zinc (transition metal)
Gallium (post-transition metal)
Germanium (metalloid)
Arsenic (metalloid)
Selenium (polyatomic nonmetal)
Bromine (diatomic nonmetal)
Krypton (noble gas)
Rubidium (alkali metal)
Strontium (alkaline earth metal)


Yttrium (transition metal)
Zirconium (transition metal)
Niobium (transition metal)
Molybdenum (transition metal)
Technetium (transition metal)
Ruthenium (transition metal)
Rhodium (transition metal)
Palladium (transition metal)
Silver (transition metal)
Cadmium (transition metal)
Indium (post-transition metal)
Tin (post-transition metal)
Antimony (metalloid)
Tellurium (metalloid)
Iodine (diatomic nonmetal)
Xenon (noble gas)
Caesium (alkali metal)
Barium (alkaline earth metal)
Lanthanum (lanthanide)
Cerium (lanthanide)
Praseodymium (lanthanide)
Neodymium (lanthanide)
Promethium (lanthanide)
Samarium (lanthanide)
Europium (lanthanide)
Gadolinium (lanthanide)
Terbium (lanthanide)
Dysprosium (lanthanide)
Holmium (lanthanide)
Erbium (lanthanide)
Thulium (lanthanide)
Ytterbium (lanthanide)
Lutetium (lanthanide)
Hafnium (transition metal)
Tantalum (transition metal)
Tungsten (transition metal)
Rhenium (transition metal)
Osmium (transition metal)
Iridium (transition metal)
Platinum (transition metal)
Gold (transition metal)
Mercury (transition metal)
Thallium (post-transition metal)
Lead (post-transition metal)
Bismuth (post-transition metal)
Polonium (post-transition metal)
Astatine (metalloid)
Radon (noble gas)
Francium (alkali metal)
Radium (alkaline earth metal)
Actinium (actinide)
Thorium (actinide)
Protactinium (actinide)
Uranium (actinide)
Neptunium (actinide)
Plutonium (actinide)
Americium (actinide)
Curium (actinide)
Berkelium (actinide)
Californium (actinide)
Einsteinium (actinide)
Fermium (actinide)
Mendelevium (actinide)
Nobelium (actinide)
Lawrencium (actinide)
Rutherfordium (transition metal)
Dubnium (transition metal)
Seaborgium (transition metal)
Bohrium (transition metal)
Hassium (transition metal)
Meitnerium (unknown chemical properties)
Darmstadtium (unknown chemical properties)
Roentgenium (unknown chemical properties)
Copernicium (transition metal)
Ununtrium (unknown chemical properties)
Flerovium (unknown chemical properties)
Ununpentium (unknown chemical properties)
Livermorium (unknown chemical properties)
Ununseptium (unknown chemical properties)
Ununoctium (unknown chemical properties)
-

Co

Rh
ironcobaltnickel
Atomic number 27
Standard atomic weight 58.933194(4)
Element category transition metal
Group, period, block group 9, period 4, d-block
Electron configuration [Ar] 3d7 4s2
per shell: 2, 8, 15, 2
Physical properties
Color metallic gray
Phase solid
Melting point 1768 K ​(1495 °C, ​2723 °F)
Boiling point 3200 K ​(2927 °C, ​5301 °F)
Density (near r.t.) 8.90 g·cm−3 (at 0 °C, 101.325 kPa)
Liquid density at m.p.: 8.86 g·cm−3
Heat of fusion 16.06 kJ·mol−1
Heat of vaporization 377 kJ·mol−1
Molar heat capacity 24.81 J·mol−1·K−1
Vapor pressure
P (Pa) 1 10 100 1 k 10 k 100 k
at T (K) 1790 1960 2165 2423 2755 3198
Atomic properties
Oxidation states 5, 4, 3, 2, 1, −1[1] ​(an amphoteric oxide)
Electronegativity 1.88 (Pauling scale)
Ionization energies 1st: 760.4 kJ·mol−1
2nd: 1648 kJ·mol−1
3rd: 3232 kJ·mol−1
(more)
Atomic radius empirical: 125 pm
Covalent radius Low spin: 126±3 pm
High spin: 150±7 pm
Miscellanea
Crystal structure hexagonal close-packed (hcp)
Hexagonal close packed crystal structure for cobalt
Speed of sound thin rod: 4720 m·s−1 (at 20 °C)
Thermal expansion 13.0 µm·m−1·K−1 (at 25 °C)
Thermal conductivity 100 W·m−1·K−1
Electrical resistivity at 20 °C: 62.4 nΩ·m
Magnetic ordering ferromagnetic
Young's modulus 209 GPa
Shear modulus 75 GPa
Bulk modulus 180 GPa
Poisson ratio 0.31
Mohs hardness 5.0
Vickers hardness 1043 MPa
Brinell hardness 700 MPa
CAS Number 7440-48-4
History
Discovery Georg Brandt (1732)
Most stable isotopes
Main article: Isotopes of cobalt
iso NA half-life DM DE (MeV) DP
56Co syn 77.27 d ε 4.566 56Fe
57Co syn 271.79 d ε 0.836 57Fe
58Co syn 70.86 d ε 2.307 58Fe
59Co 100% 59Co is stable with 32 neutrons
60Co syn 5.2714 y β, γ 2.824 60Ni


Cobalt is a chemical element with symbol Co and atomic number 27. Like nickel, cobalt in the Earth's crust is found only in chemically combined form, save for small deposits found in alloys of natural meteoric iron. The free element, produced by reductive smelting, is a hard, lustrous, silver-gray metal.

