Search This Blog

Sunday, February 8, 2015

Ocean


From Wikipedia, the free encyclopedia
Surface of the Atlantic Ocean meeting the Earth's planetary boundary layer and troposphere.

An ocean (from Ancient Greek Ὠκεανός, transc. Okeanós, the sea of classical antiquity[1]) is a body of saline water that composes much of a planet's hydrosphere.[2] On Earth, an ocean is one of the major conventional divisions of the World Ocean, which occupies two-thirds of the planet's surface. These are, in descending order by area, the Pacific, Atlantic, Indian, Southern, and Arctic Oceans.[3][4] The word sea is often used interchangeably with "ocean" in American English but, strictly speaking, a sea is a body of saline water (generally a division of the world ocean) partly or fully enclosed by land.[5]

Saline water covers approximately 72% of the planet's surface (~3.6×108 km2) and is customarily divided into several principal oceans and smaller seas, with the ocean covering approximately 71% of the Earth's surface.[6] The ocean contains 97% of the Earth's water, and oceanographers have stated that only 5% of the World Ocean has been explored.[6] The total volume is approximately 1.3 billion cubic kilometers (310 million cu mi)[7] with an average depth of 3,682 meters (12,080 ft).[8]

Because it is the principal component of Earth's hydrosphere, the world ocean is integral to all known life, forms part of the carbon cycle, and influences climate and weather patterns. It is the habitat of 230,000 known species, although much of the oceans depths remain unexplored, and over two million marine species are estimated to exist.[9] The origin of Earth's oceans remains unknown; oceans are believed to have formed in the Hadean period and may have been the impetus for the emergence of life.

Extra-terrestrial oceans may be composed of water or other elements and compounds. The only confirmed large stable bodies of extraterrestrial surface liquids are the lakes of Titan, although there is evidence for the existence of oceans elsewhere in the Solar System. Early in their geologic histories, Mars and Venus are theorized to have had large water oceans. The Mars ocean hypothesis suggests that nearly a third of the surface of Mars was once covered by water, and a runaway greenhouse effect may have boiled away the global ocean of Venus. Compounds such as salts and ammonia dissolved in water lower its freezing point, so that water might exist in large quantities in extraterrestrial environments as brine or convecting ice. Unconfirmed oceans are speculated beneath the surface of many dwarf planets and natural satellites; notably, the ocean of Europa is believed to have over twice the water volume of Earth. The Solar System's gas giant planets are also believed to possess liquid atmospheric layers of yet to be confirmed compositions. Oceans may also exist on exoplanets and exomoons, including surface oceans of liquid water within a circumstellar habitable zone. Ocean planets are a hypothetical type of planet with a surface completely covered with liquid.[10][11]

Earth's global ocean

Global divisions[edit]

Rotating series of maps showing alternate divisions of the oceans
Various ways to divide the World Ocean

Though generally described as several separate oceans, these waters comprise one global, interconnected body of salt water sometimes referred to as the World Ocean or global ocean.[12][13] This concept of a continuous body of water with relatively free interchange among its parts is of fundamental importance to oceanography.[14]

The major oceanic divisions are defined in part by the continents, various archipelagos, and other criteria. See the table below for more information; note that the table is in descending order in terms of size.[11][15]

