Search This Blog

Friday, February 6, 2015

Analytic geometry


From Wikipedia, the free encyclopedia


Cartesian coordinates

In classical mathematics, analytic geometry, also known as coordinate geometry, or Cartesian geometry, is the study of geometry using a coordinate system. This contrasts with synthetic geometry.

Analytic geometry is widely used in physics and engineering, and is the foundation of most modern fields of geometry, including algebraic, differential, discrete and computational geometry.

Usually the Cartesian coordinate system is applied to manipulate equations for planes, straight lines, and squares, often in two and sometimes in three dimensions. Geometrically, one studies the Euclidean plane (two dimensions) and Euclidean space (three dimensions). As taught in school books, analytic geometry can be explained more simply: it is concerned with defining and representing geometrical shapes in a numerical way and extracting numerical information from shapes' numerical definitions and representations. The numerical output, however, might also be a vector or a shape. That the algebra of the real numbers can be employed to yield results about the linear continuum of geometry relies on the Cantor–Dedekind axiom.

History

Ancient Greece

The Greek mathematician Menaechmus solved problems and proved theorems by using a method that had a strong resemblance to the use of coordinates and it has sometimes been maintained that he had introduced analytic geometry.[1]

Apollonius of Perga, in On Determinate Section, dealt with problems in a manner that may be called an analytic geometry of one dimension; with the question of finding points on a line that were in a ratio to the others.[2] Apollonius in the Conics further developed a method that is so similar to analytic geometry that his work is sometimes thought to have anticipated the work of Descartes by some 1800 years. His application of reference lines, a diameter and a tangent is essentially no different from our modern use of a coordinate frame, where the distances measured along the diameter from the point of tangency are the abscissas, and the segments parallel to the tangent and intercepted between the axis and the curve are the ordinates. He further developed relations between the abscissas and the corresponding ordinates that are equivalent to rhetorical equations of curves. However, although Apollonius came close to developing analytic geometry, he did not manage to do so since he did not take into account negative magnitudes and in every case the coordinate system was superimposed upon a given curve a posteriori instead of a priori. That is, equations were determined by curves, but curves were not determined by equations. Coordinates, variables, and equations were subsidiary notions applied to a specific geometric situation.[3]

Persia

The eleventh century Persian mathematician Omar Khayyám saw a strong relationship between geometry and algebra, and was moving in the right direction when he helped to close the gap between numerical and geometric algebra[4] with his geometric solution of the general cubic equations,[5] but the decisive step came later with Descartes.[4]

Western Europe

Analytic geometry was independently invented by René Descartes and Pierre de Fermat,[6][7] although Descartes is sometimes given sole credit.[8][9] Cartesian geometry, the alternative term used for analytic geometry, is named after Descartes.

Descartes made significant progress with the methods in an essay titled La Geometrie (Geometry), one of the three accompanying essays (appendices) published in 1637 together with his Discourse on the Method for Rightly Directing One's Reason and Searching for Truth in the Sciences, commonly referred to as Discourse on Method. This work, written in his native French tongue, and its philosophical principles, provided a foundation for calculus in Europe. Initially the work was not well received, due, in part, to the many gaps in arguments and complicated equations. Only after the translation into Latin and the addition of commentary by van Schooten in 1649 (and further work thereafter) did Descarte's masterpiece receive due recognition.[10]

Pierre de Fermat also pioneered the development of analytic geometry. Although not published in his lifetime, a manuscript form of Ad locos planos et solidos isagoge (Introduction to Plane and Solid Loci) was circulating in Paris in 1637, just prior to the publication of Descartes' Discourse.[11][12][13] Clearly written and well received, the Introduction also laid the groundwork for analytical geometry. The key difference between Fermat's and Descartes' treatments is a matter of viewpoint: Fermat always started with an algebraic equation and then described the geometric curve which satisfied it, whereas Descartes started with geometric curves and produced their equations as one of several properties of the curves.[10] As a consequence of this approach, Descartes had to deal with more complicated equations and he had to develop the methods to work with polynomial equations of higher degree.

Coordinates

Illustration of a Cartesian coordinate plane. Four points are marked and labeled with their coordinates: (2,3) in green, (−3,1) in red, (−1.5,−2.5) in blue, and the origin (0,0) in purple.

In analytic geometry, the plane is given a coordinate system, by which every point has a pair of real number coordinates. Similarly, Euclidean space is given coordinates where every point has three coordinates. There are a variety of coordinate systems used, but the most common are the following:[14]

Cartesian coordinates

The most common coordinate system to use is the Cartesian coordinate system, where each point has an x-coordinate representing its horizontal position, and a y-coordinate representing its vertical position. These are typically written as an ordered pair (xy). This system can also be used for three-dimensional geometry, where every point in Euclidean space is represented by an ordered triple of coordinates (xyz).