Cobalt-based blue pigments (cobalt blue) have been used since ancient times for jewelry and paints, and to impart a distinctive blue tint to glass, but the color was later thought by alchemists to be due to the known metal bismuth. Miners had long used the name kobold ore (German for goblin ore) for some of the blue-pigment producing minerals; they were so named because they were poor in known metals, and gave poisonous arsenic-containing fumes upon smelting. In 1735, such ores were found to be reducible to a new metal (the first discovered since ancient times), and this was ultimately named for the kobold.

Today, some cobalt is produced specifically from various metallic-lustered ores, for example cobaltite (CoAs S), but the main source of the element is as a by-product of copper and nickel mining. The copper belt in the Democratic Republic of the Congo and Zambia yields most of the cobalt mined worldwide.

Cobalt is primarily used as the metal, in the preparation of magnetic, wear-resistant and high-strength alloys. Its compounds cobalt silicate and cobalt(II) aluminate (CoAl2O4, cobalt blue) give a distinctive deep blue color to glass, smalt, ceramics, inks, paints and varnishes. Cobalt occurs naturally as only one stable isotope, cobalt-59. Cobalt-60 is a commercially important radioisotope, used as a radioactive tracer and for the production of high energy gamma rays.

Cobalt is the active center of coenzymes called cobalamins, the most common example of which is vitamin B12. As such it is an essential trace dietary mineral for all animals. Cobalt in inorganic form is also an active nutrient for bacteria, algae and fungi.

Characteristics

A block of electrolytically refined cobalt (99.9% purity) cut from a large plate

Cobalt is a ferromagnetic metal with a specific gravity of 8.9. The Curie temperature is 1115 °C[2] and the magnetic moment is 1.6–1.7 Bohr magnetons per atom.[3] Cobalt has a relative permeability two thirds that of iron.[4] Metallic cobalt occurs as two crystallographic structures: hcp and fcc. The ideal transition temperature between the hcp and fcc structures is 450 °C, but in practice, the energy difference is so small that random intergrowth of the two is common.[5][6][7]

Cobalt is a weakly reducing metal that is protected from oxidation by a passivating oxide film. It is attacked by halogens and sulfur. Heating in oxygen produces Co3O4 which loses oxygen at 900 °C to give the monoxide CoO.[8] The metal reacts with Fluorine gas (F2) at 520 K to give CoF3; with chlorine (Cl2), bromine (Br2) and iodine (I2), the corresponding binary halides are formed. It does not react with hydrogen gas (H2) or nitrogen gas (N2) even when heated, but it does react with boron, carbon, phosphorus, arsenic and sulphur.[9] At ordinary temperatures, it reacts slowly with mineral acids, and very slowly with moist, but not with dry, air.

Compounds

Common oxidation states of cobalt include +2 and +3, although compounds with oxidation states ranging from −3 to +4 are also known. A common oxidation state for simple compounds is +2 (cobalt(II)). These salts form the pink-colored metal aquo complex [Co(H2O)6]2+ in water. Addition of chloride gives the intensely blue [CoCl
4]2−.[1]

Oxygen and chalcogen compounds

Several oxides of cobalt are known. Green cobalt(II) oxide (CoO) has rocksalt structure. It is readily oxidized with water and oxygen to brown cobalt(III) hydroxide (Co(OH)3). At temperatures of 600–700 °C, CoO oxidizes to the blue cobalt(II,III) oxide (Co3O4), which has a spinel structure.[1] Black cobalt(III) oxide (Co2O3) is also known.[10] Cobalt oxides are antiferromagnetic at low temperature: CoO (Néel temperature 291 K) and Co3O4 (Néel temperature: 40 K), which is analogous to magnetite (Fe3O4), with a mixture of +2 and +3 oxidation states.[11]

The principal chalcogenides of cobalt include the black cobalt(II) sulfides, CoS2, which adopts a pyrite-like structure, and cobalt(III) sulfide (Co2S3).

Halides

Cobalt(II) chloride hexahydrate

Four dihalides of cobalt(II) are known: cobalt(II) fluoride (CoF2, pink), cobalt(II) chloride (CoCl2, blue), cobalt(II) bromide (CoBr2, green), cobalt(II) iodide (CoI2, blue-black). These halides exist in anhydrous and hydrated forms. Whereas the anhydrous dichloride is blue, the hydrate is red.[12]

The reduction potential for the reaction
Co3+ + e-Co2+
is +1.92 V, beyond that for chlorine to chloride, +1.36 V. As a consequence cobalt(III) and chloride would result in the cobalt(III) being reduced to cobalt(II). Because the reduction potential for fluorine to fluoride is so high, +2.87 V, cobalt(III) fluoride is one of the few simple stable cobalt(III) compounds. Cobalt(III) fluoride, which is used in some fluorination reactions, reacts vigorously with water.[8]