Rank Ocean Notes
1 Pacific The peaceful sea west of the Magellan Strait,[16] officially separated into the North and South Pacific (divided by the Equator[17] and containing the waters between the southernmost points of Tasmania and Terra del Fuego (and including the waters of the Magellan Strait) but limited by the borders of the Tasman, Coral, Solomon, and Bismark Seas, the East Indian Archipelago, the Philippine, Japan, Okhotsk, and Bering Seas, the Gulf of Alaska, the coastal waters of southeast Alaska and British Columbia, and the Gulf of California.[18]
2 Atlantic The sea beyond the Atlas Mountains,[19][20] officially separated into the North and South Atlantic (divided by the Equator) and containing the waters between the southernmost points of Tierra del Fuego and Africa but limited by the borders of the Rio de la Plata, the Caribbean Sea, the Gulf of Mexico, the Bay of Fundy, the Gulf of St. Lawrence, the Davis Strait, the Greenland, Norwegian, North, Scottish, and Irish Seas, the Bristol and English Channels, the Bay of Biscay, the Mediterranean Sea, and the Gulf of Guinea,[18] although now often considered to end north of the Antarctic Convergence.
3 Indian The sea south of India, officially containing the waters between the southernmost points of Africa and Tasmania, bounded on the north by the Arabian and Laccadive Seas, the Bay of Bengal, the East Indian Archipelago, and the Great Australian Bight and on the south by Antarctica,[18] although now often considered to end north of the Antarctic Convergence.
4 Southern
or
Antarctic
Still officially considered an extension of the Pacific, Atlantic and Indian Oceans by the IHO,[11][18] it is distinguished by the convergence which encircles Antarctica.
5 Arctic The sea around the North Pole, officially containing the waters north of the Greenland Sea, then a line east along 80°N to the Barentsz, Kara, Laptev, East Siberian, Chuckchi, and Beaufort Seas.[18] Sometimes[when?] itself considered[by whom?] a sea of the Atlantic.

These adjacent regions—whether seas, gulfs, bays, bights, or straits—are very often included as part of the nearest ocean.

Physical properties

The total mass of the hydrosphere is about 1,400,000,000,000,000,000 metric tons (1.5×1018 short tons) or 1.4×1021 kg, which is about 0.023 percent of the Earth's total mass. Less than 3 percent is freshwater; the rest is saltwater, mostly in the ocean. The area of the World Ocean is 361 million square kilometers (139 million square miles),[21] and its volume is approximately 1.3 billion cubic kilometers (310 million cu mi).[7] This can be thought of as a cube of water with an edge length of 1,111 kilometers (690 mi). Its average depth is 3,790 meters (12,430 ft), and its maximum depth is 10,923 meters (6.787 mi).[21] Nearly half of the world's marine waters are over 3,000 meters (9,800 ft) deep.[13] The vast expanses of deep ocean (anything below 200 meters (660 ft)) cover about 66% of the Earth's surface.[22] This does not include seas not connected to the World Ocean, such as the Caspian Sea.
The bluish color of water is a composite of several contributing agents. Prominent contributors include dissolved organic matter and chlorophyll.[23]

Sailors and other mariners have reported that the ocean often emits a visible glow, or luminescence, which extends for miles at night. In 2005, scientists announced that for the first time, they had obtained photographic evidence of this glow.[24] It is most likely caused by bioluminescence.[25][26][27]

Zones with depth

Drawing showing divisions according to depth and distance from shore
The major oceanic divisions

Oceanographers divide the ocean into different zones by physical and biological conditions. The pelagic zone includes all open ocean regions, and can be divided into further regions categorized by depth and light abundance. The photic zone includes the oceans from the surface to a depth of 200 m; it is the region where photosynthesis can occur and is, therefore, the most biodiverse. Since plants require photosynthesis, life found deeper than the photic zone must either rely on material sinking from above (see marine snow) or find another energy source. Hydrothermal vents are the primary source of energy in what is known as the aphotic zone (depths exceeding 200 m). The pelagic part of the photic zone is known as the epipelagic.

The pelagic part of the aphotic zone can be further divided into vertical regions according to temperature. The mesopelagic is the uppermost region. Its lowermost boundary is at a thermocline of 12 °C (54 °F), which, in the tropics generally lies at 700–1,000 meters (2,300–3,300 ft). Next is the bathypelagic lying between 10 and 4 °C (50 and 39 °F), typically between 700–1,000 meters (2,300–3,300 ft) and 2,000–4,000 meters (6,600–13,100 ft) Lying along the top of the abyssal plain is the abyssopelagic, whose lower boundary lies at about 6,000 meters (20,000 ft). The last zone includes the deep oceanic trench, and is known as the hadalpelagic. This lies between 6,000–11,000 meters (20,000–36,000 ft) and is the deepest oceanic zone.

The benthic zones are aphotic and correspond to the three deepest zones of the deep-sea. The bathyal zone covers the continental slope down to about 4,000 meters (13,000 ft). The abyssal zone covers the abyssal plains between 4,000 and 6,000 m. Lastly, the hadal zone corresponds to the hadalpelagic zone, which is found in oceanic trenches.