Polar coordinates

In polar coordinates, every point of the plane is represented by its radius r from the origin and its angle θ.

Cylindrical coordinates

In cylindrical coordinates, every point of space is represented by its height z, its radius r from the z-axis and the angle θ it makes with respect to its projection on the xy-plane.

Spherical coordinates

In spherical coordinates, every point in space is represented by its distance ρ from the origin, the angle θ it makes with respect to its projection on the xy-plane, and the angle φ that it makes with respect to the z-axis. The names of the angles are often reversed in physics.[14]

Equations and curves

In analytic geometry, any equation involving the coordinates specifies a subset of the plane, namely the solution set for the equation, or locus. For example, the equation y = x corresponds to the set of all the points on the plane whose x-coordinate and y-coordinate are equal. These points form a line, and y = x is said to be the equation for this line. In general, linear equations involving x and y specify lines, quadratic equations specify conic sections, and more complicated equations describe more complicated figures.[15]
Usually, a single equation corresponds to a curve on the plane. This is not always the case: the trivial equation x = x specifies the entire plane, and the equation x2 + y2 = 0 specifies only the single point (0, 0). In three dimensions, a single equation usually gives a surface, and a curve must be specified as the intersection of two surfaces (see below), or as a system of parametric equations.[16] The equation x2 + y2 = r2 is the equation for any circle with a radius of r.

The distance formula on the plane follows from the Pythagorean theorem.

Lines and planes

Lines in a Cartesian plane or, more generally, in affine coordinates, can be described algebraically by linear equations. In two dimensions, the equation for non-vertical lines is often given in the slope-intercept form:
 y = mx + b \,
where:
m is the slope or gradient of the line.
b is the y-intercept of the line.
x is the independent variable of the function y = f(x).
In a manner analogous to the way lines in a two-dimensional space are described using a point-slope form for their equations, planes in a three dimensional space have a natural description using a point in the plane and a vector orthogonal to it (the normal vector) to indicate its "inclination".
Specifically, let \mathbf{r}_0 be the position vector of some point P_0 = (x_0,y_0,z_0), and let \mathbf{n} = (a,b,c) be a nonzero vector. The plane determined by this point and vector consists of those points P, with position vector \mathbf{r}, such that the vector drawn from P_0 to P is perpendicular to \mathbf{n}. Recalling that two vectors are perpendicular if and only if their dot product is zero, it follows that the desired plane can be described as the set of all points \mathbf{r} such that
\mathbf{n} \cdot (\mathbf{r}-\mathbf{r}_0)=0.
(The dot here means a dot product, not scalar multiplication.) Expanded this becomes
 a (x-x_0)+ b(y-y_0)+ c(z-z_0)=0,
which is the point-normal form of the equation of a plane.[17] This is just a linear equation:
 ax + by + cz + d = 0, \text{ where } d = -(ax_0 + by_0 + cz_0).
Conversely, it is easily shown that if a, b, c and d are constants and a, b, and c are not all zero, then the graph of the equation
 ax + by + cz + d = 0,
is a plane having the vector \mathbf{n} = (a,b,c) as a normal.[18] This familiar equation for a plane is called the general form of the equation of the plane.[19]

In three dimensions, lines can not be described by a single linear equation, so they are frequently described by parametric equations:
 x = x_0 + at \,
 y = y_0 + bt \,
 z = z_0 + ct \,
where:
x, y, and z are all functions of the independent variable t which ranges over the real numbers.
(x0, y0, z0) is any point on the line.
a, b, and c are related to the slope of the line, such that the vector (a, b, c) is parallel to the line.

Conic sections

In the Cartesian coordinate system, the graph of a quadratic equation in two variables is always a conic section – though it may be degenerate, and all conic sections arise in this way. The equation will be of the form
Ax^2 + Bxy + Cy^2 +Dx + Ey + F = 0\text{ with }A, B, C\text{ not all zero.} \,
As scaling all six constants yields the same locus of zeros, one can consider conics as points in the five-dimensional projective space \mathbf{P}^5.

The conic sections described by this equation can be classified with the discriminant[20]
B^2 - 4AC .\,
If the conic is non-degenerate, then:
  • if B^2 - 4AC < 0 , the equation represents an ellipse;
    • if A = C and B = 0 , the equation represents a circle, which is a special case of an ellipse;
  • if B^2 - 4AC = 0 , the equation represents a parabola;
  • if B^2 - 4AC > 0 , the equation represents a hyperbola;

Quadric surfaces

A quadric, or quadric surface, is a 2-dimensional surface in 3-dimensional space defined as the locus of zeros of a quadratic polynomial. In coordinates x1, x2,x3, the general quadric is defined by the algebraic equation[21]

\sum_{i,j=1}^{3} x_i Q_{ij} x_j + \sum_{i=1}^{3} P_i  x_i + R = 0
Quadric surfaces include ellipsoids (including the sphere), paraboloids, hyperboloids, cylinders, cones, and planes.

