Search This Blog

Wednesday, January 28, 2015

Gaia hypothesis


From Wikipedia, the free encyclopedia


The study of planetary habitability is partly based upon extrapolation from knowledge of the Earth's conditions, as the Earth is the only planet currently known to harbour life

The Gaia hypothesis, also known as Gaia theory or Gaia principle, proposes that organisms interact with their inorganic surroundings on Earth to form a self-regulating, complex system that contributes to maintaining the conditions for life on the planet. Topics of interest include how the biosphere and the evolution of life forms affect the stability of global temperature, ocean salinity, oxygen in the atmosphere and other environmental variables that affect the habitability of Earth.

The hypothesis was formulated by the chemist James Lovelock[1] and co-developed by the microbiologist Lynn Margulis in the 1970s.[2] The hypothesis was initially criticized for being teleological and contradicting principles of natural selection, but later refinements resulted in ideas framed by the Gaia hypothesis being used in fields such as Earth system science, biogeochemistry, systems ecology, and the emerging subject of geophysiology.[3][4][5] Nevertheless, the Gaia hypothesis continues to attract criticism, and today many scientists consider it to be only weakly supported by, or at odds with, the available evidence. In 2006, the Geological Society of London awarded Lovelock the Wollaston Medal largely for his work on the Gaia theory.[6]

Introduction

Gaian hypotheses suggest that organisms co-evolve with their environment: that is, they "influence their abiotic environment, and that environment in turn influences the biota by Darwinian process". Lovelock (1995) gave evidence of this in his second book, showing the evolution from the world of the early thermo-acido-philic and methanogenic bacteria towards the oxygen-enriched atmosphere today that supports more complex life.

The scientifically accepted form of the hypothesis has been called "influential Gaia". It states the biota influence certain aspects of the abiotic world, e.g. temperature and atmosphere. They state the evolution of life and its environment may affect each other. An example is how the activity of photosynthetic bacteria during Precambrian times have completely modified the Earth atmosphere to turn it aerobic, and as such supporting evolution of life (in particular eukaryotic life).

Biologists and Earth scientists usually view the factors that stabilize the characteristics of a period as an undirected emergent property or entelechy of the system; as each individual species pursues its own self-interest, for example, their combined actions may have counterbalancing effects on environmental change. Opponents of this view sometimes reference examples of events that resulted in dramatic change rather than stable equilibrium, such as the conversion of the Earth's atmosphere from a reducing environment to an oxygen-rich one.

Less accepted versions of the hypothesis claim that changes in the biosphere are brought about through the coordination of living organisms and maintain those conditions through homeostasis. In some versions of Gaia philosophy, all lifeforms are considered part of one single living planetary being called Gaia. In this view, the atmosphere, the seas and the terrestrial crust would be results of interventions carried out by Gaia through the coevolving diversity of living organisms. However, the Earth as a unit does not match the generally accepted biological criteria for life itself: for example, there is no evidence to suggest that "Gaia" has reproduced.

Details

The Gaia theory posits that the Earth is a self-regulating complex system involving the biosphere, the atmosphere, the hydrospheres and the pedosphere, tightly coupled as an evolving system. The theory sustains that this system as a whole, called Gaia, seeks a physical and chemical environment optimal for contemporary life.[7]

Gaia evolves through a cybernetic feedback system operated unconsciously by the biota, leading to broad stabilization of the conditions of habitability in a full homeostasis. Many processes in the Earth's surface essential for the conditions of life depend on the interaction of living forms, especially microorganisms, with inorganic elements. These processes establish a global control system that regulates Earth's surface temperature, atmosphere composition and ocean salinity, powered by the global thermodynamic disequilibrium state of the Earth system.[8]

The existence of a planetary homeostasis influenced by living forms had been observed previously in the field of biogeochemistry, and it is being investigated also in other fields like Earth system science. The originality of the Gaia theory relies on the assessment that such homeostatic balance is actively pursued with the goal of keeping the optimal conditions for life, even when terrestrial or external events menace them.[9]

 

Regulation of the salinity in the oceans

Ocean salinity has been constant at about 3.4% for a very long time. Salinity stability in oceanic environments is important as most cells require a rather constant salinity and do not generally tolerate values above 5%. The constant ocean salinity was a long-standing mystery, because no process counterbalancing the salt influx from rivers was known. Recently it was suggested[10] that salinity may also be strongly influenced by seawater circulation through hot basaltic rocks, and emerging as hot water vents on mid-ocean ridges. However, the composition of seawater is far from equilibrium, and it is difficult to explain this fact without the influence of organic processes. One suggested explanation lies in the formation of salt plains throughout Earth's history. It is hypothesized that these are created by bacterial colonies that fix ions and heavy metals during their life processes.[citation needed]

Regulation of oxygen in the atmosphere


Levels of gases in the atmosphere in 420,000 years of ice core data from Vostok, Antarctica research station. Current period is at the left.
 
