Search This Blog

Friday, January 30, 2015

Hawking radiation


From Wikipedia, the free encyclopedia


Simulated view of a black hole (center) in front of the Large Magellanic Cloud. Note the gravitational lensing effect, which produces two enlarged but highly distorted views of the Cloud. Across the top, the Milky Way disk appears distorted into an arc.

Hawking radiation is black body radiation that is predicted to be released by black holes, due to quantum effects near the event horizon.

It is named after the physicist Stephen Hawking, who provided a theoretical argument for its existence in 1974,[1] and sometimes also after Jacob Bekenstein, who predicted that black holes should have a finite, non-zero temperature and entropy.[2]

Hawking's work followed his visit to Moscow in 1973 where the Soviet scientists Yakov Zeldovich and Alexei Starobinsky showed him that according to the quantum mechanical uncertainty principle, rotating black holes should create and emit particles.[3] Hawking radiation reduces the mass and the energy of the black hole and is therefore also known as black hole evaporation. Because of this, black holes that lose more mass than they gain through other means are expected to shrink and ultimately vanish. Micro black holes (MBHs) are predicted to be larger net emitters of radiation than larger black holes and should shrink and dissipate faster.

In September 2010, a signal that is closely related to black hole Hawking radiation (see analog gravity) was claimed to have been observed in a laboratory experiment involving optical light pulses. However, the results remain unverified and debatable.[4][5] Other projects have been launched to look for this radiation within the framework of analog gravity. In June 2008, NASA launched the Fermi space telescope, which will search for the terminal gamma-ray flashes expected from evaporating primordial black holes. In the event that speculative large extra dimension theories are correct, CERN's Large Hadron Collider may be able to create micro black holes and observe their evaporation.[6][7][8][9][10]

Overview

Black holes are sites of immense gravitational attraction. Classically, the gravitation is so powerful that nothing, not even electromagnetic radiation (including light), can escape from the black hole. It is yet unknown how gravity can be incorporated into quantum mechanics. Nevertheless, far from the black hole the gravitational effects can be weak enough for calculations to be reliably performed in the framework of quantum field theory in curved spacetime. Hawking showed that quantum effects allow black holes to emit exact black body radiation, which is the average thermal radiation emitted by an idealized thermal source known as a black body. The electromagnetic radiation is as if it were emitted by a black body with a temperature that is inversely proportional to the black hole's mass.
Physical insight into the process may be gained by imagining that particle-antiparticle radiation is emitted from just beyond the event horizon. This radiation does not come directly from the black hole itself, but rather is a result of virtual particles being "boosted" by the black hole's gravitation into becoming real particles.[11] As the particle-antiparticle pair was produced by the black hole's gravitational energy, the escape of one of the particles takes away some of the mass of the black hole.[12]

A slightly more precise, but still much simplified, view of the process is that vacuum fluctuations cause a particle-antiparticle pair to appear close to the event horizon of a black hole. One of the pair falls into the black hole while the other escapes. In order to preserve total energy, the particle that fell into the black hole must have had a negative energy (with respect to an observer far away from the black hole). By this process, the black hole loses mass, and, to an outside observer, it would appear that the black hole has just emitted a particle. In another model, the process is a quantum tunnelling effect, whereby particle-antiparticle pairs will form from the vacuum, and one will tunnel outside the event horizon.[11]

An important difference between the black hole radiation as computed by Hawking and thermal radiation emitted from a black body is that the latter is statistical in nature, and only its average satisfies what is known as Planck's law of black body radiation, while the former fits the data better. Thus thermal radiation contains information about the body that emitted it, while Hawking radiation seems to contain no such information, and depends only on the mass, angular momentum, and charge of the black hole (the no-hair theorem). This leads to the black hole information paradox.

However, according to the conjectured gauge-gravity duality (also known as the AdS/CFT correspondence), black holes in certain cases (and perhaps in general) are equivalent to solutions of quantum field theory at a non-zero temperature. This means that no information loss is expected in black holes (since the theory permits no such loss) and the radiation emitted by a black hole is probably the usual thermal radiation. If this is correct, then Hawking's original calculation should be corrected, though it is not known how (see below).

A black hole of one solar mass (M) has a temperature of only 60 nanokelvin (60 billionths of a kelvin); in fact, such a black hole would absorb far more cosmic microwave background radiation than it emits. A black hole of 4.5 × 1022 kg (about the mass of the Moon) would be in equilibrium at 2.7 kelvin, absorbing as much radiation as it emits. Yet smaller primordial black holes would emit more than they absorb and thereby lose mass.[11]

Trans-Planckian problem

The trans-Planckian problem is the observation that Hawking's original calculation requires talking about quantum particles in which the wavelength becomes shorter than the Planck length near the black hole's horizon. It is due to the peculiar behavior near a gravitational horizon where time stops as measured from far away. A particle emitted from a black hole with a finite frequency, if traced back to the horizon, must have had an infinite frequency there and a trans-Planckian wavelength.

The Unruh effect and the Hawking effect both talk about field modes in the superficially stationary space-time that change frequency relative to other coordinates which are regular across the horizon. This is necessarily so, since to stay outside a horizon requires acceleration which constantly Doppler shifts the modes.

An outgoing Hawking radiated photon, if the mode is traced back in time, has a frequency which diverges from that which it has at great distance, as it gets closer to the horizon, which requires the wavelength of the photon to "scrunch up" infinitely at the horizon of the black hole. In a maximally extended external Schwarzschild solution, that photon's frequency only stays regular if the mode is extended back into the past region where no observer can go. That region doesn't seem to be observable and is physically suspect, so Hawking used a black hole solution without a past region which forms at a finite time in the past. In that case, the source of all the outgoing photons can be identified–it is a microscopic point right at the moment that the black hole first formed.

The quantum fluctuations at that tiny point, in Hawking's original calculation, contain all the outgoing radiation. The modes that eventually contain the outgoing radiation at long times are redshifted by such a huge amount by their long sojourn next to the event horizon, that they start off as modes with a wavelength much shorter than the Planck length. Since the laws of physics at such short distances are unknown, some find Hawking's original calculation unconvincing.[13][14][15][16][17][18]

The trans-Planckian problem is nowadays mostly considered a mathematical artifact of horizon calculations.[16][19] The same effect occurs for regular matter falling onto a white hole solution. Matter which falls on the white hole accumulates on it, but has no future region into which it can go. Tracing the future of this matter, it is compressed onto the final singular endpoint of the white hole evolution, into a trans-Planckian region. The reason for these types of divergences is that modes which end at the horizon from the point of view of outside coordinates are singular in frequency there. The only way to determine what happens classically is to extend in some other coordinates that cross the horizon.

There exist alternative physical pictures which give the Hawking radiation in which the trans-Planckian problem is addressed. The key point is that similar trans-Planckian problems occur when the modes occupied with Unruh radiation are traced back in time.[20] In the Unruh effect, the magnitude of the temperature can be calculated from ordinary Minkowski field theory, and is not controversial.