Coordination compounds

As for all metals, molecular compounds and polyatomic ions of cobalt are classified as coordination complexes, that is molecules or ions that contain cobalt linked to several ligands. The principles of electronegativity and hardness–softness of a series of ligands can be used to explain the usual oxidation state of the cobalt. For example Co+3 complexes tend to have ammine ligands. As phosphorus is softer than nitrogen, phosphine ligands tend to feature the softer Co2+ and Co+, an example being tris(triphenylphosphine)cobalt(I) chloride ((P(C6H5)3)3CoCl). The more electronegative (and harder) oxide and fluoride can stabilize Co4+ and Co5+ derivatives, e.g. caesium hexafluorocobaltate (Cs2CoF6) and potassium percobaltate (K3CoO4).[8]

Alfred Werner, a Nobel-prize winning pioneer in coordination chemistry, worked with compounds of empirical formula [Co(NH3)6]Cl3. One of the isomers determined was cobalt(III) hexammine chloride. This coordination complex, a "typical" Werner-type complex, consists of a central cobalt atom coordinated by six ammine ligands orthogonal to each other and three chloride counteranions. Using chelating ethylenediamine ligands in place of ammonia gives tris(ethylenediamine)cobalt(III) chloride ([Co(en)3]Cl3), which was one of the first coordination complexes that was resolved into optical isomers. The complex exists as both either right- or left-handed forms of a "three-bladed propeller". This complex was first isolated by Werner as yellow-gold needle-like crystals.[13][14]

Organometallic compounds

Cobaltocene is a structural analog to ferrocene, where cobalt substitutes for iron. Cobaltocene is sensitive to oxidation, much more than ferrocene.[15] Cobalt carbonyl (Co2(CO)8) is a catalyst in carbonylation and hydrosilylation reactions.[16] Vitamin B12 (see below) is an organometallic compound found in nature and is the only vitamin to contain a metal atom.[17]

Isotopes

59Co is the only stable cobalt isotope and the only isotope to exist naturally on Earth. 22 radioisotopes have been characterized with the most stable being 60Co with a half-life of 5.2714 years, 57Co with a half-life of 271.8 days, 56Co with a half-life of 77.27 days, and 58Co with a half-life of 70.86 days. All of the remaining radioactive isotopes have half-lives that are shorter than 18 hours, and the majority of these are shorter than 1 second. This element also has 4 meta states, all of which have half-lives shorter than 15 minutes.[18]
The isotopes of cobalt range in atomic weight from 50 u (50Co) to 73 u (73Co). The primary decay mode for isotopes with atomic mass unit values less than that of the most abundant stable isotope, 59Co, is electron capture and the primary mode of decay for those of greater than 59 atomic mass units is beta decay. The primary decay products before 59Co are element 26 (iron) isotopes and the primary products after are element 28 (nickel) isotopes.[18]

History

Early Chinese blue and white porcelain, manufactured circa 1335

Cobalt compounds have been used for centuries to impart a rich blue color to glass, glazes and ceramics. Cobalt has been detected in Egyptian sculpture and Persian jewelry from the third millennium BC, in the ruins of Pompeii (destroyed in 79 AD), and in China dating from the Tang dynasty (618–907 AD) and the Ming dynasty (1368–1644 AD).[19]

Cobalt has been used to color glass since the Bronze Age. The excavation of the Uluburun shipwreck yielded an ingot of blue glass, which was cast during the 14th century BC.[20][21] Blue glass items from Egypt are colored with copper, iron, or cobalt. The oldest cobalt-colored glass was from the time of the Eighteenth dynasty in Egypt (1550–1292 BC). The location where the cobalt compounds were obtained is unknown.[22][23]

The word cobalt is derived from the German kobalt, from kobold meaning "goblin", a superstitious term used for the ore of cobalt by miners. The first attempts at smelting these ores to produce metals such as copper or nickel failed, yielding simply powder (cobalt(II) oxide) instead. Also, because the primary ores of cobalt always contain arsenic, smelting the ore oxidized the arsenic content into the highly toxic and volatile arsenic oxide, which also decreased the reputation of the ore for the miners.[24]

Swedish chemist Georg Brandt (1694–1768) is credited with discovering cobalt circa 1735, showing it to be a new previously unknown element different from bismuth and other traditional metals, and calling it a new "semi-metal."[25][26] He was able to show that compounds of cobalt metal were the source of the blue color in glass, which previously had been attributed to the bismuth found with cobalt. Cobalt became the first metal to be discovered since the pre-historical period, during which all the known metals (iron, copper, silver, gold, zinc, mercury, tin, lead and bismuth) had no recorded discoverers.[27]