The atmospheric composition remains fairly constant, providing the conditions that contemporary life has adapted to. All the atmospheric gases other than noble gases present in the atmosphere are either made by organisms or processed by them. The Gaia theory states that the Earth's atmospheric composition is kept at a dynamically steady state by the presence of life.[11]
The stability of the atmosphere in Earth is not a consequence of chemical equilibrium as it is in planets without life. Oxygen is the second most reactive electro-negative element after fluorine, and should combine with gases and minerals of the Earth's atmosphere and crust. Traces of methane (at an amount of 100,000 tonnes produced per year)[12] should not exist, as methane is combustible in an oxygen atmosphere.

Dry air in the atmosphere of Earth contains roughly (by volume) 78.09% nitrogen, 20.95% oxygen, 0.93% argon, 0.039% carbon dioxide, and small amounts of other gases including methane. Lovelock originally speculated that concentrations of oxygen above about 25% would increase the frequency of wildfires and conflagration of forests. Recent work on the findings of fire-caused charcoal in Carboniferous and Cretaceous coal measures, in geologic periods when O2 did exceed 25%, has supported Lovelock's contention.[citation needed]

Regulation of the global surface temperature


Rob Rohde's palaeotemperature graphs
 
Since life started on Earth, the energy provided by the Sun has increased by 25% to 30%;[13] however, the surface temperature of the planet has remained within the levels of habitability, reaching quite regular low and high margins. Lovelock has also hypothesised that methanogens produced elevated levels of methane in the early atmosphere, giving a view similar to that found in petrochemical smog, similar in some respects to the atmosphere on Titan.[14] This, he suggests tended to screen out ultraviolet until the formation of the ozone screen, maintaining a degree of homeostasis. However, the Snowball Earth[15] research has suggested that "oxygen shocks" and reduced methane levels led, during the Huronian, Sturtian and Marinoan/Varanger Ice Ages, to a world that very nearly became a solid "snowball". These epochs are evidence against the ability of the biosphere to fully self-regulate.
Processing of the greenhouse gas CO2, explained below, plays a critical role in the maintenance of the Earth temperature within the limits of habitability.

The CLAW hypothesis, inspired by the Gaia theory, proposes a feedback loop that operates between ocean ecosystems and the Earth's climate.[16] The hypothesis specifically proposes that particular phytoplankton that produce dimethyl sulfide are responsive to variations in climate forcing, and that these responses lead to a negative feedback loop that acts to stabilise the temperature of the Earth's atmosphere.

Currently the increase in human population and the environmental impact of their activities, such as the multiplication of greenhouse gases may cause negative feedbacks in the environment to become positive feedback. Lovelock has stated that this could bring an extremely accelerated global warming,[17] but he has since stated the effects will likely occur more slowly.[18]

Daisyworld simulations


Plots from a standard black & white Daisyworld simulation
Main article: Daisyworld

James Lovelock and Andrew Watson developed the mathematical model Daisyworld, in which temperature regulation arises from a simple ecosystem consisting of two species whose activity varies in response to the planet's environment. The model demonstrates that beneficial feedback mechanisms can emerge in this "toy world" containing only self-interested organisms rather than through classic group selection mechanisms.[19]

Daisyworld examines the energy budget of a planet populated by two different types of plants, black daisies and white daisies. The colour of the daisies influences the albedo of the planet such that black daisies absorb light and warm the planet, while white daisies reflect light and cool the planet. As the model runs the output of the "sun" increases, meaning that the surface temperature of an uninhabited "gray" planet will steadily rise. In contrast, on Daisyworld competition between the daisies (based on temperature-effects on growth rates) leads to a shifting balance of daisy populations that tends to favour a planetary temperature close to the optimum for daisy growth.

It has been suggested that the results were predictable because Lovelock and Watson selected examples that produced the responses they desired.[20]

Processing of CO2

Gaia scientists see the participation of living organisms in the carbon cycle as one of the complex processes that maintain conditions suitable for life. The only significant natural source of atmospheric carbon dioxide (CO2) is volcanic activity, while the only significant removal is through the precipitation of carbonate rocks.[21] Carbon precipitation, solution and fixation are influenced by the bacteria and plant roots in soils, where they improve gaseous circulation, or in coral reefs, where calcium carbonate is deposited as a solid on the sea floor. Calcium carbonate is used by living organisms to manufacture carbonaceous tests and shells. Once dead, the living organisms' shells fall to the bottom of the oceans where they generate deposits of chalk and limestone.
One of these organisms is Emiliania huxleyi, an abundant coccolithophore algae which also has a role in the formation of clouds.[22] CO2 excess is compensated by an increase of coccolithophoride life, increasing the amount of CO2 locked in the ocean floor. Coccolithophorides increase the cloud cover, hence control the surface temperature, help cool the whole planet and favor precipitations necessary for terrestrial plants. Lately the atmospheric CO2 concentration has increased and there is some evidence that concentrations of ocean algal blooms are also increasing.[23]

Lichen and other organisms accelerate the weathering of rocks in the surface, while the decomposition of rocks also happens faster in the soil, thanks to the activity of roots, fungi, bacteria and subterranean animals. The flow of carbon dioxide from the atmosphere to the soil is therefore regulated with the help of living beings. When CO2 levels rise in the atmosphere the temperature increases and plants grow. This growth brings higher consumption of CO2 by the plants, who process it into the soil, removing it from the atmosphere.