Distance and angle

In analytic geometry, geometric notions such as distance and angle measure are defined using formulas. These definitions are designed to be consistent with the underlying Euclidean geometry. For example, using Cartesian coordinates on the plane, the distance between two points (x1y1) and (x2y2) is defined by the formula
d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2},\!
which can be viewed as a version of the Pythagorean theorem. Similarly, the angle that a line makes with the horizontal can be defined by the formula
\theta = \arctan(m)\!
where m is the slope of the line.

In three dimensions, distance is given by the generalization of the Pythagorean theorem:
d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2+ (z_2 - z_1)^2},\!,
while the angle between two vectors is given by the dot product. The dot product of two Euclidean vectors A and B is defined by[22]
\mathbf A\cdot\mathbf B = \|\mathbf A\|\,\|\mathbf B\|\cos\theta,
where θ is the angle between A and B.

Transformations


a) y = f(x) = |x|       b) y = f(x+3)       c) y = f(x)-3       d) y = 1/2 f(x)
 Transformations are applied to a parent function to turn it into a new function with similar characteristics.

The graph of R(x,y) is changed by standard transformations as follows:
  • Changing x to x-h moves the graph to the right h units.
  • Changing y to y-k moves the graph up k units.
  • Changing x to x/b stretches the graph horizontally by a factor of b. (think of the x as being dilated)
  • Changing y to y/a stretches the graph vertically.
  • Changing x to x\cos A+ y\sin A and changing y to -x\sin A + y\cos A rotates the graph by an angle A.
There are other standard transformation not typically studied in elementary analytic geometry because the transformations change the shape of objects in ways not usually considered. Skewing is an example of a transformation not usually considered. For more information, consult the Wikipedia article on affine transformations.

For example, the parent function y=1/x has a horizontal and a vertical asymptote, and occupies the first and third quadrant, and all of its transformed forms have one horizontal and vertical asymptote,and occupies either the 1st and 3rd or 2nd and 4th quadrant. In general, if y=f(x), then it can be transformed into y=af(b(x-k))+h. In the new transformed function, a is the factor that vertically stretches the function if it is greater than 1 or vertically compresses the function if it is less than 1, and for negative a values, the function is reflected in the x-axis. The b value compresses the graph of the function horizontally if greater than 1 and stretches the function horizontally if less than 1, and like a, reflects the function in the y-axis when it is negative. The k and h values introduce translations, h, vertical, and k horizontal. Positive h and k values mean the function is translated to the positive end of its axis and negative meaning translation towards the negative end.

Transformations can be applied to any geometric equation whether or not the equation represents a function. Transformations can be considered as individual transactions or in combinations.
Suppose that R(x,y) is a relation in the xy plane. For example
x^2+y^2-1=0
is the relation that describes the unit circle.

Finding intersections of geometric objects

For two geometric objects P and Q represented by the relations P(x,y) and Q(x,y) the intersection is the collection of all points (x,y) which are in both relations.[23]For example, P might be the circle with radius 1 and center (0,0): P = \{(x,y) | x^2+y^2=1\} and Q might be the circle with radius 1 and center (1,0): Q = \{(x,y) | (x-1)^2+y^2=1\}.
The intersection of these two circles is the collection of points which make both equations true. Does the point (0,0) make both equations true? Using (0,0) for (x,y), the equation for Q becomes (0-1)^2+0^2=1 or (-1)^2=1 which is true, so (0,0) is in the relation Q. On the other hand, still using (0,0) for (x,y) the equation for P becomes 0^2+0^2=1 or 0=1 which is false. (0,0) is not in P so it is not in the intersection.

The intersection of P and Q can be found by solving the simultaneous equations:
x^2+y^2 = 1
(x-1)^2+y^2 = 1

Traditional methods for finding intersections include substitution and elimination.

Substitution: Solve the first equation for y in terms of x and then substitute the expression for y into the second equation.
x^2+y^2 = 1
y^2=1-x^2 We then substitute this value for y^2 into the other equation:
(x-1)^2+(1-x^2)=1 and proceed to solve for x:
x^2 -2x +1 +1 -x^2 =1
-2x = -1
x=1/2