Emission process

Hawking radiation is required by the Unruh effect and the equivalence principle applied to black hole horizons. Close to the event horizon of a black hole, a local observer must accelerate to keep from falling in. An accelerating observer sees a thermal bath of particles that pop out of the local acceleration horizon, turn around, and free-fall back in. The condition of local thermal equilibrium implies that the consistent extension of this local thermal bath has a finite temperature at infinity, which implies that some of these particles emitted by the horizon are not reabsorbed and become outgoing Hawking radiation.[20]

A Schwarzschild black hole has a metric

ds^2 = -\left(1-{2M\over r}\right)dt^2 + {1\over 1- 2M/r} dr^2 + r^2 d\Omega^2.
The black hole is the background spacetime for a quantum field theory.

The field theory is defined by a local path integral, so if the boundary conditions at the horizon are determined, the state of the field outside will be specified. To find the appropriate boundary conditions, consider a stationary observer just outside the horizon at position r = 2M + u^2/2M.
The local metric to lowest order is

ds^2 = - {u^2\over 4M^2} dt^2 + 4 du^2 + dX_\perp^2 = - \rho^2 d\tau^2 + d\rho^2 + dX_\perp^2,
which is Rindler in terms of \tau=t/4M and \rho=2u. The metric describes a frame that is accelerating to keep from falling into the black hole. The local acceleration diverges as u\rightarrow 0.

The horizon is not a special boundary, and objects can fall in. So the local observer should feel accelerated in ordinary Minkowski space by the principle of equivalence. The near-horizon observer must see the field excited at a local inverse temperature
\beta(u)=2\pi \rho = (4\pi) u = 4\pi \sqrt{2M(r-2M)};
this is the Unruh effect.

The gravitational redshift is by the square root of the time component of the metric. So for the field theory state to consistently extend, there must be a thermal background everywhere with the local temperature redshift-matched to the near horizon temperature:
\beta(r') = 4\pi \sqrt{2M(r-2M)} \sqrt{1- 2M/r' \over 1- 2M/r}.
The inverse temperature redshifted to r' at infinity is
\beta(\infty) = (4\pi)\sqrt{2Mr} \;
and r is the near-horizon position, near 2M, so this is really
\beta = 8 \pi M.
So a field theory defined on a black hole background is in a thermal state whose temperature at infinity is
T_H = {1 \over 8 \pi M}.
This can be expressed more cleanly in terms of the surface gravity of the black hole; this is the parameter that determines the acceleration of a near-horizon observer. In natural units ( G = c = \hbar = k_\text{B} = 1), the temperature is
T_H = \frac{\kappa}{2 \pi},
where \kappa is the surface gravity of the horizon. So a black hole can only be in equilibrium with a gas of radiation at a finite temperature. Since radiation incident on the black hole is absorbed, the black hole must emit an equal amount to maintain detailed balance. The black hole acts as a perfect blackbody radiating at this temperature.

In SI units, the radiation from a Schwarzschild black hole is black-body radiation with temperature
T = {\hbar \, c^3 \over 8 \pi G M k_\text{B}} \;\quad \left(\approx {1.227 \times 10^{23}\; \text{kg} \over M}\; \text{K} \right),
where \hbar is the reduced Planck constant, c is the speed of light, kB is the Boltzmann constant, G is the gravitational constant, and M is the mass of the black hole.

From the black hole temperature, it is straightforward to calculate the black hole entropy. The change in entropy when a quantity of heat dQ is added is
dS = {dQ\over T} = 8\pi M dQ.
The heat energy that enters serves to increase the total mass, so
dS = 8 \pi M dM = d(4 \pi M^2)..
The radius of a black hole is twice its mass in natural units, so the entropy of a black hole is proportional to its surface area:
S = \pi R^2 = {A \over 4}.
Assuming that a small black hole has zero entropy, the integration constant is zero. Forming a black hole is the most efficient way to compress mass into a region, and this entropy is also a bound on the information content of any sphere in space time. The form of the result strongly suggests that the physical description of a gravitating theory can be somehow encoded onto a bounding surface.

Black hole evaporation

When particles escape, the black hole loses a small amount of its energy and therefore some of its mass (mass and energy are related by Einstein's equation E = mc²).

The power emitted by a black hole in the form of Hawking radiation can easily be estimated for the simplest case of a nonrotating, non-charged Schwarzschild black hole of mass M. Combining the formulas for the Schwarzschild radius of the black hole, the Stefan–Boltzmann law of black-body radiation, the above formula for the temperature of the radiation, and the formula for the surface area of a sphere (the black hole's event horizon), equation derivation:

Stefan–Boltzmann constant:
\sigma = \frac{\pi^2 k_B^4}{60 \hbar^3 c^2} \;
Schwarzschild radius:
r_s = \frac{2GM}{c^2} \;
Black hole surface gravity at the horizon:
g = \frac{G M}{r_s^2} = \frac{c^4}{4 G M} \;
Hawking radiation has a black-body (Planck) spectrum with a temperature T given by:
E = k_B T = \frac{\hbar g}{2 \pi c} = \frac{\hbar}{2 \pi c} \left( \frac{c^4}{4 G M} \right) = \frac{\hbar c^3}{8 \pi G M} \;
Hawking radiation temperature:
T_H = \frac{\hbar c^3}{8 \pi G M k_B} \;
Schwarzschild sphere surface area of Schwarzschild radius r_s:
A_s = 4 \pi r_s^2 = 4 \pi \left( \frac{2 G M}{c^2} \right)^2 = \frac{16 \pi G^2 M^2}{c^4} \;
Stefan–Boltzmann power law:
P = A_s j^{\star} = A_s \epsilon \sigma T^{4} \;
A black hole is a perfect black-body:
\epsilon = 1 \;
Stefan–Boltzmann–Schwarzschild–Hawking black hole radiation power law derivation:
P = A_s \epsilon \sigma T_H^4 = \left( \frac{16 \pi G^2 M^2}{c^4} \right) \left( \frac{\pi^2 k_B^4}{60 \hbar^3 c^2} \right) \left( \frac{\hbar c^3}{8 \pi G M k_B} \right)^4 = \frac{\hbar c^6}{15360 \pi G^2 M^2} \;
Stefan–Boltzmann-Schwarzschild-Hawking power law:
P = \frac{\hbar c^6}{15360 \pi G^2 M^2} \;
Where P is the energy outflow, \hbar is the reduced Planck constant, c is the speed of light, and G is the gravitational constant. It is worth mentioning that the above formula has not yet been derived in the framework of semiclassical gravity.