History

Precedents


"Earthrise" taken on December 24, 1968

The idea of the Earth as an integrated whole, a living being, has a long tradition. The mythical Gaia was the primal Greek goddess personifying the Earth, the Greek version of "Mother Nature", or the Earth Mother. James Lovelock gave this name to his hypothesis after a suggestion from the novelist William Golding, who was living in the same village as Lovelock at the time (Bowerchalke, Wiltshire, UK). Golding's advice was based on Gea, an alternative spelling for the name of the Greek goddess, which is used as prefix in geology, geophysics and geochemistry.[24] Golding later made reference to Gaia in his Nobel prize acceptance speech.

In the eighteenth century, as geology consolidated as a modern science, James Hutton maintained that geological and biological processes are interlinked.[25] Later, the naturalist and explorer Alexander von Humboldt recognized the coevolution of living organisms, climate, and Earth's crust.[25] In the twentieth century, Vladimir Vernadsky formulated a theory of Earth's development that is now one of the foundations of ecology. The Ukrainian geochemist was one of the first scientists to recognize that the oxygen, nitrogen, and carbon dioxide in the Earth's atmosphere result from biological processes. During the 1920s he published works arguing that living organisms could reshape the planet as surely as any physical force. Vernadsky was a pioneer of the scientific bases for the environmental sciences.[26] His visionary pronouncements were not widely accepted in the West, and some decades after the Gaia hypothesis received the same type of initial resistance from the scientific community.

Also in the turn to the 20th century Aldo Leopold, pioneer in the development of modern environmental ethics and in the movement for wilderness conservation, suggested a living Earth in his biocentric or holistic ethics regarding land.
It is at least not impossible to regard the earth's parts—soil, mountains, rivers, atmosphere etc,—as organs or parts of organs of a coordinated whole, each part with its definite function. And if we could see this whole, as a whole, through a great period of time, we might perceive not only organs with coordinated functions, but possibly also that process of consumption as replacement which in biology we call metabolism, or growth. In such case we would have all the visible attributes of a living thing, which we do not realize to be such because it is too big, and its life processes too slow.
— Stephan Harding , Animate Earth.[27]
Another influence for the Gaia theory and the environmental movement in general came as a side effect of the Space Race between the Soviet Union and the United States of America. During the 1960s, the first humans in space could see how the Earth looked as a whole. The photograph Earthrise taken by astronaut William Anders in 1968 during the Apollo 8 mission became an early symbol for the global ecology movement.[28]

Formulation of the hypothesis


James Lovelock started defining the idea of a self-regulating Earth controlled by the community of living organisms in September 1965, while working at the Jet Propulsion Laboratory in California on methods of detecting life on Mars.[29][30] The first paper to mention it was Planetary Atmospheres: Compositional and other Changes Associated with the Presence of Life, co-authored with C.E. Giffin.[31] A main concept was that life could be detected in a planetary scale by the chemical composition of the atmosphere. According to the data gathered by the Pic du Midi observatory, planets like Mars or Venus had atmospheres in chemical equilibrium. This difference with the Earth atmosphere was considered to be a proof that there was no life in these planets.

Lovelock formulated the Gaia Hypothesis in journal articles in 1972[1] and 1974,[2] followed by a popularizing 1979 book Gaia: A new look at life on Earth. An article in the New Scientist of February 6, 1975,[32] and a popular book length version of the hypothesis, published in 1979 as The Quest for Gaia, began to attract scientific and critical attention.

Lovelock called it first the Earth feedback hypothesis,[33] and it was a way to explain the fact that combinations of chemicals including oxygen and methane persist in stable concentrations in the atmosphere of the Earth. Lovelock suggested detecting such combinations in other planets' atmospheres as a relatively reliable and cheap way to detect life.

Later, other relationships such as sea creatures producing sulfur and iodine in approximately the same quantities as required by land creatures emerged and helped bolster the theory.[34]

In 1971 microbiologist Dr. Lynn Margulis joined Lovelock in the effort of fleshing out the initial hypothesis into scientifically proven concepts, contributing her knowledge about how microbes affect the atmosphere and the different layers in the surface of the planet.[3] The American biologist had also awakened criticism from the scientific community with her theory on the origin of eukaryotic organelles and her contributions to the endosymbiotic theory, nowadays accepted. Margulis dedicated the last of eight chapters in her book, The Symbiotic Planet, to Gaia. However, she objected to the widespread personification of Gaia and stressed that Gaia is "not an organism", but "an emergent property of interaction among organisms". She defined Gaia as "the series of interacting ecosystems that compose a single huge ecosystem at the Earth's surface. Period". The book's most memorable "slogan" was actually quipped by a student of Margulis': "Gaia is just symbiosis as seen from space".