We next place this value of x in either of the original equations and solve for y:
(1/2)^2+y^2 = 1
y^2 =3/4
y = \frac{\pm \sqrt{3}}{2}
So that our intersection has two points:
 \left(1/2,\frac{+ \sqrt{3}}{2}\right) \;\;  \mathrm{and} \;\;  \left(1/2,\frac{-\sqrt{3}}{2}\right)
Elimination: Add (or subtract) a multiple of one equation to the other equation so that one of the variables is eliminated. For our current example, If we subtract the first equation from the second we get: (x-1)^2-x^2=0  The y^2 in the first equation is subtracted from the y^2 in the second equation leaving no y term. The variable y has been eliminated. We then solve the remaining equation for x, in the same way as in the substitution method. x^2 -2x +1 +1 -x^2 =1 -2x = -1 x=1/2 We next place this value of x in either of the original equations and solve for y: (1/2)^2+y^2 = 1
y^2 = 3/4
y = \frac{\pm \sqrt{3}}{2}
So that our intersection has two points:
 \left(1/2,\frac{+ \sqrt{3}}{2}\right) \;\;  \mathrm{and} \;\; \left(1/2,\frac{-\sqrt{3}}{2}\right)
For conic sections, as many as 4 points might be in the intersection.

Finding intercepts

One type of intersection which is widely studied is the intersection of a geometric object with the x and y coordinate axes.
The intersection of a geometric object and the y-axis is called the y-intercept of the object. The intersection of a geometric object and the x-axis is called the x-intercept of the object.

For the line y=mx+b, the parameter b specifies the point where the line crosses the y axis. Depending on the context, either b or the point (0,b) is called the y-intercept.

Tangents and normals

Tangent lines and planes

In geometry, the tangent line (or simply tangent) to a plane curve at a given point is the straight line that "just touches" the curve at that point. Informally, it is a line through a pair of infinitely close points on the curve. More precisely, a straight line is said to be a tangent of a curve y = f(x) at a point x = c on the curve if the line passes through the point (c, f(c)) on the curve and has slope f '​(c) where f '​ is the derivative of f. A similar definition applies to space curves and curves in n-dimensional Euclidean space.
As it passes through the point where the tangent line and the curve meet, called the point of tangency, the tangent line is "going in the same direction" as the curve, and is thus the best straight-line approximation to the curve at that point.

Similarly, the tangent plane to a surface at a given point is the plane that "just touches" the surface at that point. The concept of a tangent is one of the most fundamental notions in differential geometry and has been extensively generalized; see Tangent space.

Normal line and vector

In geometry, a normal is an object such as a line or vector that is perpendicular to a given object. For example, in the two-dimensional case, the normal line to a curve at a given point is the line perpendicular to the tangent line to the curve at the point.
In the three-dimensional case a surface normal, or simply normal, to a surface at a point P is a vector that is perpendicular to the tangent plane to that surface at P. The word "normal" is also used as an adjective: a line normal to a plane, the normal component of a force, the normal vector, etc.
The concept of normality generalizes to orthogonality.

Non-Euclidean geometry


From Wikipedia, the free encyclopedia


Behavior of lines with a common perpendicular in each of the three types of geometry

In mathematics, non-Euclidean geometry consists of two geometries based on axioms closely related to those specifying Euclidean geometry. As Euclidean geometry lies at the intersection of metric geometry and affine geometry, non-Euclidean geometry arises when either the metric requirement is relaxed, or the parallel postulate is replaced with an alternative one. In the latter case one obtains hyperbolic geometry and elliptic geometry, the traditional non-Euclidean geometries.
When the metric requirement is relaxed, then there are affine planes associated with the planar algebras which give rise to kinematic geometries that have also been called non-Euclidean geometry.

The essential difference between the metric geometries is the nature of parallel lines. Euclid's fifth postulate, the parallel postulate, is equivalent to Playfair's postulate, which states that, within a two-dimensional plane, for any given line and a point A, which is not on , there is exactly one line through A that does not intersect . In hyperbolic geometry, by contrast, there are infinitely many lines through A not intersecting , while in elliptic geometry, any line through A intersects .

Another way to describe the differences between these geometries is to consider two straight lines indefinitely extended in a two-dimensional plane that are both perpendicular to a third line:
  • In Euclidean geometry the lines remain at a constant distance from each other even if extended to infinity, and are known as parallels.
  • In hyperbolic geometry they "curve away" from each other, increasing in distance as one moves further from the points of intersection with the common perpendicular; these lines are often called ultraparallels.
  • In elliptic geometry the lines "curve toward" each other and intersect.

History

Early history

While Euclidean geometry, named after the Greek mathematician Euclid, includes some of the oldest known mathematics, non-Euclidean geometries were not widely accepted as legitimate until the 19th century.

The debate that eventually led to the discovery of the non-Euclidean geometries began almost as soon as Euclid's work Elements was written. In the Elements, Euclid began with a limited number of assumptions (23 definitions, five common notions, and five postulates) and sought to prove all the other results (propositions) in the work. The most notorious of the postulates is often referred to as "Euclid's Fifth Postulate," or simply the "parallel postulate", which in Euclid's original formulation is:
If a straight line falls on two straight lines in such a manner that the interior angles on the same side are together less than two right angles, then the straight lines, if produced indefinitely, meet on that side on which are the angles less than the two right angles.
Other mathematicians have devised simpler forms of this property. Regardless of the form of the postulate, however, it consistently appears to be more complicated than Euclid's other postulates (which include, for example, "Between any two points a straight line may be drawn").