The pelagic zone can be further subdivided into two subregions: the neritic zone and the oceanic zone. The neritic zone encompasses the water mass directly above the continental shelves whereas the oceanic zone includes all the completely open water.

In contrast, the littoral zone covers the region between low and high tide and represents the transitional area between marine and terrestrial conditions. It is also known as the intertidal zone because it is the area where tide level affects the conditions of the region.

The ocean can be divided into three density zones: the surface zone, the pycnocline, and the deep zone. The surface zone, also called the mixed layer, refers to the uppermost density zone of the ocean. Temperature and salinity are relatively constant with depth in this zone due to currents and wave action. The surface zone contains ocean water that is in contact with the atmosphere and within the photic zone. The surface zone has the ocean's least dense water and represents approximately 2% of the total volume of ocean water. The surface zone usually ranges between depths of 500 feet to 3,300 feet below ocean surface, but this can vary a great deal. In some cases, the surface zone can be entirely non-existent. The surface zone is typically thicker in the tropics than in regions of higher latitude. The transition to colder, denser water is more abrupt in the tropics than in regions of higher latitudes. The pycnocline refers to a zone wherein density substantially increases with depth due primarily to decreases in temperature. The pycnocline effectively separates the lower-density surface zone above from the higher-density deep zone below. The pycnocline represents approximately 18% of the total volume of ocean water. The deep zone refers to the lowermost density zone of the ocean. The deep zone usually begins at depths below 3,300 feet in mid-latitudes. The deep zone undergoes negligible changes in water density with depth. The deep zone represents approximately 80% of the total volume of ocean water. The deep zone contains relatively colder and stable water.

If a zone undergoes dramatic changes in temperature with depth, it contains a thermocline. The tropical thermocline is typically deeper than the thermocline at higher latitudes. Polar waters, which receive relatively little solar energy, are not stratified by temperature and generally lack a thermocline since surface water at polar latitudes are nearly as cold as water at greater depths. Below the thermocline, water is very cold, ranging from −1 °C to 3 °C. Since this deep and cold layer contains the bulk of ocean water, the average temperature of the world ocean is 3.9 °C If a zone undergoes dramatic changes in salinity with depth, it contains a halocline. If a zone undergoes a strong, vertical chemistry gradient with depth, it contains a chemocline.

The halocline often coincides with the thermocline, and the combination produces a pronounced pycnocline.

Exploration

False color photo
Map of large underwater features (1995, NOAA)

Ocean travel by boat dates back to prehistoric times, but only in modern times has extensive underwater travel become possible.

The deepest point in the ocean is the Mariana Trench, located in the Pacific Ocean near the Northern Mariana Islands. Its maximum depth has been estimated to be 10,971 meters (35,994 ft) (plus or minus 11 meters; see the Mariana Trench article for discussion of the various estimates of the maximum depth.) The British naval vessel Challenger II surveyed the trench in 1951 and named the deepest part of the trench the "Challenger Deep". In 1960, the Trieste successfully reached the bottom of the trench, manned by a crew of two men.

Climate

World map with colored, directed lines showing how water moves through the oceans. Cold deep water rises and warms in the central Pacific and in the Indian, while warm water sinks and cools near Greenland in the North Atlantic and near Antarctica in the South Atlantic.
A map of the global thermohaline circulation; blue represent deep-water currents, while red represent surface currents

Ocean currents greatly affect the Earth's climate by transferring heat from the tropics to the polar regions. Transferring warm or cold air and precipitation to coastal regions, where winds may carry them inland. Surface heat and freshwater fluxes create global density gradients that drive the thermohaline circulation part of large-scale ocean circulation. It plays an important role in supplying heat to the polar regions, and thus in sea ice regulation. Changes in the thermohaline circulation are thought to have significant impacts on the Earth's radiation budget. In so far as the thermohaline circulation governs the rate at which deep waters reach the surface, it may also significantly influence atmospheric carbon dioxide concentrations.