James Lovelock called his first proposal the Gaia hypothesis but has also used the term Gaia theory. Lovelock states that the initial formulation was based on observation, but still lacked a scientific explanation. The Gaia hypothesis has since been supported by a number of scientific experiments[35] and provided a number of useful predictions.[36] In fact, wider research proved the original hypothesis wrong, in the sense that it is not life alone but the whole Earth system that does the regulating.[7]

First Gaia conference

In 1985, the first public symposium on the Gaia hypothesis, Is The Earth A Living Organism? was held at University of Massachusetts Amherst, August 1–6.[37] The principal sponsor was the National Audubon Society. Speakers included James Lovelock, George Wald, Mary Catherine Bateson, Lewis Thomas, John Todd, Donald Michael, Christopher Bird, Thomas Berry, David Abram, Michael Cohen, and William Fields. Some 500 people attended.[citation needed]

Second Gaia conference

In 1988, climatologist Stephen Schneider organised a conference of the American Geophysical Union. The first Chapman Conference on Gaia,[38] was held in San Diego, California on March 7, 1988.

During the "philosophical foundations" session of the conference, David Abram spoke on the influence of metaphor in science, and of Gaia theory as offering a new and potentially game-changing metaphorics, while James Kirchner criticised the Gaia hypothesis for its imprecision. Kirchner claimed that Lovelock and Margulis had not presented one Gaia hypothesis, but four -
  • CoEvolutionary Gaia: that life and the environment had evolved in a coupled way. Kirchner claimed that this was already accepted scientifically and was not new.
  • Homeostatic Gaia: that life maintained the stability of the natural environment, and that this stability enabled life to continue to exist.
  • Geophysical Gaia: that the Gaia theory generated interest in geophysical cycles and therefore led to interesting new research in terrestrial geophysical dynamics.
  • Optimising Gaia: that Gaia shaped the planet in a way that made it an optimal environment for life as a whole. Kirchner claimed that this was not testable and therefore was not scientific.
Of Homeostatic Gaia, Kirchner recognised two alternatives. "Weak Gaia" asserted that life tends to make the environment stable for the flourishing of all life. "Strong Gaia" according to Kirchner, asserted that life tends to make the environment stable, to enable the flourishing of all life. Strong Gaia, Kirchner claimed, was untestable and therefore not scientific.[39]

Lovelock and other Gaia-supporting scientists, however, did attempt to disprove the claim that the theory is not scientific because it is impossible to test it by controlled experiment. For example, against the charge that Gaia was teleological, Lovelock and Andrew Watson offered the Daisyworld model (and its modifications, above) as evidence against most of these criticisms. Lovelock said that the Daisyworld model "demonstrates that self-regulation of the global environment can emerge from competition amongst types of life altering their local environment in different ways".[40]

Lovelock was careful to present a version of the Gaia hypothesis that had no claim that Gaia intentionally or consciously maintained the complex balance in her environment that life needed to survive. It would appear that the claim that Gaia acts "intentionally" was a metaphoric statement in his popular initial book and was not meant to be taken literally. This new statement of the Gaia hypothesis was more acceptable to the scientific community. Most accusations of teleologism ceased, following this conference.

Third Gaia conference

By the time of the 2nd Chapman Conference on the Gaia Hypothesis, held at Valencia, Spain, on 23 June 2000,[41] the situation had changed significantly in accord with the developing science of Bio-geophysiology. Rather than a discussion of the Gaian teleological views, or "types" of Gaia Theory, the focus was upon the specific mechanisms by which basic short term homeostasis was maintained within a framework of significant evolutionary long term structural change.
The major questions were:[42]
  1. "How has the global biogeochemical/climate system called Gaia changed in time? What is its history? Can Gaia maintain stability of the system at one time scale but still undergo vectorial change at longer time scales? How can the geologic record be used to examine these questions?"
  2. "What is the structure of Gaia? Are the feedbacks sufficiently strong to influence the evolution of climate? Are there parts of the system determined pragmatically by whatever disciplinary study is being undertaken at any given time or are there a set of parts that should be taken as most true for understanding Gaia as containing evolving organisms over time? What are the feedbacks among these different parts of the Gaian system, and what does the near closure of matter mean for the structure of Gaia as a global ecosystem and for the productivity of life?"
  3. "How do models of Gaian processes and phenomena relate to reality and how do they help address and understand Gaia? How do results from Daisyworld transfer to the real world? What are the main candidates for "daisies"? Does it matter for Gaia theory whether we find daisies or not? How should we be searching for daisies, and should we intensify the search? How can Gaian mechanisms be investigated using process models or global models of the climate system that include the biota and allow for chemical cycling?"
In 1997, Tyler Volk argued that a Gaian system is almost inevitably produced as a result of an evolution towards far-from-equilibrium homeostatic states that maximise entropy production, and Kleidon (2004) agreed stating: "...homeostatic behavior can emerge from a state of MEP associated with the planetary albedo"; "...the resulting behavior of a biotic Earth at a state of MEP may well lead to near-homeostatic behavior of the Earth system on long time scales, as stated by the Gaia hypothesis". Staley (2002) has similarly proposed "...an alternative form of Gaia theory based on more traditional Darwinian principles... In [this] new approach, environmental regulation is a consequence of population dynamics, not Darwinian selection. The role of selection is to favor organisms that are best adapted to prevailing environmental conditions. However, the environment is not a static backdrop for evolution, but is heavily influenced by the presence of living organisms. The resulting co-evolving dynamical process eventually leads to the convergence of equilibrium and optimal conditions".