For at least a thousand years, geometers were troubled by the disparate complexity of the fifth postulate, and believed it could be proved as a theorem from the other four. Many attempted to find a proof by contradiction, including Ibn al-Haytham (Alhazen, 11th century),[1] Omar Khayyám (12th century), Nasīr al-Dīn al-Tūsī (13th century), and Giovanni Girolamo Saccheri (18th century).

The theorems of Ibn al-Haytham, Khayyam and al-Tusi on quadrilaterals, including the Lambert quadrilateral and Saccheri quadrilateral, were "the first few theorems of the hyperbolic and the elliptic geometries." These theorems along with their alternative postulates, such as Playfair's axiom, played an important role in the later development of non-Euclidean geometry. These early attempts at challenging the fifth postulate had a considerable influence on its development among later European geometers, including Witelo, Levi ben Gerson, Alfonso, John Wallis and Saccheri.[2] All of these early attempts made at trying to formulate non-Euclidean geometry however provided flawed proofs of the parallel postulate, containing assumptions that were essentially equivalent to the parallel postulate. These early attempts did, however, provide some early properties of the hyperbolic and elliptic geometries.

Khayyam, for example, tried to derive it from an equivalent postulate he formulated from "the principles of the Philosopher" (Aristotle): "Two convergent straight lines intersect and it is impossible for two convergent straight lines to diverge in the direction in which they converge."[3] Khayyam then considered the three cases right, obtuse, and acute that the summit angles of a Saccheri quadrilateral can take and after proving a number of theorems about them, he correctly refuted the obtuse and acute cases based on his postulate and hence derived the classic postulate of Euclid which he didn't realize was equivalent to his own postulate. Another example is al-Tusi's son, Sadr al-Din (sometimes known as "Pseudo-Tusi"), who wrote a book on the subject in 1298, based on al-Tusi's later thoughts, which presented another hypothesis equivalent to the parallel postulate. "He essentially revised both the Euclidean system of axioms and postulates and the proofs of many propositions from the Elements."[4][5] His work was published in Rome in 1594 and was studied by European geometers, including Saccheri[4] who criticised this work as well as that of Wallis.[6]

Giordano Vitale, in his book Euclide restituo (1680, 1686), used the Saccheri quadrilateral to prove that if three points are equidistant on the base AB and the summit CD, then AB and CD are everywhere equidistant.

In a work titled Euclides ab Omni Naevo Vindicatus (Euclid Freed from All Flaws), published in 1733, Saccheri quickly discarded elliptic geometry as a possibility (some others of Euclid's axioms must be modified for elliptic geometry to work) and set to work proving a great number of results in hyperbolic geometry.

He finally reached a point where he believed that his results demonstrated the impossibility of hyperbolic geometry. His claim seems to have been based on Euclidean presuppositions, because no logical contradiction was present. In this attempt to prove Euclidean geometry he instead unintentionally discovered a new viable geometry, but did not realize it.

In 1766 Johann Lambert wrote, but did not publish, Theorie der Parallellinien in which he attempted, as Saccheri did, to prove the fifth postulate. He worked with a figure that today we call a Lambert quadrilateral, a quadrilateral with three right angles (can be considered half of a Saccheri quadrilateral). He quickly eliminated the possibility that the fourth angle is obtuse, as had Saccheri and Khayyam, and then proceeded to prove many theorems under the assumption of an acute angle. Unlike Saccheri, he never felt that he had reached a contradiction with this assumption. He had proved the non-Euclidean result that the sum of the angles in a triangle increases as the area of the triangle decreases, and this led him to speculate on the possibility of a model of the acute case on a sphere of imaginary radius. He did not carry this idea any further.[7]

At this time it was widely believed that the universe worked according to the principles of Euclidean geometry.[8]

Creation of non-Euclidean geometry

The beginning of the 19th century would finally witness decisive steps in the creation of non-Euclidean geometry. Circa 1813, Carl Friedrich Gauss and independently around 1818, the German professor of law Ferdinand Karl Schweikart[9] had the germinal ideas of non-Euclidean geometry worked out, but neither published any results. Then, around 1830, the Hungarian mathematician János Bolyai and the Russian mathematician Nikolai Ivanovich Lobachevsky separately published treatises on hyperbolic geometry. Consequently, hyperbolic geometry is called Bolyai-Lobachevskian geometry, as both mathematicians, independent of each other, are the basic authors of non-Euclidean geometry. Gauss mentioned to Bolyai's father, when shown the younger Bolyai's work, that he had developed such a geometry several years before,[10] though he did not publish. While Lobachevsky created a non-Euclidean geometry by negating the parallel postulate, Bolyai worked out a geometry where both the Euclidean and the hyperbolic geometry are possible depending on a parameter k. Bolyai ends his work by mentioning that it is not possible to decide through mathematical reasoning alone if the geometry of the physical universe is Euclidean or non-Euclidean; this is a task for the physical sciences.