The power in the Hawking radiation from a solar mass (M_{\odot}) black hole turns out to be a minuscule 9 × 10−29 watts. It is indeed an extremely good approximation to call such an object 'black'.
P = \frac{\hbar c^6}{15360 \pi G^2 M_{\odot}^2} = 9.004 \times 10^{-29} \; \text{W} \;
Under the assumption of an otherwise empty universe, so that no matter or cosmic microwave background radiation falls into the black hole, it is possible to calculate how long it would take for the black hole to dissipate:
K_{\operatorname{ev}} = \frac{\hbar c^6}{15360 \pi G^2} = 3.562 \times 10^{32} \; \text{W} \cdot \text{kg}^2 \;
Given that the power of the Hawking radiation is the rate of evaporation energy loss of the black hole:
P = - \frac{dE}{dt} = \frac{K_{\operatorname{ev}}}{M^2} \;
Since the total energy E of the black hole is related to its mass M by Einstein's mass-energy formula:
E = Mc^2 \;
P = - \frac{dE}{dt} = - \left( \frac{d}{dt} \right) M c^2 = -c^2 \frac{dM}{dt} \;
We can then equate this to our above expression for the power:
-c^2 \frac{dM}{dt} = \frac{K_{\operatorname{ev}}}{M^2} \;
This differential equation is separable, and we can write:
M^2 dM = - \frac{K_{\operatorname{ev}}}{c^2} dt \;
The black hole's mass is now a function M(t) of time t. Integrating over M from M_0 (the initial mass of the black hole) to zero (complete evaporation), and over t from zero to t_{\operatorname{ev}} \;:
\int_{M_0}^0 M^2 dM = - \frac{K_{\operatorname{ev}}}{c^2} \int_0^{t_{\operatorname{ev}}} dt \;
The evaporation time of a black hole is proportional to the cube of its mass:
t_{\operatorname{ev}} = \frac{c^2 M_0^3}{3 K_{\operatorname{ev}}} = \left( \frac{c^2 M_0^3}{3} \right) \left( \frac{15360 \pi G^2}{\hbar c^6} \right) = \frac{5120 \pi G^2 M_0^3}{\hbar c^4} = 8.410 \times 10^{-17} \left[\frac{M_0}{\mathrm{kg}}\right]^3 \mathrm{s} \;
The time that the black hole takes to dissipate is:
t_{\operatorname{ev}} = \frac{5120 \pi G^2 M_0^{3}}{\hbar c^4} \;
Where M_0 is the mass of the black hole.

The lower classical quantum limit for mass for this equation is equivalent to the Planck mass, m_P.

Planck mass quantum black hole Hawking radiation evaporation time:
t_{\operatorname{ev}} = \frac{5120 \pi G^2 m_P^3}{\hbar c^4} = 5120 \pi t_P = 5120 \pi \sqrt{\frac{\hbar G}{c^5}} = 8.671 \times 10^{-40} \; \text{s} \;
t_{\operatorname{ev}} = 5120 \pi \sqrt{\frac{\hbar G}{c^5}} \;
Where t_P is the Planck time.

For a black hole of one solar mass (M_{\odot} = 1.98892 × 1030 kg), we get an evaporation time of 2.098 × 1067 years—much longer than the current age of the universe at 13.798 ± 0.037 x 109 years.[21]
t_{\operatorname{ev}} = \frac{5120 \pi G^2 M_{\odot}^3}{\hbar c^4} = 6.617 \times 10^{74} \; \text{s} \;
But for a black hole of 1011 kg, the evaporation time is 2.667 billion years. This is why some astronomers are searching for signs of exploding primordial black holes.

However, since the universe contains the cosmic microwave background radiation, in order for the black hole to dissipate, it must have a temperature greater than that of the present-day black-body radiation of the universe of 2.7 K = 2.3 × 10−4 eV. This implies that M must be less than 0.8% of the mass of the Earth[22] - approximately the mass of the Moon.

Cosmic microwave background radiation universe temperature:
T_u = 2.725 \; \text{K} \;
Hawking total black hole mass:
M_H \leq \frac{\hbar c^3}{8 \pi G k_B T_u} \leq 4.503 \times 10^{22} \; \text{kg} \;
\frac{M_H}{M_{\oplus}} = 7.539 \times 10^{-3} = 0.754 \; \% \;
Where, M_{\oplus} is the total Earth mass.

In common units,
P = 3.563 \, 45 \times 10^{32} \left[\frac{\mathrm{kg}}{M}\right]^2 \mathrm{W} \;
t_\mathrm{ev} = 8.407 \, 16 \times 10^{-17} \left[\frac{M_0}{\mathrm{kg}}\right]^3 \mathrm{s}

\ \ \approx\ 2.66 \times 10^{-24} \left[\frac{M_0}{\mathrm{kg}}\right]^3 \mathrm{yr} \;
M_0 = 2.282 \, 71 \times 10^5 \left[\frac{t_\mathrm{ev}}{\mathrm{s}}\right]^{1/3} \mathrm{kg}
\ \ \approx\ 7.2 \times 10^7 \left[\frac{t_\mathrm{ev}}{\mathrm{yr}}\right]^{1/3} \mathrm{kg} \;
So, for instance, a 1-second-lived black hole has a mass of 2.28 × 105 kg, equivalent to an energy of 2.05 × 1022 J that could be released by 5 × 106 megatons of TNT. The initial power is 6.84 × 1021 W.

Black hole evaporation has several significant consequences:
  • Black hole evaporation produces a more consistent view of black hole thermodynamics, by showing how black holes interact thermally with the rest of the universe.
  • Unlike most objects, a black hole's temperature increases as it radiates away mass. The rate of temperature increase is exponential, with the most likely endpoint being the dissolution of the black hole in a violent burst of gamma rays. A complete description of this dissolution requires a model of quantum gravity, however, as it occurs when the black hole approaches Planck mass and Planck radius.
  • The simplest models of black hole evaporation lead to the black hole information paradox. The information content of a black hole appears to be lost when it dissipates, as under these models the Hawking radiation is random (it has no relation to the original information). A number of solutions to this problem have been proposed, including suggestions that Hawking radiation is perturbed to contain the missing information, that the Hawking evaporation leaves some form of remnant particle containing the missing information, and that information is allowed to be lost under these conditions.

Large extra dimensions

Formulae from the previous section are only applicable if laws of gravity are approximately valid all the way down to the Planck scale. In particular, for black holes with masses below Planck mass (~10−5 g), they result in unphysical lifetimes below Planck time (~10−43 s). This is normally seen as an indication that Planck mass is the lower limit on the mass of a black hole.

In the model with large extra dimensions, values of Planck constants can be radically different, and formulas for Hawking radiation have to be modified as well. In particular, the lifetime of a micro black hole (with radius below the scale of extra dimensions) is given by (Equation (9) in [23]) & (Equation(25) (26) in [24])
\tau \sim {1 \over M_*} \Bigl( {M_{BH} \over M_*} \Bigr) ^{(n+3)/(n+1)}
where M_* is the low energy scale (which could be as low as a few TeV), and n is the number of large extra dimensions. This formula is now consistent with black holes as light as a few TeV, with lifetimes on the order of "new Planck time" ~10−26 s.