Fourth Gaia conference

A fourth international conference on the Gaia Theory, sponsored by the Northern Virginia Regional Park Authority and others, was held in October 2006 at the Arlington, VA campus of George Mason University.[43]

Martin Ogle, Chief Naturalist, for NVRPA, and long-time Gaia Theory proponent, organized the event. Lynn Margulis, Distinguished University Professor in the Department of Geosciences, University of Massachusetts-Amherst, and long-time advocate of the Gaia Theory, was a keynote speaker. Among many other speakers: Tyler Volk, Co-director of the Program in Earth and Environmental Science at New York University; Dr. Donald Aitken, Principal of Donald Aitken Associates; Dr. Thomas Lovejoy, President of the Heinz Center for Science, Economics and the Environment; Robert Correll, Senior Fellow, Atmospheric Policy Program, American Meteorological Society and noted environmental ethicist, J. Baird Callicott. James Lovelock, the theory's progenitor, prepared a video for the event.

This conference approached Gaia Theory as both science and metaphor as a means of understanding how we might begin addressing 21st century issues such as climate change and ongoing environmental destruction.

Criticism

After initially being largely ignored by most scientists, (from 1969 until 1977), thereafter for a period, the initial Gaia hypothesis was criticized by a number of scientists, such as Ford Doolittle, Richard Dawkins and Stephen Jay Gould.[38] Lovelock has said that by naming his theory after a Greek goddess, championed by many non-scientists,[33] the Gaia hypothesis was interpreted as a neo-Pagan religion. Many scientists in particular also criticised the approach taken in his popular book Gaia, a New Look at Life on Earth for being teleological—a belief that things are by purpose aimed towards a goal. Responding to this critique in 1990, Lovelock stated, "Nowhere in our writings do we express the idea that planetary self-regulation is purposeful, or involves foresight or planning by the biota".

Stephen Jay Gould criticised Gaia as being "a metaphor, not a mechanism." [44] He wanted to know the actual mechanisms by which self-regulating homeostasis was regulated. David Abram argues that Gould overlooked the fact that "mechanism", itself, is a metaphor — albeit an exceedingly common and commonly unrecognized metaphor — one which leads us to consider natural and living systems as though they were machines organized and built from outside (rather than as autopoietic or self-organizing phenomena). Mechanical metaphors, according to Abram, lead us to overlook the active or agential quality of living entities, while the organismic metaphorics of Gaia theory accentuate the active agency of both the biota and the biosphere as a whole.[45][46] With regard to causality in Gaia, Lovelock argues that no single mechanism is responsible, that the connections between the various known mechanisms may never be known, that this is accepted in other fields of biology and ecology as a matter of course, and that specific hostility is reserved for his own theory for other reasons.[47]

Aside from clarifying his language and understanding of what is meant by a life form, Lovelock himself ascribes most of the criticism to a lack of understanding of non-linear mathematics by his critics, and a linearizing form of greedy reductionism in which all events have to be immediately ascribed to specific causes before the fact. He also states that most of his critics are biologists but that his theory includes experiments in fields outside biology, and that some self-regulating phenomena may not be mathematically explainable.[47]

Natural selection and evolution

Lovelock has suggested that global biological feedback mechanisms could evolve by natural selection, stating that organisms that improve their environment for their survival do better than those that damage their environment. However, in 1981, W. Ford Doolittle, in the CoEvolution Quarterly article "Is Nature Really Motherly" argued that nothing in the genome of individual organisms could provide the feedback mechanisms proposed by Lovelock, and therefore the Gaia hypothesis proposed no plausible mechanism and was unscientific. In Richard Dawkins' 1982 book, The Extended Phenotype, he stated that for organisms to act in concert would require foresight and planning, which is contrary to the current scientific understanding of evolution. Like Doolittle, he also rejected the possibility that feedback loops could stabilize the system.