Bernhard Riemann, in a famous lecture in 1854, founded the field of Riemannian geometry, discussing in particular the ideas now called manifolds, Riemannian metric, and curvature. He constructed an infinite family of geometries which are not Euclidean by giving a formula for a family of Riemannian metrics on the unit ball in Euclidean space. The simplest of these is called elliptic geometry and it is considered to be a non-Euclidean geometry due to its lack of parallel lines.[11]

By formulating the geometry in terms of a curvature tensor, Riemann allowed non-Euclidean geometry to be applied to higher dimensions.

Terminology

It was Gauss who coined the term "non-Euclidean geometry".[12] He was referring to his own work which today we call hyperbolic geometry. Several modern authors still consider "non-Euclidean geometry" and "hyperbolic geometry" to be synonyms.

Arthur Cayley noted that distance between points inside a conic could be defined in terms of logarithm and the projective cross-ratio function. The method has become called the Cayley-Klein metric because Felix Klein exploited it to describe the non-euclidean geometries in articles[13] in 1871 and 73 and later in book form. The Cayley-Klein metrics provided working models of hyperbolic and elliptic metric geometries, as well as Euclidean geometry.

Klein is responsible for the terms "hyperbolic" and "elliptic" (in his system he called Euclidean geometry "parabolic", a term which generally fell out of use[14]). His influence has led to the current usage of the term "non-Euclidean geometry" to mean either "hyperbolic" or "elliptic" geometry.

There are some mathematicians who would extend the list of geometries that should be called "non-Euclidean" in various ways.[15]

Axiomatic basis of non-Euclidean geometry

Euclidean geometry can be axiomatically described in several ways. Unfortunately, Euclid's original system of five postulates (axioms) is not one of these as his proofs relied on several unstated assumptions which should also have been taken as axioms. Hilbert's system consisting of 20 axioms[16] most closely follows the approach of Euclid and provides the justification for all of Euclid's proofs. Other systems, using different sets of undefined terms obtain the same geometry by different paths. In all approaches, however, there is an axiom which is logically equivalent to Euclid's fifth postulate, the parallel postulate. Hilbert uses the Playfair axiom form, while Birkhoff, for instance, uses the axiom which says that "there exists a pair of similar but not congruent triangles." In any of these systems, removal of the one axiom which is equivalent to the parallel postulate, in whatever form it takes, and leaving all the other axioms intact, produces absolute geometry. As the first 28 propositions of Euclid (in The Elements) do not require the use of the parallel postulate or anything equivalent to it, they are all true statements in absolute geometry.[17]

To obtain a non-Euclidean geometry, the parallel postulate (or its equivalent) must be replaced by its negation. Negating the Playfair's axiom form, since it is a compound statement (... there exists one and only one ...), can be done in two ways. Either there will exist more than one line through the point parallel to the given line or there will exist no lines through the point parallel to the given line. In the first case, replacing the parallel postulate (or its equivalent) with the statement "In a plane, given a point P and a line not passing through P, there exist two lines through P which do not meet " and keeping all the other axioms, yields hyperbolic geometry.[18] The second case is not dealt with as easily. Simply replacing the parallel postulate with the statement, "In a plane, given a point P and a line not passing through P, all the lines through P meet ", does not give a consistent set of axioms. This follows since parallel lines exist in absolute geometry,[19] but this statement says that there are no parallel lines. This problem was known (in a different guise) to Khayyam, Saccheri and Lambert and was the basis for their rejecting what was known as the "obtuse angle case". In order to obtain a consistent set of axioms which includes this axiom about having no parallel lines, some of the other axioms must be tweaked. The adjustments to be made depend upon the axiom system being used. Among others these tweaks will have the effect of modifying Euclid's second postulate from the statement that line segments can be extended indefinitely to the statement that lines are unbounded.
Riemann's elliptic geometry emerges as the most natural geometry satisfying this axiom.

Models of non-Euclidean geometry

On a sphere, the sum of the angles of a triangle is not equal to 180°. The surface of a sphere is not a Euclidean space, but locally the laws of the Euclidean geometry are good approximations. In a small triangle on the face of the earth, the sum of the angles is very nearly 180°.

Two dimensional Euclidean geometry is modelled by our notion of a "flat plane."