During the 19th century, a significant part of the world's production of cobalt blue (a dye made with cobalt compounds and alumina) and smalt (cobalt glass powdered for use for pigment purposes in ceramics and painting) was carried out at the Norwegian Blaafarveværket.[28][29] The first mines for the production of smalt in the 16th to 18th century were located in Norway, Sweden, Saxony and Hungary. With the discovery of cobalt ore in New Caledonia in 1864 the mining of cobalt in Europe declined. With the discovery of ore deposits in Ontario, Canada in 1904 and the discovery of even larger deposits in the Katanga Province in the Congo in 1914 the mining operations shifted again.[24] With the Shaba conflict starting in 1978, the main source for cobalt, the copper mines of Katanga Province, nearly stopped their production.[30][31] The impact on the world cobalt economy from this conflict was however smaller than expected. Cobalt being a rare metal and the pigment being highly toxic, the industry had already established effective ways for recycling cobalt materials and in some cases was able to change to cobalt-free alternatives.[30][31]

In 1938, John Livingood and Glenn T. Seaborg discovered cobalt-60.[32] This isotope was famously used at Columbia University in the 1950s to establish parity violation in radioactive beta decay.[33][34]

After World War II, the US wanted to be sure it was never short of the ore needed for military cobalt uses (as the Germans had been during that war) and explored for cobalt within the U.S. border. A good supply of the ore needed was found in Idaho near Blackbird canyon in the side of a mountain. The firm Calera Mining Company got production started at the site.[35]

Occurrence

The stable form of cobalt is created in supernovas via the r-process.[36] It comprises 0.0029% of the Earth's crust and is one of the first transition metals.

Free cobalt (the native metal) is not found in on Earth due to the amount of oxygen in the atmosphere and chlorine in the ocean. Oxygen and chlorine are abundant enough in the upper layers of the Earth's crust so as to make native metal cobalt formation extremely rare. Except as recently delivered in meteoric iron, pure cobalt in native metal form is unknown on Earth (see below). Though the element is of medium abundance, natural compounds of cobalt are numerous. Small amounts of cobalt compounds are found in most rocks, soil, plants, and animals.

In nature, cobalt is frequently associated with nickel, and both are characteristic components of meteoric iron, though cobalt is much less abundant in iron meteorites than nickel. As with nickel, cobalt in meteoric iron alloys may have been well enough protected from oxygen and moisture to occur as the free metal,[37] a state which otherwise is not seen with either element in the ancient terrestrial crust.

Cobalt in compound form occurs as a minor component of copper and nickel minerals. It is the major metallic component in combination with sulfur and arsenic in the sulfidic cobaltite (CoAsS), safflorite (CoAs2), glaucodot ((Co,Fe)AsS), and skutterudite (CoAs3) minerals.[8] The mineral cattierite is similar to pyrite and occurs together with vaesite in the copper deposits of the Katanga Province.[38] Upon contact with the atmosphere, weathering occurs and the sulfide minerals oxidize to form pink erythrite ("cobalt glance": Co3(AsO4)2·8H2O) and spherocobaltite (CoCO3).[39][40]

Production

Cobalt ore
Cobalt output in 2005
World production trend

The main ores of cobalt are cobaltite, erythrite, glaucodot and skutterudite (see above), but most cobalt is obtained not by active mining of cobalt ores, but rather by reducing cobalt compounds that occur as by-products of nickel and copper mining activities.[41][42]

In 2005, the copper deposits in the Katanga Province (former Shaba province) of the Democratic Republic of the Congo were the top producer of cobalt with almost 40% world share, reports the British Geological Survey.[43] The political situation in the Congo influences the price of cobalt significantly.[44]

The Mukondo Mountain project, operated by the Central African Mining and Exploration Company in Katanga, may be the richest cobalt reserve in the world. It is estimated to be able to produce about one third of total global production of cobalt in 2008.[45] In July 2009 CAMEC announced a long term agreement under which CAMEC would deliver its entire annual production of cobalt in concentrate from Mukondo Mountain to Zhejiang Galico Cobalt & Nickel Materials of China.[46]

Several methods exist for the separation of cobalt from copper and nickel. They depend on the concentration of cobalt and the exact composition of the used ore. One separation step involves froth flotation, in which surfactants bind to different ore components, leading to an enrichment of cobalt ores. Subsequent roasting converts the ores to the cobalt sulfate, whereas the copper and the iron are oxidized to the oxide. The leaching with water extracts the sulfate together with the arsenates. The residues are further leached with sulfuric acid yielding a solution of copper sulfate. Cobalt can also be leached from the slag of the copper smelter.[47]

The products of the above-mentioned processes are transformed into the cobalt oxide (Co3O4). This oxide is reduced to the metal by the aluminothermic reaction or reduction with carbon in a blast furnace.[8]

Applications

The main application of cobalt is as the free metal, in production of certain high performance alloys.[41][42]

Alloys

Cobalt-based superalloys consume most of the produced cobalt.[41][42] The temperature stability of these alloys makes them suitable for use in turbine blades for gas turbines and jet aircraft engines, though nickel-based single crystal alloys surpass them in this regard.[48] Cobalt-based alloys are also corrosion and wear-resistant. This makes them useful in the medical field, where cobalt is often used (along with titanium) for orthopedic implants that do not wear down over time. The development of the wear-resistant cobalt alloys started in the first decade of the 19th century with the stellite alloys, which are cobalt-chromium alloys with varying tungsten and carbon content. The formation of chromium and tungsten carbides makes them very hard and wear resistant.[49] Special cobalt-chromium-molybdenum alloys like Vitallium are used for prosthetic parts such as hip and knee replacements.[50] Cobalt alloys are also used for dental prosthetics, where they are useful to avoid allergies to nickel.[51] Some high speed steel drill bits also use cobalt to increase heat and wear-resistance. The special alloys of aluminium, nickel, cobalt and iron, known as Alnico, and of samarium and cobalt (samarium-cobalt magnet) are used in permanent magnets.[52] It is also alloyed with 95% platinum for jewelry purposes, yielding an alloy that is suitable for fine detailed casting and is also slightly magnetic.[53]