Experimental observation of Hawking radiation

Under experimentally achievable conditions for gravitational systems this effect is too small to be observed directly. In September 2010, however, an experimental set-up created a laboratory "white hole event horizon" that the experimenters claimed was shown to radiate Hawking radiation,[25] although its status as a genuine confirmation remains in doubt.[26] Some scientists predict that Hawking radiation could be studied by analogy using sonic black holes, in which sound perturbations are analogous to light in a gravitational black hole and the flow of an approximately perfect fluid is analogous to gravity.[27]

Quantum gravity


From Wikipedia, the free encyclopedia

Quantum gravity (QG) is a field of theoretical physics that seeks to describe the force of gravity according to the principles of quantum mechanics.

The current understanding of gravity is based on Albert Einstein's general theory of relativity, which is formulated within the framework of classical physics. On the other hand, the nongravitational forces are described within the framework of quantum mechanics, a radically different formalism for describing physical phenomena based on probability.[1] The necessity of a quantum mechanical description of gravity follows from the fact that one cannot consistently couple a classical system to a quantum one.[2]

Although a quantum theory of gravity is needed in order to reconcile general relativity with the principles of quantum mechanics, difficulties arise when one attempts to apply the usual prescriptions of quantum field theory to the force of gravity.[3] From a technical point of view, the problem is that the theory one gets in this way is not renormalizable and therefore cannot be used to make meaningful physical predictions. As a result, theorists have taken up more radical approaches to the problem of quantum gravity, the most popular approaches being string theory and loop quantum gravity.[4]

Strictly speaking, the aim of quantum gravity is only to describe the quantum behavior of the gravitational field and should not be confused with the objective of unifying all fundamental interactions into a single mathematical framework. Although some quantum gravity theories such as string theory try to unify gravity with the other fundamental forces, others such as loop quantum gravity make no such attempt; instead, they make an effort to quantize the gravitational field while it is kept separate from the other forces. A theory of quantum gravity which is also a grand unification of all known interactions, is sometimes referred to as a theory of everything (TOE).

One of the difficulties of quantum gravity is that quantum gravitational effects are only expected to become apparent near the Planck scale, a scale far smaller in distance (equivalently, far larger in energy) than what is currently accessible at high energy particle accelerators. As a result, quantum gravity is a mainly theoretical enterprise, although there are speculations about how quantum gravity effects might be observed in existing experiments.[5]

Overview

How can the theory of quantum mechanics be merged with the theory of general relativity/gravitational force and remain correct at microscopic length scales? What verifiable predictions does any theory of quantum gravity make?

Diagram showing where quantum gravity sits in the hierarchy of physics theories

Much of the difficulty in meshing these theories at all energy scales comes from the different assumptions that these theories make on how the universe works. Quantum field theory depends on particle fields embedded in the flat space-time of special relativity. General relativity models gravity as a curvature within space-time that changes as a gravitational mass moves. Historically, the most obvious way of combining the two (such as treating gravity as simply another particle field) ran quickly into what is known as the renormalization problem. In the old-fashioned understanding of renormalization, gravity particles would attract each other and adding together all of the interactions results in many infinite values which cannot easily be cancelled out mathematically to yield sensible, finite results. This is in contrast with quantum electrodynamics where, while the series still do not converge, the interactions sometimes evaluate to infinite results, but those are few enough in number to be removable via renormalization.

Effective field theories

Quantum gravity can be treated as an effective field theory. Effective quantum field theories come with some high-energy cutoff, beyond which we do not expect that the theory provides a good description of nature. The "infinities" then become large but finite quantities depending on this finite cutoff scale, and correspond to processes that involve very high energies near the fundamental cutoff. These quantities can then be absorbed into an infinite collection of coupling constants, and at energies well below the fundamental cutoff of the theory, to any desired precision; only a finite number of these coupling constants need to be measured in order to make legitimate quantum-mechanical predictions. This same logic works just as well for the highly successful theory of low-energy pions as for quantum gravity. Indeed, the first quantum-mechanical corrections to graviton-scattering and Newton's law of gravitation have been explicitly computed[6] (although they are so astronomically small that we may never be able to measure them). In fact, gravity is in many ways a much better quantum field theory than the Standard Model, since it appears to be valid all the way up to its cutoff at the Planck scale.

While confirming that quantum mechanics and gravity are indeed consistent at reasonable energies, it is clear that near or above the fundamental cutoff of our effective quantum theory of gravity (the cutoff is generally assumed to be of the order of the Planck scale), a new model of nature will be needed. Specifically, the problem of combining quantum mechanics and gravity becomes an issue only at very high energies, and may well require a totally new kind of model.

Quantum gravity theory for the highest energy scales

The general approach to deriving a quantum gravity theory that is valid at even the highest energy scales is to assume that such a theory will be simple and elegant and, accordingly, to study symmetries and other clues offered by current theories that might suggest ways to combine them into a comprehensive, unified theory. One problem with this approach is that it is unknown whether quantum gravity will actually conform to a simple and elegant theory, as it should resolve the dual conundrums of special relativity with regard to the uniformity of acceleration and gravity, and general relativity with regard to spacetime curvature.

Such a theory is required in order to understand problems involving the combination of very high energy and very small dimensions of space, such as the behavior of black holes, and the origin of the universe.

Quantum mechanics and general relativity


Gravity Probe B (GP-B) has measured spacetime curvature near Earth to test related models in application of Einstein's general theory of relativity.

The graviton

At present, one of the deepest problems in theoretical physics is harmonizing the theory of general relativity, which describes gravitation, and applications to large-scale structures (stars, planets, galaxies), with quantum mechanics, which describes the other three fundamental forces acting on the atomic scale. This problem must be put in the proper context, however. In particular, contrary to the popular claim that quantum mechanics and general relativity are fundamentally incompatible, one can demonstrate that the structure of general relativity essentially follows inevitably from the quantum mechanics of interacting theoretical spin-2 massless particles (called gravitons).[7][8][9][10][11]
While there is no concrete proof of the existence of gravitons, quantized theories of matter may necessitate their existence.[citation needed] Supporting this theory is the observation that all fundamental forces except gravity have one or more known messenger particles, leading researchers to believe that at least one most likely does exist; they have dubbed these hypothetical particles gravitons. The predicted find would result in the classification of the graviton as a "force particle" similar to the photon of the electromagnetic field. Many of the accepted notions of a unified theory of physics since the 1970s assume, and to some degree depend upon, the existence of the graviton. These include string theory, superstring theory, M-theory, and loop quantum gravity. Detection of gravitons is thus vital to the validation of various lines of research to unify quantum mechanics and relativity theory.