Elliptic geometry

The simplest model for elliptic geometry is a sphere, where lines are "great circles" (such as the equator or the meridians on a globe), and points opposite each other (called antipodal points) are identified (considered to be the same). This is also one of the standard models of the real projective plane. The difference is that as a model of elliptic geometry a metric is introduced permitting the measurement of lengths and angles, while as a model of the projective plane there is no such metric.In the elliptic model, for any given line and a point A, which is not on , all lines through A will intersect .

Hyperbolic geometry

Even after the work of Lobachevsky, Gauss, and Bolyai, the question remained: "Does such a model exist for hyperbolic geometry?". The model for hyperbolic geometry was answered by Eugenio Beltrami, in 1868, who first showed that a surface called the pseudosphere has the appropriate curvature to model a portion of hyperbolic space and in a second paper in the same year, defined the Klein model which models the entirety of hyperbolic space, and used this to show that Euclidean geometry and hyperbolic geometry were equiconsistent so that hyperbolic geometry was logically consistent if and only if Euclidean geometry was. (The reverse implication follows from the horosphere model of Euclidean geometry.)
In the hyperbolic model, within a two-dimensional plane, for any given line and a point A, which is not on , there are infinitely many lines through A that do not intersect .

In these models the concepts of non-Euclidean geometries are being represented by Euclidean objects in a Euclidean setting. This introduces a perceptual distortion wherein the straight lines of the non-Euclidean geometry are being represented by Euclidean curves which visually bend. This "bending" is not a property of the non-Euclidean lines, only an artifice of the way they are being represented.

Three-dimensional non-Euclidean geometry

In three dimensions, there are eight models of geometries.[20] There are Euclidean, elliptic, and hyperbolic geometries, as in the two-dimensional case; mixed geometries that are partially Euclidean and partially hyperbolic or spherical; twisted versions of the mixed geometries; and one unusual geometry that is completely anisotropic (i.e. every direction behaves differently).

Uncommon properties


Lambert quadrilateral in hyperbolic geometry

Saccheri quadrilaterals in the three geometries

Euclidean and non-Euclidean geometries naturally have many similar properties, namely those which do not depend upon the nature of parallelism. This commonality is the subject of absolute geometry (also called neutral geometry). However, the properties which distinguish one geometry from the others are the ones which have historically received the most attention.

Besides the behavior of lines with respect to a common perpendicular, mentioned in the introduction, we also have the following:
  • A Lambert quadrilateral is a quadrilateral which has three right angles. The fourth angle of a Lambert quadrilateral is acute if the geometry is hyperbolic, a right angle if the geometry is Euclidean or obtuse if the geometry is elliptic. Consequently, rectangles exist (a statement equivalent to the parallel postulate) only in Euclidean geometry.
  • A Saccheri quadrilateral is a quadrilateral which has two sides of equal length, both perpendicular to a side called the base. The other two angles of a Saccheri quadrilateral are called the summit angles and they have equal measure. The summit angles of a Saccheri quadrilateral are acute if the geometry is hyperbolic, right angles if the geometry is Euclidean and obtuse angles if the geometry is elliptic.
  • The sum of the measures of the angles of any triangle is less than 180° if the geometry is hyperbolic, equal to 180° if the geometry is Euclidean, and greater than 180° if the geometry is elliptic. The defect of a triangle is the numerical value (180° - sum of the measures of the angles of the triangle). This result may also be stated as: the defect of triangles in hyperbolic geometry is positive, the defect of triangles in Euclidean geometry is zero, and the defect of triangles in elliptic geometry is negative.

Importance

Non-Euclidean geometry is an example of a paradigm shift in the history of science.[21] Before the models of a non-Euclidean plane were presented by Beltrami, Klein, and Poincaré, Euclidean geometry stood unchallenged as the mathematical model of space. Furthermore, since the substance of the subject in synthetic geometry was a chief exhibit of rationality, the Euclidean point of view represented absolute authority.

The discovery of the non-Euclidean geometries had a ripple effect which went far beyond the boundaries of mathematics and science. The philosopher Immanuel Kant's treatment of human knowledge had a special role for geometry. It was his prime example of synthetic a priori knowledge; not derived from the senses nor deduced through logic — our knowledge of space was a truth that we were born with. Unfortunately for Kant, his concept of this unalterably true geometry was Euclidean. Theology was also affected by the change from absolute truth to relative truth in mathematics that was a result of this paradigm shift.[22]

The existence of non-Euclidean geometries impacted the intellectual life of Victorian England in many ways[23] and in particular was one of the leading factors that caused a re-examination of the teaching of geometry based on Euclid's Elements. This curriculum issue was hotly debated at the time and was even the subject of a play, Euclid and his Modern Rivals, written by Lewis Carroll, the author of Alice in Wonderland.[24]

Planar algebras

In analytic geometry a plane is described with Cartesian coordinates : C = {(x,y) : x, y in R}. The points are sometimes identified with complex numbers z = x + y ε where the square of ε is in {−1, 0, +1}. The Euclidean plane corresponds to the case ε2 = −1 since the modulus of z is given by
z z^\ast = (x + y \epsilon) (x - y \epsilon) = x^2 + y^2
and this quantity is the square of the Euclidean distance between z and the origin. For instance, {z : z z* = 1} is the unit circle.