Batteries

Lithium cobalt oxide (LiCoO2) is widely used in lithium ion battery cathodes. The material is composed of cobalt oxide layers in which the lithium is intercalated. During discharging the lithium intercalated between the layers is set free as lithium ion.[54] Nickel-cadmium[55] (NiCd) and nickel metal hydride[56] (NiMH) batteries also contain significant amounts of cobalt; the cobalt improves the oxidation capabilities of nickel in the battery.[55]

Catalysts

Several cobalt compounds are used in chemical reactions as oxidation catalysts. Cobalt acetate is used for the conversion of xylene to terephthalic acid, the precursor to the bulk polymer polyethylene terephthalate. Typical catalysts are the cobalt carboxylates (known as cobalt soaps). They are also used in paints, varnishes, and inks as "drying agents" through the oxidation of drying oils.[54] The same carboxylates are used to improve the adhesion of the steel to rubber in steel-belted radial tires.

Cobalt-based catalysts are also important in reactions involving carbon monoxide. Steam reforming, useful in hydrogen production, uses cobalt oxide-base catalysts. Cobalt is also a catalyst in the Fischer–Tropsch process, used in the hydrogenation of carbon monoxide into liquid fuels.[57] The hydroformylation of alkenes often rely on cobalt octacarbonyl as the catalyst,[58] although such processes have been partially displaced by more efficient iridium- and rhodium-based catalysts, e.g. the Cativa process.

The hydrodesulfurization of petroleum uses a catalyst derived from cobalt and molybdenum. This process helps to rid petroleum of sulfur impurities that interfere with the refining of liquid fuels.[54]

Pigments and coloring

Cobalt blue glass
Cobalt-colored glass

Before the 19th century, the predominant use of cobalt was as a pigment. Since the Middle Ages, it has been involved in the production of smalt, a blue colored glass. Smalt is produced by melting a mixture of the roasted mineral smaltite, quartz and potassium carbonate, yielding a dark blue silicate glass which is ground after the production.[59] Smalt was widely used for the coloration of glass and as pigment for paintings.[60] In 1780, Sven Rinman discovered cobalt green and in 1802 Louis Jacques Thénard discovered cobalt blue.[61] The two varieties of cobalt blue pigment, cobalt blue (cobalt aluminate) and cobalt green (a mixture of cobalt(II) oxide and zinc oxide), were used as pigments for paintings because of their superior stability.[62][63]

Radioisotopes

Cobalt-60 (Co-60 or 60Co) is useful as a gamma ray source because it can be produced in predictable quantity and high activity by bombarding cobalt with neutrons. It produces two gamma rays with energies of 1.17 and 1.33 MeV.[18][64]

Its uses include external beam radiotherapy, sterilization of medical supplies and medical waste, radiation treatment of foods for sterilization (cold pasteurization),[65] industrial radiography (e.g. weld integrity radiographs), density measurements (e.g. concrete density measurements), and tank fill height switches. The metal has the unfortunate habit of producing a fine dust, causing problems with radiation protection. Cobalt from radiotherapy machines has been a serious hazard when not disposed of properly, and one of the worst radiation contamination accidents in North America occurred in 1984, after a discarded radiotherapy unit containing cobalt-60 was mistakenly disassembled in a junkyard in Juarez, Mexico.[66][67]

Cobalt-60 has a radioactive half-life of 5.27 years. This decrease in activity requires periodic replacement of the sources used in radiotherapy and is one reason why cobalt machines have been largely replaced by linear accelerators in modern radiation therapy.[68]

Cobalt-57 (Co-57 or 57Co) is a cobalt radioisotope most often used in medical tests, as a radiolabel for vitamin B12 uptake, and for the Schilling test. Cobalt-57 is used as a source in Mössbauer spectroscopy and is one of several possible sources in X-ray fluorescence devices.[69][70]

Nuclear weapon designs could intentionally incorporate 59Co, some of which would be activated in a nuclear explosion to produce 60Co. The 60Co, dispersed as nuclear fallout, creates what is sometimes called a cobalt bomb.[71]

Other uses

Other uses of cobalt are in electroplating, owing to its attractive appearance, hardness and resistance to oxidation,[72] and as ground coats for porcelain enamels.[73]

Biological role


Cobalt is essential to all animals. It is a key constituent of cobalamin, also known as vitamin B12, which is the primary biological reservoir of cobalt as an "ultratrace" element.[74] [75] Bacteria in the guts of ruminant animals convert cobalt salts into vitamin B12, a compound which can only be produced by bacteria or archaea. The minimum presence of cobalt in soils therefore markedly improves the health of grazing animals, and an uptake of 0.20 mg/kg a day is recommended for them, as they can obtain vitamin B12 in no other way.[76]

In the early 20th century during the development for farming of the North Island Volcanic Plateau of New Zealand, cattle suffered from what was termed "bush sickness". It was discovered that the volcanic soils lacked cobalt salts, which was necessary for cattle.[77] The ailment was cured by adding small amounts of cobalt to fertilizers in the form of Superphosphate (at the time derived from Canadian sources).