Basic criteria of the definition of a life-form include an ability to replicate and pass on genetic information to a succeeding generation, and to be affected by natural selection.[48] Dawkins stressed that the planet is not the offspring of any parents and is unable to reproduce.[22]

Lynn Margulis, a microbiologist who collaborated with Lovelock in supporting the Gaia hypothesis, argued in 1999, that "Darwin's grand vision was not wrong, only incomplete. In accentuating the direct competition between individuals for resources as the primary selection mechanism, Darwin (and especially his followers) created the impression that the environment was simply a static arena". She wrote that the composition of the Earth's atmosphere, hydrosphere, and lithosphere are regulated around "set points" as in homeostasis, but those set points change with time.[49]

Evolutionary biologist W. D. Hamilton called the concept of Gaia Copernican, adding that it would take another Newton to explain how Gaian self-regulation takes place through Darwinian natural selection.[24][better source needed]

Recent criticism

Aspects of the Gaia hypothesis continue to be skeptically received by relevant scientists. For instance, arguments both for and against it were laid out in the journal Climatic Change in 2002 and 2003. A main reason for doubting it, it was suggested, are the many examples where life has detrimental and/or destabilising effects on the environment.[50][51] Several recent books have criticised the Gaia hypothesis, with comments ranging from “... the Gaia hypothesis lacks unambiguous observational support and has significant theoretical difficulties”[52] to “Suspended uncomfortably between tainted metaphor, fact, and false science, I prefer to leave Gaia firmly in the background”[53] to “The Gaia hypothesis is supported neither by evolutionary theory nor by the empirical evidence of the geological record”.[54] The CLAW hypothesis, previously held up as confirmation of the success of Gaia, has subsequently been discredited.[55] In 2009 the direct opposite hypothesis to Gaia was proposed: that life has highly detrimental (biocidal) impacts on planetary conditions.[56] In a recent book-length evaluation of the Gaia hypothesis considering modern evidence from across the various relevant disciplines (hailed by the publishers as the first of its kind) the author, Toby Tyrrell of the National Oceanography Centre (UK), concluded that: “I believe Gaia is a dead end. Its study has, however, generated many new and thought provoking questions. While rejecting Gaia, we can at the same time appreciate Lovelock's originality and breadth of vision, and recognise that his audacious concept has helped to stimulate many new ideas about the Earth, and to champion a holistic approach to studying it.” [57] Elsewhere he presents his conclusion “The Gaia hypothesis is not an accurate picture of how our world works”.[58] (This statement need to be understood as referring to the "strong" and "moderate" forms of Gaia—that the biota obeys a principle that works to make Earth optimal (strength 5) or favourable for life (strength 4) or that it works as a homeostatic mechanism (strength 3). The latter is the "weakest" form of Gaia that Lovelock has advocated. Tyrrell rejects it. However, he finds that the two weaker forms of Gaia—Coeveolutionary Gaia and Influential Gaia, which assert that there are close links between the evolution of life and the environment and that biology affects the physical and chemical environment—are both credible, but that it is not useful to use the term "Gaia" in this sense.[59]

Tuesday, January 27, 2015

The influence of science and reason on moral progress


Moral progress


It is ultimately the force of ideas even more than the force of arms that marshal moral advancement
 
Travel, trade and literacy helped expand our world, thus our thinking and our tolerance
 
To make morals stick, you have to change people's thinking

A century and a half ago, an abolitionist preacher named Theodore Parker noticed something striking about the moral universe: “The arc is a long one, my eye reaches but little ways,” he said, but added that “from what I see I am sure it bends towards justice.” Fifty years ago, the Rev. Martin Luther King Jr. confirmed Parker's hopeful vision at the climax of his march from Selma to Montgomery, Ala. That movement led to the passage of the Voting Rights Act months later.


The abolition of slavery and the universal franchise are just two of several hard-won rights revolutions. Women's rights, children's rights, workers' rights, gay rights and now even animal rights all point to the fact that we are living in what may be the most moral period in our history. Judicial torture has been outlawed in nearly every country. The death penalty is on death row and, if the trend continues, will be extinct by the mid-2020s. People have grown more tolerant: Polls have consistently shown increasing levels of acceptance of interracial marriage starting decades ago and of same-sex marriage today.

To what should we attribute this moral progress? Understandably, most people point to religion as the primary driver, given its long association with all matters moral. But the evidence shows that most of the moral development of the last several centuries has been the result of secular forces, and that the most important of these are reason and science, which emerged from the Enlightenment.

Since the scientific revolution of the 16th and 17th centuries, intellectuals sought to emulate great scientists such as Galileo and Isaac Newton in applying the rigorous methods of the natural sciences to solving social and political problems. Enlightenment natural philosophers (we would call them scientists today) such as John Locke, Thomas Jefferson and Immanuel Kant placed supreme value on reason, scientific inquiry, human natural rights, equality and freedom of thought and expression.


Locke reasoned that all people should be treated equally under the law. That was an untested theory that has withstood the test of time as countries that practice it flourish. Jefferson described American democracy as an “experiment.” It is. Democratic elections are like scientific experiments: Every few years we alter the variables with an election and observe the results. Kant introduced the “democratic peace theory” in 1795, arguing that democracies are less likely to go to war with one another. Data confirm that democratic states today have a lower risk of interstate conflict than semidemocracies and autocracies. Democracies are a moral success story.