For planar algebra, non-Euclidean geometry arises in the other cases. When \epsilon ^2 = +1, then z is a split-complex number and conventionally j replaces epsilon. Then
z z^\ast = (x + yj) (x - yj) = x^2 - y^2 \!
and {z : z z* = 1} is the unit hyperbola.

When \epsilon ^2 = 0, then z is a dual number.[25]

This approach to non-Euclidean geometry explains the non-Euclidean angles: the parameters of slope in the dual number plane and hyperbolic angle in the split-complex plane correspond to angle in Euclidean geometry. Indeed, they each arise in polar decomposition of a complex number z.[26]

Kinematic geometries

Hyperbolic geometry found an application in kinematics with the cosmology introduced by Hermann Minkowski in 1908. Minkowski introduced terms like worldline and proper time into mathematical physics. He realized that the submanifold, of events one moment of proper time into the future, could be considered a hyperbolic space of three dimensions.[27][28] Already in the 1890s Alexander Macfarlane was charting this submanifold through his Algebra of Physics and hyperbolic quaternions, though Macfarlane did not use cosmological language as Minkowski did in 1908. The relevant structure is now called the hyperboloid model of hyperbolic geometry.

The non-Euclidean planar algebras support kinematic geometries in the plane. For instance, the split-complex number z = eaj can represent a spacetime event one moment into the future of a frame of reference of rapidity a. Furthermore, multiplication by z amounts to a Lorentz boost mapping the frame with rapidity zero to that with rapidity a.

Kinematic study makes use of the dual numbers z = x + y \epsilon, \quad \epsilon^2 = 0, to represent the classical description of motion in absolute time and space: The equations x^\prime = x + vt,\quad t^\prime = t are equivalent to a shear mapping in linear algebra:
\begin{pmatrix}x' \\ t' \end{pmatrix} = \begin{pmatrix}1 & v \\ 0 & 1 \end{pmatrix}\begin{pmatrix}x \\ t \end{pmatrix}.
With dual numbers the mapping is t^\prime + x^\prime \epsilon = (1 + v \epsilon)(t + x \epsilon) = t + (x + vt)\epsilon.[29]

Another view of special relativity as a non-Euclidean geometry was advanced by E. B. Wilson and Gilbert Lewis in Proceedings of the American Academy of Arts and Sciences in 1912. They revamped the analytic geometry implicit in the split-complex number algebra into synthetic geometry of premises and deductions.[30][31]

Fiction

Non-Euclidean geometry often makes appearances in works of science fiction and fantasy.
Professor James Moriarty, a character in stories written by Sir Arthur Conan Doyle, is a criminal mastermind with a PhD in non-Euclidean geometries.

In 1895 H. G. Wells published the short story "The Remarkable Case of Davidson’s Eyes". To appreciate this story one should know how antipodal points on a sphere are identified in a model of the elliptic plane. In the story, in the midst of a thunderstorm, Sidney Davidson sees "Waves and a remarkably neat schooner" while working in an electrical laboratory at Harlow Technical College. At the story’s close Davidson proves to have witnessed H.M.S. Fulmar off Antipodes Island.

Non-Euclidean geometry is sometimes connected with the influence of the 20th century horror fiction writer H. P. Lovecraft. In his works, many unnatural things follow their own unique laws of geometry: In Lovecraft's Cthulhu Mythos, the sunken city of R'lyeh is characterized by its non-Euclidean geometry. It is heavily implied this is achieved as a side effect of not following the natural laws of this universe rather than simply using an alternate geometric model, as the sheer innate wrongness of it is said to be capable of driving those who look upon it insane.[32]

The main character in Robert Pirsig's Zen and the Art of Motorcycle Maintenance mentioned Riemannian Geometry on multiple occasions.

In The Brothers Karamazov, Dostoevsky discusses non-Euclidean geometry through his main character Ivan.

Christopher Priest's novel Inverted World describes the struggle of living on a planet with the form of a rotating pseudosphere.

Robert Heinlein's The Number of the Beast utilizes non-Euclidean geometry to explain instantaneous transport through space and time and between parallel and fictional universes.

Alexander Bruce's Antichamber uses non-Euclidean geometry to create a brilliant, minimal, Escher-like world, where geometry and space follow unfamiliar rules.

In the Renegade Legion science fiction setting for FASA's wargame, role-playing-game and fiction, faster-than-light travel and communications is possible through the use of Hsieh Ho's Polydimensional Non-Euclidean Geometry, published sometime in the middle of the twenty-second century.

Equality (mathematics)

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Equality_...