In the 1930s "coast disease" of sheep in the Ninety Mile Desert of the Southeast of South Australia was found to be due to nutrient deficiencies of the trace elements cobalt and copper. The cobalt deficiency was overcome by the development of "cobalt bullets", dense pellets of cobalt oxide mixed with clay, which are orally inserted to lodge in the animal's rumen.[78]

Non-ruminant herbivores produce vitamin B12 from bacteria in their colons which again make the vitamin from simple cobalt salts. However the vitamin cannot be absorbed from the colon, and thus non-ruminants must ingest feces to obtain the nutrient. Animals that do not follow these methods of getting vitamin B12 from their own gastrointestinal bacteria or that of other animals, must obtain the vitamin pre-made in other animal products in their diet, and they cannot benefit from ingesting simple cobalt salts.

The cobalamin-based proteins use corrin to hold the cobalt. Coenzyme B12 features a reactive C-Co bond, which participates in its reactions.[79] In humans, B12 exists with two types of alkyl ligand: methyl and adenosyl. MeB12 promotes methyl (-CH3) group transfers. The adenosyl version of B12 catalyzes rearrangements in which a hydrogen atom is directly transferred between two adjacent atoms with concomitant exchange of the second substituent, X, which may be a carbon atom with substituents, an oxygen atom of an alcohol, or an amine. Methylmalonyl coenzyme A mutase (MUT) converts MMl-CoA to Su-CoA, an important step in the extraction of energy from proteins and fats.[80]

Although far less common than other metalloproteins (e.g. those of zinc and iron), cobaltoproteins are known aside from B12. These proteins include methionine aminopeptidase 2 an enzyme that occurs in humans and other mammals which does not use the corrin ring of B12, but binds cobalt directly. Another non-corrin cobalt enzyme is nitrile hydratase, an enzyme in bacteria that are able to metabolize nitriles.[81]

Precautions


Cobalt is an essential element for life in minute amounts. The LD50 value for soluble cobalt salts has been estimated to be between 150 and 500 mg/kg. Thus, for a 100 kg person the LD50 for a single dose would be about 20 grams.[82]

However, chronic cobalt ingestion has caused serious health problems at doses far less than the lethal dose. In 1966, the addition of cobalt compounds to stabilize beer foam in Canada led to a peculiar form of toxin-induced cardiomyopathy, which came to be known as beer drinker's cardiomyopathy.[83][84]

After nickel and chromium, cobalt is a major cause of contact dermatitis.[85]

Cobalt can be effectively absorbed by charred pigs bones; however this process is inhibited by copper and zinc; which have greater affinities to bone char.[86]

Heavy metal (chemistry)

Heavy metal (chemistry)

From Wikipedia, the free encyclopedia

A 25-foot (7.6 m) wall of heavy metal contaminated coal fly ash, resulting from the release of 5.4 million cubic yards of coal fly ash slurry into the Emory River, Tennessee, and nearby land and water features, in December 2008.[1] Testing showed significantly elevated levels of arsenic, copper, barium, cadmium, chromium, lead, mercury, nickel, and thallium in samples of slurry and river water.[2] Cleanup costs may exceed $1.2 billion.[3]

A heavy metal is any metal or metalloid of environmental concern. The term originated with reference to the harmful effects of cadmium, mercury and lead, all of which are denser than iron. It has since been applied to any other similarly toxic metal, or metalloid such as arsenic,[4] regardless of density.[5] Commonly encountered heavy metals are chromium, cobalt, nickel, copper, zinc, arsenic, selenium, silver, cadmium, antimony, mercury, thallium and lead. More specific definitions of a heavy metal have been proposed; none have obtained widespread acceptance.[6]

Definitions

Criteria used to define heavy metals have included density, atomic weight, atomic number, or periodic table position.[7] Density criteria range from above 3.5 g/cm3 to above 7 g/cm3. Atomic weight definitions start at greater than sodium (22.98) to greater than 40.[n 1] Atomic numbers of heavy metals are generally given as greater than 20; sometimes this is capped at 92 (uranium).
Hawkes suggested referring to heavy metals as "all the metals in Groups 3 to 16 that are in periods 4 and greater."[9] There is no widely agreed definition of a heavy metal.