As for slavery, the abolitionist movement was primarily inspired by such secular documents as the American Declaration of Independence and the French Declaration of the Rights of Man. As with all rights revolutions, it is ultimately the force of ideas more than the force of arms that marshal moral advancement. Notions such as slavery gradually inch from morally good to acceptable to questionable to unacceptable to immoral to illegal, and finally they shift altogether from unthinkable to utterly unthought of.

Ending Ontario’s wind experiment

Monte McNaughton, Special to Financial Post |
http://business.financialpost.com/2015/01/27/ending-ontarios-wind-experiment/
A wind turbines stands at the Mohawk Point Wind Farm outside of Lowbank, Ontario, Canada.
Norm Betts/BloombergA wind turbines stands at the Mohawk Point Wind Farm outside of Lowbank, Ontario, Canada. 
 
How do we ensure that when one government abuses its power, we don’t have to live with the consequences for a generation? Through the supremacy of our democratically elected legislative assembly in Ontario.

In 2009, the Ontario Liberals misused their majority when they stripped municipalities of their long-standing land planning rights in order to impose the wind turbine experiment. They then used executive orders to hand out sole-sourced deals ‎to line the pockets of their wind developer friends. These 20-year deals provide guaranteed pricing to developers for wind power that is above market rates — because wind power cannot be produced in Ontario at reasonable market rates. They also guarantee revenue even when turbines are asked not to produce wind power.

The Ontario Liberals deliberately ignored the interests and wishes of rural Ontario and made all consumers, both urban and rural pay for it—to the tune of $1 billion to $3 billion annually, with increases projected every year. That’s $20 billion to $60 billion over the next two decades. This accounted for only 3.4% of Ontario’s electricity generating capacity, but represented 20% of the total commodity cost of electricity in the province.
Our electricity system has been forced to dump more than double the amount of power generated by wind turbines
And the bad news doesn’t end there — for the last two years, our electricity system has been forced to dump more than double the amount of power generated by wind turbines into other jurisdictions, and at a 75% discount on what we paid to produce it.

Why? Because we are producing more electricity than we need, and because the wind turbines in Ontario produce most of their power during off-peak hours – when we don’t need it all.

And how are the turbines helping the environment? Since wind power is unreliable it requires additional backup power from other generation sources, such as gas-fired generation, which — you guessed it — increases air emissions.

France, Belgium, Italy, and Spain have all had to reverse course on wind power. The reason — the exorbitant costs on consumers with no benefit.

So how do we get out of this mess? If a future government issued another executive order to terminate the McGuinty-Wynne wind power scheme and keep it out of public view, then taxpayers would be on the hook for the entirety of the commitments — as was done by Dalton McGuinty in 2010 with the proposed power plants in Mississauga and Oakville. If, however, the democratically elected legislature passed an explicit statute to end the wind power rip-off, Ontario could determine what compensation, if any, would be paid, and to whom.

Enacting legislation to repeal the Liberal wind power boondoggle is the right way forward. As Premier I will do just that and introduce measures in the legislature to correct this abuse of power by the Ontario Liberals.

Monte McNaughton is the MPP for Lambton-Kent-Middlesex and a candidate for the leadership of the PC Party of Ontario. More details about McNaughton’s plan to end Ontario’s wind energy experiment are available at www.Monte.ca/wind.

Great Oxygenation Event


From Wikipedia, the free encyclopedia


O2 build-up in the Earth's atmosphere. Red and green lines represent the range of the estimates while time is measured in billions of years ago (Ga).

Stage 1 (3.85–2.45 Ga): Practically no O2 in the atmosphere.
Stage 2 (2.45–1.85 Ga): O2 produced, but absorbed in oceans & seabed rock.
Stage 3 (1.85–0.85 Ga): O2 starts to gas out of the oceans, but is absorbed by land surfaces.
Stages 4 & 5 (0.85–present): O2 sinks filled and the gas accumulates.[1]

The Great Oxygenation Event (GOE), also called the Oxygen Catastrophe, Oxygen Crisis, Oxygen Revolution, or Great Oxidation, was the biologically induced appearance of dioxygen (O2) in Earth's atmosphere. Geological, isotopic, and chemical evidence suggest that this major environmental change happened around 2.3 billion years ago (2.3 Ga).[2]

Cyanobacteria, which appeared about 200 million years before the GOE,[3] began producing oxygen by photosynthesis. Before the GOE, any free oxygen they produced was chemically captured by dissolved iron or organic matter. The GOE was the point when these oxygen sinks became saturated and could not capture all of the oxygen that was produced by cyanobacterial photosynthesis. After the GOE, the excess free oxygen started to accumulate in the atmosphere.

Free oxygen is toxic to obligate anaerobic organisms, and the rising concentrations may have wiped out most of the Earth's anaerobic inhabitants at the time. Cyanobacteria were therefore responsible for one of the most significant extinction events in Earth's history. Additionally, the free oxygen reacted with atmospheric methane, a greenhouse gas, greatly reducing its concentration and triggering the Huronian glaciation, possibly the longest snowball Earth episode in the Earth's history.[4]

Eventually, aerobic organisms began to evolve, consuming oxygen and bringing about an equilibrium in its availability. Free oxygen has been an important constituent of the atmosphere ever since.[4]

Timing


Timeline of glaciations, shown in blue.