The dilaton

The dilaton made its first appearance in Kaluza–Klein theory, a five-dimensional theory that combined gravitation and electromagnetism. Generally, it appears in string theory. More recently, it has appeared in the lower-dimensional many-bodied gravity problem[12] based on the field theoretic approach of Roman Jackiw. The impetus arose from the fact that complete analytical solutions for the metric of a covariant N-body system have proven elusive in General Relativity. To simplify the problem, the number of dimensions was lowered to (1+1) namely one spatial dimension and one temporal dimension. This model problem, known as R=T theory[13] (as opposed to the general G=T theory) was amenable to exact solutions in terms of a generalization of the Lambert W function. It was also found that the field equation governing the dilaton (derived from differential geometry) was the Schrödinger equation and consequently amenable to quantization.[14]
Thus, one had a theory which combined gravity, quantization and even the electromagnetic interaction, promising ingredients of a fundamental physical theory. It is worth noting that the outcome revealed a previously unknown and already existing natural link between general relativity and quantum mechanics. However, this theory needs to be generalized in (2+1) or (3+1) dimensions although, in principle, the field equations are amenable to such generalization as shown with the inclusion of a one-graviton process[15] and yielding the correct Newtonian limit in d dimensions if a dilaton is included. However, it is not yet clear what the fully generalized field equation governing the dilaton in (3+1) dimensions should be. This is further complicated by the fact that gravitons can propagate in (3+1) dimensions and consequently that would imply gravitons and dilatons exist in the real world. Moreover, detection of the dilaton is expected to be even more elusive than the graviton. However, since this approach allows for the combination of gravitational, electromagnetic and quantum effects, their coupling could potentially lead to a means of vindicating the theory, through cosmology and perhaps even experimentally.

Nonrenormalizability of gravity

General relativity, like electromagnetism, is a classical field theory. One might expect that, as with electromagnetism, there should be a corresponding quantum field theory.
However, gravity is perturbatively nonrenormalizable.[16] [17] For a quantum field theory to be well-defined according to this understanding of the subject, it must be asymptotically free or asymptotically safe. The theory must be characterized by a choice of finitely many parameters, which could, in principle, be set by experiment. For example, in quantum electrodynamics, these parameters are the charge and mass of the electron, as measured at a particular energy scale.

On the other hand, in quantizing gravity, there are infinitely many independent parameters (counterterm coefficients) needed to define the theory. For a given choice of those parameters, one could make sense of the theory, but since we can never do infinitely many experiments to fix the values of every parameter, we do not have a meaningful physical theory:
  • At low energies, the logic of the renormalization group tells us that, despite the unknown choices of these infinitely many parameters, quantum gravity will reduce to the usual Einstein theory of general relativity.
  • On the other hand, if we could probe very high energies where quantum effects take over, then every one of the infinitely many unknown parameters would begin to matter, and we could make no predictions at all.
As explained below, there is a way around this problem by treating QG as an effective field theory.
Any meaningful theory of quantum gravity that makes sense and is predictive at all energy scales must have some deep principle that reduces the infinitely many unknown parameters to a finite number that can then be measured.
  • One possibility is that normal perturbation theory is not a reliable guide to the renormalizability of the theory, and that there really is a UV fixed point for gravity. Since this is a question of non-perturbative quantum field theory, it is difficult to find a reliable answer, but some people still pursue this option.
  • Another possibility is that there are new symmetry principles that constrain the parameters and reduce them to a finite set. This is the route taken by string theory, where all of the excitations of the string essentially manifest themselves as new symmetries.

QG as an effective field theory

In an effective field theory, all but the first few of the infinite set of parameters in a non-renormalizable theory are suppressed by huge energy scales and hence can be neglected when computing low-energy effects. Thus, at least in the low-energy regime, the model is indeed a predictive quantum field theory.[6] (A very similar situation occurs for the very similar effective field theory of low-energy pions.) Furthermore, many theorists agree that even the Standard Model should really be regarded as an effective field theory as well, with "nonrenormalizable" interactions suppressed by large energy scales and whose effects have consequently not been observed experimentally.
Recent work[6] has shown that by treating general relativity as an effective field theory, one can actually make legitimate predictions for quantum gravity, at least for low-energy phenomena. An example is the well-known calculation of the tiny first-order quantum-mechanical correction to the classical Newtonian gravitational potential between two masses.

Spacetime background dependence

A fundamental lesson of general relativity is that there is no fixed spacetime background, as found in Newtonian mechanics and special relativity; the spacetime geometry is dynamic. While easy to grasp in principle, this is the hardest idea to understand about general relativity, and its consequences are profound and not fully explored, even at the classical level. To a certain extent, general relativity can be seen to be a relational theory,[18] in which the only physically relevant information is the relationship between different events in space-time.
On the other hand, quantum mechanics has depended since its inception on a fixed background (non-dynamic) structure. In the case of quantum mechanics, it is time that is given and not dynamic, just as in Newtonian classical mechanics. In relativistic quantum field theory, just as in classical field theory, Minkowski spacetime is the fixed background of the theory.

String theory


Interaction in the subatomic world: world lines of point-like particles in the Standard Model or a world sheet swept up by closed strings in string theory

String theory can be seen as a generalization of quantum field theory where instead of point particles, string-like objects propagate in a fixed spacetime background, although the interactions among closed strings give rise to space-time in a dynamical way. Although string theory had its origins in the study of quark confinement and not of quantum gravity, it was soon discovered that the string spectrum contains the graviton, and that "condensation" of certain vibration modes of strings is equivalent to a modification of the original background. In this sense, string perturbation theory exhibits exactly the features one would expect of a perturbation theory that may exhibit a strong dependence on asymptotics (as seen, for example, in the AdS/CFT correspondence) which is a weak form of background dependence.

Background independent theories

Loop quantum gravity is the fruit of an effort to formulate a background-independent quantum theory.

Topological quantum field theory provided an example of background-independent quantum theory, but with no local degrees of freedom, and only finitely many degrees of freedom globally. This is inadequate to describe gravity in 3+1 dimensions, which has local degrees of freedom according to general relativity. In 2+1 dimensions, however, gravity is a topological field theory, and it has been successfully quantized in several different ways, including spin networks.

Semi-classical quantum gravity

Quantum field theory on curved (non-Minkowskian) backgrounds, while not a full quantum theory of gravity, has shown many promising early results. In an analogous way to the development of quantum electrodynamics in the early part of the 20th century (when physicists considered quantum mechanics in classical electromagnetic fields), the consideration of quantum field theory on a curved background has led to predictions such as black hole radiation.

Phenomena such as the Unruh effect, in which particles exist in certain accelerating frames but not in stationary ones, do not pose any difficulty when considered on a curved background (the Unruh effect occurs even in flat Minkowskian backgrounds). The vacuum state is the state with the least energy (and may or may not contain particles). See Quantum field theory in curved spacetime for a more complete discussion.