The term "heavy metals" was in use as far back as 1817, when Gmelin divided the elements into nonmetals, light metals and heavy metals.[10] Light metals had densities of 0.860–5.0 gm/cm3; heavy metals 5.308–22.000.[11] In 1868, Wanklyn and Chapman speculated on the adverse effects of the heavy metals "arsenic, lead, copper, zinc, iron and manganese" in drinking water. They noted an "absence of investigation" and were reduced to "the necessity of pleading for the collection of data."[12] In 1884, Blake described a connection between toxicity and the atomic weight of an element.[13]

Beryllium and aluminium, although light metals, are sometimes counted as heavy metals in view of their toxicity.[14][15] Beryllium exposure can result in lung and heart disorders, and possibly death;[16] aluminium is a major inhibitor of crop growth in acid soils.[17]

Contamination sources

Tetraethyl lead (CH3CH2)4Pb is probably the most significant heavy metal contaminant in recent use.[18]

Heavy metals are found naturally in the earth, and become concentrated as a result of human caused activities. Common sources are from mining and industrial wastes; vehicle emissions; lead-acid batteries; fertilisers, paints and treated woods. Lead is the most prevalent heavy metal contaminant.[19] As a component of tetra-ethyl lead it was used extensively in gasoline during the 1930s-1970s.[20] Lead levels in the aquatic environments of industrialised societies have been estimated to be two to three times those of pre-industrial levels.[21] Although the use of leaded gasoline was largely phased out in North America by 1996, soils next to roads built before this time retain high concentrations of lead.

Entry routes

Heavy metals enter plant, animal and human tissues via air inhalation, diet and manual handling. Motor vehicle emissions are a major source of airborne contaminants including arsenic, cadmium, cobalt, nickel, lead, antimony, vanadium, zinc, platinum, palladium and rhodium.[22] Water sources (groundwater, lakes, streams and rivers) can be polluted by heavy metals leaching from industrial and consumer waste; acid rain can exacerbate this process by releasing heavy metals trapped in soils.[23] Plants are exposed to heavy metals through the uptake of water; animals eat these plants; ingestion of plant- and animal-based foods are the largest sources of heavy metals in humans.[24] Absorption through skin contact, for example from contact with soil, is another potential source of heavy metal contamination.[25] Heavy metals can accumulate in organisms as they are hard to metabolize (process and eliminate).[26]

Detrimental effects

Heavy metals "can bind to vital cellular components, such as structural proteins, enzymes, and nucleic acids, and interfere with their functioning."[27] Symptoms and effects can vary according to the metal or metal-compound, and the dose involved. Broadly, long-term exposure to heavy metals can have carcinogenic, central and peripheral nervous system and circulatory effects. For humans, typical presentations associated with exposure to the "classical"[28] heavy metals; chromium (another heavy metal); and arsenic (a metalloid), are shown in the table.[29]

Element Acute exposure Chronic exposure Main article
Cadmium Pneumonitis (lung inflammation) Lung cancer
Osteomalacia (softening of bones)
Proteinuria (excess protein in urine; possible kidney damage) 
Cadmium poisoning 
Mercury Diarrhea
Fever
Vomiting
Stomatitis (inflammation of gums and mouth)
Nausea
Nephrotic syndrome (nonspecific kidney disorder)
Neurasthenia (neurotic disorder)
Parageusia (metallic taste)
Pink Disease (pain and pink discoloration of hands and feet)
Tremor
Mercury poisoning
Lead Encephalopathy (brain dysfunction)
Nausea
Vomiting
Anemia
Encephalopathy
Foot drop/wrist drop (palsy)
Nephropathy (kidney disease)
Lead poisoning
Chromium  Gastrointestinal hemorrhage (bleeding)
Hemolysis (red blood cell destruction)
Acute renal failure
Pulmonary fibrosis (lung scarring)
Lung cancer
Chromium toxicity
Arsenic Nausea
Vomiting
Diarrhea
Encephalopathy
Multi-organ effects
Arrhythmia
Painful neuropathy
Diabetes
Hypopigmentation/Hyperkeratosis
Cancer
Arsenic poisoning

Historical reports (examples)

99.999% purity cadmium bar and 1 cm3 cube.

Cadmium

Cadmium exposure is a phenomenon of the early 20th century, and onwards. In Japan in 1910, the Mitsui Mining and Smelting Company began discharging cadmium into the Jinzugawa river, as a byproduct of mining operations. Residents in the surrounding area subsequently consumed rice grown in cadmium contaminated irrigation water. They experienced softening of the bones and kidney failure. The origin of these symptoms was not clear; possibilities raised at the time included "a regional or bacterial disease or lead poisoning."[30] In 1955, cadmium was identified as the likely cause and in 1961 the source was directly linked to mining operations in the area.[31] In February 2010, cadmium was found in Wal-Mart exclusive Miley Cyrus jewelry. Wal-Mart continued to sell the jewelry until May, when covert testing organised by Associated Press confirmed the original results.[32] In June 2010 cadmium was detected in the paint used on promotional drinking glasses for the movie Shrek Forever After, sold by McDonald's Restaurants, triggering a recall of 12 million glasses.[33]
Saint Isaac's Cathedral, in Saint Petersburg, Russia. The gold-mercury amalgam used to gild its dome caused numerous casualties among the workers involved.