The most widely accepted chronology of the Great Oxygenation Event suggests that free oxygen was first produced by prokaryotic and then later eukaryotic organisms that carried out oxygenic photosynthesis, producing oxygen as a waste product. These organisms lived long before the GOE,[5] perhaps as early as 3,500 million years ago.

The oxygen they produced would have quickly been removed from the atmosphere by the weathering of reduced minerals, most notably iron. This 'mass rusting' led to the deposition of iron(III) oxide to form banded-iron formations such as those sediments in Minnesota and Pilbara, Western Australia.

Oxygen only began to persist in the atmosphere in small quantities shortly (~50 million years) before the start of the GOE.[6] Without a draw-down, oxygen could accumulate very rapidly.

For example, at today's rates of photosynthesis (which are much greater than those in the land-plant-free Precambrian), modern atmospheric O2 levels could be produced in around 2,000 years.[7] See oxygen cycle capacities and fluxes.

Another hypothesis is an interpretation of the supposed oxygen indicator, mass-independent fractionation of sulfur isotopes, used in previous studies, and that oxygen producers did not evolve until right before the major rise in atmospheric oxygen concentration.[8] This hypothesis would eliminate the need to explain a lag in time between the evolution of oxyphotosynthetic microbes and the rise in free oxygen.

Either way, the oxygen did eventually accumulate in the atmosphere, with two major consequences.
First, it oxidized atmospheric methane (a strong greenhouse gas) to carbon dioxide (a weaker one) and water, triggering the Huronian glaciation.

The latter may have been a full-blown, and possibly the longest ever, snowball Earth episode, lasting 300–400 million years.[8][9] Second, the increased oxygen concentrations provided a new opportunity for biological diversification, as well as tremendous changes in the nature of chemical interactions between rocks, sand, clay, and other geological substrates and the Earth's air, oceans, and other surface waters.

Despite the natural recycling of organic matter, life had remained energetically limited until the widespread availability of oxygen. This breakthrough in metabolic evolution greatly increased the free energy supply to living organisms, having a truly global environmental impact; mitochondria evolved after the GOE. With more energy available from oxygen, organisms had the means for new, more complex morphologies. These new morphologies in turn helped drive evolution through interaction between organisms.[10]

Time lag theory

The gap between the start of oxygen production from photosynthetic organisms and the geologically rapid increase in atmospheric oxygen (about 2.5–2.4 billion years ago) may have been as long as 900 million years. Several hypotheses might explain the time lag:

Tectonic trigger

The oxygen increase had to await tectonically driven changes in the Earth, including the appearance of shelf seas, where reduced organic carbon could reach the sediments and be buried.[11] The newly produced oxygen was first consumed in various chemical reactions in the oceans, primarily with iron. Evidence is found in older rocks that contain massive banded iron formations that were apparently laid down as this iron and oxygen first combined; most of the planet's commercial iron ore is in these deposits.

Nickel famine

Chemosynthetic organisms were a source of methane, which was an important trap for molecular oxygen, because oxygen readily oxidizes methane to carbon dioxide (CO2) and water in the presence of UV radiation. Modern methanogens require nickel as an enzyme cofactor. As the Earth's crust cooled, the supply of nickel from volcanoes was reduced and less methane was produced. This allowed the oxygen concentration in the atmosphere to increase. From 2.7 to 2.4 billion years ago, the levels of nickel deposited declined steadily; it was originally 400 times today's levels.[12]

Bistability

A 2006 theory, called bistability, comes from a mathematical model of the atmosphere. In this model, UV shielding decreases the rate of methane oxidation once oxygen levels are sufficient to support the formation of an ozone layer. This explanation proposes an atmospheric system with two steady states, one with lower (0.02%) atmospheric oxygen content, and the other with higher (21% or more) oxygen content. The Great Oxidation can then be understood as a switch between lower and upper stable steady states.[13]

Late evolution of oxy-photosynthesis theory

There is a possibility that the oxygen indicator was misinterpreted. During the proposed time of the lag in the previous theory, there was change from mass-independently fractionated (MIF) sulfur to mass-dependently fractionated (MDF) sulfur in sediments. This was assumed to be a result of the appearance of oxygen in the atmosphere (since oxygen would have prevented the photolysis of sulfur dioxide, which causes MIF). This change from MIF to MDF of sulfur isotopes also may have been caused by an increase in glacial weathering, or the homogenization of the marine sulfur pool as a result of an increased thermal gradient during the Huronian glaciation period.[8]

Role in mineral diversification

The Great Oxygenation Event triggered an explosive growth in the diversity of minerals on Earth. It is estimated that this event alone was directly responsible for more than 2,500 new minerals of the total of about 4,500 minerals found on Earth. Most of these new minerals were hydrated, oxidized forms of minerals formed due to dynamic mantle and crust processes after the Great Oxygenation event.[14]


Magnet school

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Magnet_sc...