Points of tension

There are other points of tension between quantum mechanics and general relativity.
  • First, classical general relativity breaks down at singularities, and quantum mechanics becomes inconsistent with general relativity in the neighborhood of singularities (however, no one is certain that classical general relativity applies near singularities in the first place).
  • Second, it is not clear how to determine the gravitational field of a particle, since under the Heisenberg uncertainty principle of quantum mechanics its location and velocity cannot be known with certainty. The resolution of these points may come from a better understanding of general relativity.[19]
  • Third, there is the Problem of time in quantum gravity. Time has a different meaning in quantum mechanics and general relativity and hence there are subtle issues to resolve when trying to formulate a theory which combines the two.[20]

Candidate theories

There are a number of proposed quantum gravity theories.[21] Currently, there is still no complete and consistent quantum theory of gravity, and the candidate models still need to overcome major formal and conceptual problems. They also face the common problem that, as yet, there is no way to put quantum gravity predictions to experimental tests, although there is hope for this to change as future data from cosmological observations and particle physics experiments becomes available.[22][23]

String theory

Projection of a Calabi–Yau manifold, one of the ways of compactifying the extra dimensions posited by string theory

One suggested starting point is ordinary quantum field theories which, after all, are successful in describing the other three basic fundamental forces in the context of the standard model of elementary particle physics. However, while this leads to an acceptable effective (quantum) field theory of gravity at low energies,[24] gravity turns out to be much more problematic at higher energies. Where, for ordinary field theories such as quantum electrodynamics, a technique known as renormalization is an integral part of deriving predictions which take into account higher-energy contributions,[25] gravity turns out to be nonrenormalizable: at high energies, applying the recipes of ordinary quantum field theory yields models that are devoid of all predictive power.[26]

One attempt to overcome these limitations is to replace ordinary quantum field theory, which is based on the classical concept of a point particle, with a quantum theory of one-dimensional extended objects: string theory.[27] At the energies reached in current experiments, these strings are indistinguishable from point-like particles, but, crucially, different modes of oscillation of one and the same type of fundamental string appear as particles with different (electric and other) charges. In this way, string theory promises to be a unified description of all particles and interactions.[28] The theory is successful in that one mode will always correspond to a graviton, the messenger particle of gravity; however, the price to pay are unusual features such as six extra dimensions of space in addition to the usual three for space and one for time.[29]

In what is called the second superstring revolution, it was conjectured that both string theory and a unification of general relativity and supersymmetry known as supergravity[30] form part of a hypothesized eleven-dimensional model known as M-theory, which would constitute a uniquely defined and consistent theory of quantum gravity.[31][32] As presently understood, however, string theory admits a very large number (10500 by some estimates) of consistent vacua, comprising the so-called "string landscape". Sorting through this large family of solutions remains a major challenge.

Loop quantum gravity

Simple spin network of the type used in loop quantum gravity

Loop quantum gravity is based first of all on the idea to take seriously the insight of general relativity that spacetime is a dynamical field and therefore is a quantum object. The second idea is that the quantum discreteness that determines the particle-like behavior of other field theories (for instance, the photons of the electromagnetic field) affects also the structure of space.

The main result of loop quantum gravity is the derivation of a granular structure of space at the Planck length. This is derived as follows. In the case of electromagnetism, the quantum operator representing the energy of each frequency of the field has discrete spectrum. Therefore the energy of each frequency is quantized, and the quanta are the photons. In the case of gravity, the operators representing the area and the volume of each surface or space region have discrete spectrum. Therefore area and volume of any portion of space are quantized, and the quanta are elementary quanta of space. It follows that spacetime has an elementary quantum granular structure at the Planck scale, which cuts-off the ultraviolet infinities of quantum field theory.

The quantum state of spacetime is described in the theory by means of a mathematical structure called spin networks. Spin networks were initially introduced by Roger Penrose in abstract form, and later shown by Carlo Rovelli and Lee Smolin to derive naturally from a non perturbative quantization of general relativity. Spin networks do not represent quantum states of a field in spacetime: they represent directly quantum states of spacetime.

The theory is based on the reformulation of general relativity known as Ashtekar variables, which represent geometric gravity using mathematical analogues of electric and magnetic fields.[33][34] In the quantum theory space is represented by a network structure called a spin network, evolving over time in discrete steps.[35][36][37][38]

The dynamics of the theory is today constructed in several versions. One version starts with the canonical quantization of general relativity. The analogue of the Schrödinger equation is a Wheeler–DeWitt equation, which can be defined in the theory.[39] In the covariant, or spinfoam formulation of the theory, the quantum dynamics is obtained via a sum over discrete versions of spacetime, called spinfoams. These represent histories of spin networks.

Other approaches

There are a number of other approaches to quantum gravity. The approaches differ depending on which features of general relativity and quantum theory are accepted unchanged, and which features are modified.[40][41] Examples include:

Weinberg–Witten theorem

In quantum field theory, the Weinberg–Witten theorem places some constraints on theories of composite gravity/emergent gravity. However, recent developments attempt to show that if locality is only approximate and the holographic principle is correct, the Weinberg–Witten theorem would not be valid[citation needed].

Experimental tests

As was emphasized above, quantum gravitational effects are extremely weak and therefore difficult to test. For this reason, the possibility of experimentally testing quantum gravity had not received much attention prior to the late 1990s. However, in the past decade, physicists have realized that evidence for quantum gravitational effects can guide the development of the theory. Since theoretical development has been slow, the field of phenomenological quantum gravity, which studies the possibility of experimental tests, has obtained increased attention.[53][54]

The most widely pursued possibilities for quantum gravity phenomenology include violations of Lorentz invariance, imprints of quantum gravitational effects in the cosmic microwave background (in particular its polarization), and decoherence induced by fluctuations in the space-time foam.

The BICEP2 experiment detected primordial B-mode polarization caused by gravitational waves in the early universe. The waves were born as quantum fluctuations in gravity itself. Cosmologist Ken Olum (Tufts University) stated: "I think this is the only observational evidence that we have that actually shows that gravity is quantized....It's probably the only evidence of this that we will ever have."[55]

Virtual particle

From Wikipedia, the free encyclopedia
 
In physics, a virtual particle is an explanatory conceptual entity that is found in mathematical calculations about quantum field theory. It refers to mathematical terms that have some appearance of representing particles inside a subatomic process such as a collision. Virtual particles, however, do not appear directly amongst the observable and detectable input and output quantities of those calculations, which refer only to actual, as distinct from virtual, particles. Virtual particle terms represent "particles" that are said to be 'off mass shell'. For example, they progress backwards in time, do not conserve energy, or travel faster than light. That is to say, looked at one by one, they appear to virtually violate basic laws of physics. Actual particles of course never do so. Virtual particles occur in combinations that mutually more or less nearly cancel from the actual output quantities, so that no actual violation of the laws of physics occurs. Often the virtual-particle virtual "events" appear to occur close to one another in time, for example within the time scale of a collision, so that they are virtually and apparently "short-lived". If the mathematical terms that are interpreted as representing virtual particles are omitted from the calculations, the result is an approximation that may or may not be near the correct and accurate answer obtained from the proper full calculation.[1][2][3]

Quantum theory is different from classical theory. The difference is in accounting for the inner workings of subatomic processes. Classical physics cannot account for such. It was pointed out by Heisenberg that what "actually" or "really" occurs inside such subatomic processes as collisions is not directly observable and no unique and physically definite visualization is available for it. Quantum mechanics has the specific merit of by-passing speculation about such inner workings. It restricts itself to what is actually observable and detectable. Virtual particles are conceptual devices that in a sense try to by-pass Heisenberg's insight, by offering putative or virtual explanatory visualizations for the inner workings of subatomic processes.