Mercury

The first emperor of unified China, Qin Shi Huang, it is reported, died of ingesting mercury pills that were intended to give him eternal life.[34] The phrase "mad as a hatter" is likely a reference to mercury poisoning among milliners (so-called "mad hatter disease"), as mercury-based compounds were once used in the manufacture of felt hats in the 18th and 19th century.[35] Historically, gold amalgam (an alloy with mercury) was widely used in gilding, leading to numerous casualties among the workers. It is estimated that during the construction of Saint Isaac's Cathedral alone, 60 workers died from the gilding of the main dome.[36] Outbreaks of methylmercury poisoning occurred in several places in Japan during the 1950s due to industrial discharges of mercury into rivers and coastal waters. The best-known instances were in Minamata and Niigata. In Minamata alone, more than 600 people died due to what became known as Minamata disease. More than 21,000 people filed claims with the Japanese government, of which almost 3000 became certified as having the disease.
In 22 documented cases, pregnant women who consumed contaminated fish showed mild or no symptoms but gave birth to infants with severe developmental disabilities.[37] Since the industrial Revolution, mercury levels have tripled in many near-surface seawaters, especially around Iceland and Antarctica.[38]

Lead

The adverse effects of lead were known to the ancients. In the 2nd century BC the Greek botanist Nicander described the colic and paralysis seen in lead-poisoned people.[39] Dioscorides, a Greek physician who is thought to have lived in the 1st century CE,[40] wrote that lead "makes the mind give way". Lead was used extensively in Roman aqueducts from about 500 BC to 300 AD.[41] Julius Caesar's engineer, Vitruvius, reported, "water is much more wholesome from earthenware pipes than from lead pipes. For it seems to be made injurious by lead, because white lead is produced by it, and this is said to be harmful to the human body."[42] In 2013, the World Health Organization estimated that lead poisoning resulted in 143,000 deaths, and "contribute[d] to 600,000 new cases of children with intellectual disabilities", each year.[43]
Potassium chromate, a carcinogen, is used in the dyeing of fabrics, and as a tanning agent to produce leather.

Chromium

Chromium(III) compounds and chromium metal are not considered a health hazard, while the toxicity and carcinogenic properties of chromium(VI) have been known since at least the late 19th century.[44] In 1890, Newman described the elevated cancer risk of workers in a chromate dye company.[45] Chromate-induced dermatitis was reported in aircraft workers during World War II.[46] In 1963, an outbreak of dermatitis, ranging from erythema to exudative eczema, occurred amongst 60 automobile factory workers in England. The workers had been wet-sanding chromate-based primer paint that had been applied to car bodies.[47] In Australia, chromium was released from the Newcastle Orica explosives plant on August 8, 2011. Up to 20 workers at the plant were exposed as were 70 nearby homes in Stockton. The town was only notified three days after the release and the accident sparked a major public controversy, with Orica criticised for playing down the extent and possible risks of the leak, and the state Government attacked for their slow response to the incident.[48]

Arsenic

Orpiment, a toxic arsenic mineral used in the tanning industry to remove hair from hides.

Arsenic, as realgar (As4S4) and orpiment (As2S3), was known in ancient times. Strabo (64–50 BCE – c. AD 24?), a Greek geographer and historian,[49] wrote that only slaves were employed in realgar and orpiment mines since they would inevitably die from the toxic effects of the fumes given off from the ores. Arsenic contaminated beer poisoned over 6,000 people in the Manchester area of England in 1900, and is thought to have killed at least 70 victims.[50] Clare Luce, American ambassador to Italy from 1953 to 1956, suffered from arsenic poisoning. Its source was traced to flaking arsenic-laden paint on the ceiling of her bedroom. She may also have eaten food contaminated by arsenic in flaking ceiling paint in the embassy dining room.[51] Ground water contaminated by arsenic, as at 2014, "is still poisoning millions of people in Asia."[52]

Remediation

A metal EDTA anion. Pb displaces Ca in Na2[CaEDTA] to give Na2[PbEDTA], which is passed out of the body in urine.[53]

In humans, heavy metal poisoning is generally treated by the administration of chelating agents.[54] These are chemical compounds, such as CaNa2 EDTA (calcium disodium ethylenediaminetetraacetate) that convert heavy metals to chemically inert forms that can be excreted without further interaction with the body. Chelates are not without side effects and can also remove beneficial metals from the body. Vitamin and mineral supplements are sometimes co-administered for this reason.[55]

Soils contaminated by heavy metals can be re-mediated by one or more of the following technologies: isolation; immobilization; toxicity reduction; physical separation; or extraction. Isolation involves the use of caps, membranes or below-ground barriers in an attempt to quarantine the contaminated soil. Immobilization aims to alter the properties of the soil so as to hinder the mobility of the heavy contaminants. Toxicity reduction attempts to oxidise or reduce the heavy metal ions, via chemical or biological means into less toxic or mobile forms. Physical separation involves the removal of the contaminated soil and the separation of the metal contaminants by mechanical means. Extraction is an on or off-site process that uses chemicals, high-temperature volatization, or electrolysis to extract contaminants from soils. The process or processes used will vary according to contaminant and the characteristics of the site.[56]

Benefits

Some elements regarded as heavy metals are essential, in small quantities, for human health. These elements include vanadium, manganese, iron, cobalt, copper, zinc, selenium, strontium and molybdenum.[57] A deficiency of these essential metals may increase susceptibility to heavy metal poisoning.[58]

Education

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Education Education is the transmissio...