A virtual particle does not necessarily appear to carry the same mass as the corresponding real particle. This is because it appears as "short-lived" and "transient", so that the uncertainty principle allows it to appear not to conserve energy and momentum. The longer a virtual particle appears to "live", the closer its characteristics come to those of an actual particle.

Virtual particles appear in many processes, including particle scattering and Casimir forces. In quantum field theory, even classical forces — such as the electromagnetic repulsion or attraction between two charges — can be thought of as due to the exchange of many virtual photons between the charges.

Virtual particles appear in calculations of subatomic interactions, but never as asymptotic states or indices to the scattering matrix. A subatomic process involving virtual particles is schematically representable by a Feynman diagram in which they are represented by internal lines.

Antiparticles should not be confused with virtual particles or virtual antiparticles.

Note that it is common to find physicists who believe that, because of its intrinsically perturbative character, the concept of virtual particles is a frequently confusing and misleading one, and is thus best to be avoided.[4][5]

Properties

The concept of virtual particles arises in the perturbation theory of quantum field theory, an approximation scheme in which interactions (in essence, forces) between actual particles are calculated in terms of exchanges of virtual particles. Such calculations are often performed using schematic representations known as Feynman diagrams, in which virtual particles appear as internal lines. By expressing the interaction in terms of the exchange of a virtual particle with four-momentum q, where q is given by the difference between the four-momenta of the particles entering and leaving the interaction vertex, both momentum and energy are conserved at the interaction vertices of the Feynman diagram. [6]

A virtual particle does not precisely obey the formula m2c4 = E2 − p2c2.[7] In other words, its kinetic energy may not have the usual relationship to velocity–indeed, it can be negative. This is expressed by the phrase off mass shell. The probability amplitude for a virtual particle to exist tends to be canceled out by destructive interference over longer distances and times. A virtual particle can be considered a manifestation of quantum tunnelling. The range of forces carried by virtual particles is limited by the uncertainty principle, which regards energy and time as conjugate variables; thus, virtual particles of larger mass have more limited range.[citation needed]

Written in the usual mathematical notations, in the equations of physics, there is no mark of the distinction between virtual and actual particles. The amplitude that a virtual particle exists interferes with the amplitude for its non-existence, whereas for an actual particle the cases of existence and non-existence cease to be coherent with each other and do not interfere any more. In the quantum field theory view, actual particles are viewed as being detectable excitations of underlying quantum fields. Virtual particles are also viewed as excitations of the underlying fields, but appear only as forces, not as detectable particles. They are "temporary" in the sense that they appear in calculations, but are not detected as single particles. Thus, in mathematical terms, they never appear as indices to the scattering matrix, which is to say, they never appear as the observable inputs and outputs of the physical process being modelled.

There are two principal ways in which the notion of virtual particles appears in modern physics. They appear as intermediate terms in Feynman diagrams; that is, as terms in a perturbative calculation. They also appear as an infinite set of states to be summed or integrated over in the calculation of a semi-non-perturbative effect. In the latter case, it is sometimes said that virtual particles contribute to a mechanism that mediates the effect, or that the effect occurs through the virtual particles. [8]

Manifestations

There are many observable physical phenomena that arise in interactions involving virtual particles. For bosonic particles that exhibit rest mass when they are free and actual, virtual interactions are characterized by the relatively short range of the force interaction produced by particle exchange.[citation needed] Examples of such short-range interactions are the strong and weak forces, and their associated field bosons. For the gravitational and electromagnetic forces, the zero rest-mass of the associated boson particle permits long-range forces to be mediated by virtual particles. However, in the case of photons, power and information transfer by virtual particles is a relatively short-range phenomenon (existing only within a few wavelengths of the field-disturbance, which carries information or transferred power), as for example seen in the characteristically short range of inductive and capacitative effects in the near field zone of coils and antennas.[citation needed]

Some field interactions which may be seen in terms of virtual particles are:
  • The Coulomb force (static electric force) between electric charges. It is caused by the exchange of virtual photons. In symmetric 3-dimensional space this exchange results in the inverse square law for electric force. Since the photon has no mass, the coulomb potential has an infinite range.
  • The magnetic field between magnetic dipoles. It is caused by the exchange of virtual photons. In symmetric 3-dimensional space this exchange results in the inverse cube law for magnetic force. Since the photon has no mass, the magnetic potential has an infinite range.
  • Electromagnetic induction. This phenomenon transfers energy to and from a magnetic coil via a changing (electro)magnetic field.
  • The strong nuclear force between quarks is the result of interaction of virtual gluons. The residual of this force outside of quark triplets (neutron and proton) holds neutrons and protons together in nuclei, and is due to virtual mesons such as the pi meson and rho meson.
  • The weak nuclear force - it is the result of exchange by virtual W and Z bosons.
  • The spontaneous emission of a photon during the decay of an excited atom or excited nucleus; such a decay is prohibited by ordinary quantum mechanics and requires the quantization of the electromagnetic field for its explanation.
  • The Casimir effect, where the ground state of the quantized electromagnetic field causes attraction between a pair of electrically neutral metal plates.
  • The van der Waals force, which is partly due to the Casimir effect between two atoms.
  • Vacuum polarization, which involves pair production or the decay of the vacuum, which is the spontaneous production of particle-antiparticle pairs (such as electron-positron).
  • Lamb shift of positions of atomic levels.
  • Hawking radiation, where the gravitational field is so strong that it causes the spontaneous production of photon pairs (with black body energy distribution) and even of particle pairs.
  • Much of the so-called near-field of radio antennas, where the magnetic and electric effects of the changing current in the antenna wire and the charge effects of the wire's capacitive charge may be (and usually are) important contributors to the total EM field close to the source, but both of which effects are dipole effects that decay with increasing distance from the antenna much more quickly than do the influence of "conventional" electromagnetic waves that are "far" from the source. ["Far" in terms of ratio of antenna length or diameter, to wavelength]. These far-field waves, for which E is (in the limit of long distance) equal to cB, are composed of actual photons. It should be noted that actual and virtual photons are mixed near an antenna, with the virtual photons responsible only for the "extra" magnetic-inductive and transient electric-dipole effects, which cause any imbalance between E and cB. As distance from the antenna grows, the near-field effects (as dipole fields) die out more quickly, and only the "radiative" effects that are due to actual photons remain as important effects. Although virtual effects extend to infinity, they drop off in field strength as 1/r2 rather than the field of EM waves composed of actual photons, which drop 1/r (the powers, respectively, decrease as 1/r4 and 1/r2). See near and far field for a more detailed discussion. See near field communication for practical communications applications of near fields.
Most of these have analogous effects in solid-state physics; indeed, one can often gain a better intuitive understanding by examining these cases. In semiconductors, the roles of electrons, positrons and photons in field theory are replaced by electrons in the conduction band, holes in the valence band, and phonons or vibrations of the crystal lattice. A virtual particle is in a virtual state where the probability amplitude is not conserved. Examples of macroscopic virtual phonons, photons, and electrons in the case of the tunneling process were presented by Günter Nimtz [9] and Alfons A. Stahlhofen.[10]

History

Paul Dirac was the first to propose that empty space (a vacuum) can be visualized as consisting of a sea of electrons with negative energy, known as the Dirac sea. The Dirac sea has a direct analog to the electronic band structure in crystalline solids as described in solid state physics. Here, particles correspond to conduction electrons, and antiparticles to holes. A variety of interesting phenomena can be attributed to this structure. The development of quantum field theory (QFT) in the 1930s made it possible to reformulate the Dirac equation in a way that treats the positron as a "real" particle rather than the absence of a particle, and makes the vacuum the state in which no particles exist instead of an infinite sea of particles.

Feynman diagrams


One particle exchange scattering diagram

The calculation of scattering amplitudes in theoretical particle physics requires the use of some rather large and complicated integrals over a large number of variables. These integrals do, however, have a regular structure, and may be represented as Feynman diagrams. The appeal of the Feynman diagrams is strong, as it allows for a simple visual presentation of what would otherwise be a rather arcane and abstract formula. In particular, part of the appeal is that the outgoing legs of a Feynman diagram can be associated with actual, on-shell particles. Thus, it is natural to associate the other lines in the diagram with particles as well, called the "virtual particles". In mathematical terms, they correspond to the propagators appearing in the diagram.

In the image to the right, the solid lines correspond to actual particles (of momentum p1 and so on), while the dotted line corresponds to a virtual particle carrying momentum k. For example, if the solid lines were to correspond to electrons interacting by means of the electromagnetic interaction, the dotted line would correspond to the exchange of a virtual photon. In the case of interacting nucleons, the dotted line would be a virtual pion. In the case of quarks interacting by means of the strong force, the dotted line would be a virtual gluon, and so on.

One-loop diagram with fermion propagator

Virtual particles may be mesons or vector bosons, as in the example above; they may also be fermions. However, in order to preserve quantum numbers, most simple diagrams involving fermion exchange are prohibited. The image to the right shows an allowed diagram, a one-loop diagram. The solid lines correspond to a fermion propagator, the wavy lines to bosons.

Vacuums

In formal terms, a particle is considered to be an eigenstate of the particle number operator aa, where a is the particle annihilation operator and a the particle creation operator (sometimes collectively called ladder operators). In many cases, the particle number operator does not commute with the Hamiltonian for the system. This implies the number of particles in an area of space is not a well-defined quantity but, like other quantum observables, is represented by a probability distribution. Since these particles do not have a permanent existence,[clarification needed] they are called virtual particles or vacuum fluctuations of vacuum energy. In a certain sense, they can be understood to be a manifestation of the time-energy uncertainty principle in a vacuum.[11][12]
An important example of the "presence" of virtual particles in a vacuum is the Casimir effect.[13] Here, the explanation of the effect requires that the total energy of all of the virtual particles in a vacuum can be added together. Thus, although the virtual particles themselves are not directly observable in the laboratory, they do leave an observable effect: Their zero-point energy results in forces acting on suitably arranged metal plates or dielectrics. By other hand, Casimir effect can be interpreted as relativistic van der Waals force.

Pair production

In order to conserve the total fermion number of the universe, a fermion cannot be created without also creating its antiparticle; thus, many physical processes lead to pair creation. The need for the normal ordering of particle fields in the vacuum can be interpreted by the idea that a pair of virtual particles may briefly "pop into existence", and then annihilate each other a short while later.
Thus, virtual particles are often popularly described as coming in pairs, a particle and antiparticle, which can be of any kind. These pairs exist for an extremely short time, and mutually annihilate in short order. In some cases, however, it is possible to boost the pair apart using external energy so that they avoid annihilation and become actual particles.

This may occur in one of two ways. In an accelerating frame of reference, the virtual particles may appear to be actual to the accelerating observer; this is known as the Unruh effect. In short, the vacuum of a stationary frame appears, to the accelerated observer, to be a warm gas of actual particles in thermodynamic equilibrium.

Another example is pair production in very strong electric fields, sometimes called vacuum decay. If, for example, a pair of atomic nuclei are merged to very briefly form a nucleus with a charge greater than about 140, (that is, larger than about the inverse of the fine structure constant, which is a dimensionless quantity), the strength of the electric field will be such that it will be energetically favorable to create positron-electron pairs out of the vacuum or Dirac sea, with the electron attracted to the nucleus to annihilate the positive charge. This pair-creation amplitude was first calculated by Julian Schwinger in 1951.

The restriction to particle–antiparticle pairs is actually only necessary if the particles in question carry a conserved quantity, such as electric charge, which is not present in the initial or final state. Otherwise, other situations can arise. For instance, the beta decay of a neutron can happen through the emission of a single virtual, negatively charged W particle that almost immediately decays into an actual electron and antineutrino; the neutron turns into a proton when it emits the W particle. The evaporation of a black hole is a process dominated by photons, which are their own antiparticles and are uncharged.

Actual and virtual particles compared

As a consequence of quantum mechanical uncertainty, any object or process that exists for a limited time or in a limited volume cannot have a precisely defined energy or momentum. This is the reason that virtual particles — which exist only temporarily as they are exchanged between ordinary particles — do not necessarily obey the mass-shell relation. However, the longer a virtual particle exists, the more closely it adheres to the mass-shell relation. A "virtual" particle that exists for an arbitrarily long time is simply an ordinary particle.

However, all particles have a finite lifetime, as they are created and eventually destroyed by some processes. As such, there is no absolute distinction between "real" and "virtual" particles. In practice, the lifetime of "ordinary" particles is far longer than the lifetime of the virtual particles that contribute to processes in particle physics, and as such the distinction is useful to make.

Education

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Education Education is the transmissio...