It is often stated that the thermohaline circulation is the primary reason that the climate of Western Europe is so temperate. An alternate hypothesis claims that this is largely incorrect, and that Europe is warm mostly because it lies downwind of an ocean basin, and because atmospheric waves bring warm air north from the subtropics.[28][29]
The Antarctic Circumpolar Current encircles that continent, influencing the area's climate and connecting currents in several oceans.

One of the most dramatic forms of weather occurs over the oceans: tropical cyclones (also called "typhoons" and "hurricanes" depending upon where the system forms).

Biology

The ocean has a significant effect on the biosphere. Oceanic evaporation, as a phase of the water cycle, is the source of most rainfall, and ocean temperatures determine climate and wind patterns that affect life on land. Life within the ocean evolved 3 billion years prior to life on land. Both the depth and the distance from shore strongly influence the biodiversity of the plants and animals present in each region.[30]
Lifeforms native to the ocean include:
In addition, many land animals have adapted to living a major part of their life on the oceans. For instance, seabirds are a diverse group of birds that have adapted to a life mainly on the oceans. They feed on marine animals and spend most of their lifetime on water, many only going on land for breeding. Other birds that have adapted to oceans as their living space are penguins, seagulls and pelicans. Seven species of turtles, the sea turtles, also spend most of their time in the oceans.

Gases

Characteristics of Oceanic Gases [31][32][33]
Gas Concentration of Seawater, by Mass (in parts per million), for whole Ocean  % Dissolved Gas, by Volume, in Seawater at Ocean Surface
Carbon dioxide (CO2) 64 to 107 15%
Nitrogen (N2) 10 to 18 48%
Oxygen (O2) 0 to 13 36%
Solubility of Oceanic Gases (in terms of mL/L) with Temperature at salinity of 33‰ and atmospheric pressure[34]
Temperature O2 CO2 N2
0 °C 8.14 8,700 14.47
10 °C 6.42 8,030 11.59
20 °C 5.26 7,350 9.65
30 °C 4.41 6,600 8.26

Ocean Surface

Generalized Characteristics of Ocean Surface by Latitude [35][36][37][38][39][40][41]
Characteristic Oceanic Waters in Polar regions Oceanic Waters in Temperate regions Oceanic Waters in Tropical regions
Precipitation vs. evaporation P > E P > E E > P
Sea Surface Temperature in Winter −2 °C 5 to 20 °C 20 to 25 °C
Average Salinity 28‰ to 32‰ 35‰ 35‰ to 37‰
Annual Variation of Air Temperature ≤ 40ªC 10 °C < 5 °C
Annual Variation of Water Temperature < 5ªC 10 °C < 5 °C

Mixing Time

Residence Time=The amount of the element in the ocean ÷ The rate at which that element is added to (or removed from) the ocean

The mean oceanic mixing time (residence time) is thought to be approximately 1,600 years. If a given element in the ocean stays in the ocean, on average, longer than the oceanic mixing time, then that element is assumed to be homogeneously spread throughout the ocean. As a result, since the major salts have a residence time that is longer than 1,600 years, the ratio of major salts is thought to be unchanging across the ocean. This constant ratio is often referred to as Forchhammer's principle or the principle of constant proportions.

Mean Oceanic Residence Times for specific Constituents [42][43]
Constituent Residence Time (in years)
Iron (Fe) 200
Aluminum (Al) 600
Manganese (Mn) 1,300
Water (H2O) 4,100
Silicon (Si) 20,000
Carbonate (CO32−) 110,000
Calcium (Ca2+) 1,000,000
Sulfate (SO42−) 11,000,000
Potassium (K+) 12,000,000
Magnesium (Mg2+) 13,000,000
Sodium (Na+) 68,000,000
Chloride (Cl) 100,000,000

Salinity

A zone of rapid salinity increase with depth is called a halocline. The temperature of maximum density of seawater decreases as its salt content increases. Freezing temperature of water decreases with salinity, and boiling temperature of water increases with salinity. Typical seawater freezes at around −1.9 °C at atmospheric pressure. If precipitation exceeds evaporation, as is the case in polar and temperate regions, salinity will be lower. If evaporation exceeds precipitation, as is the case in tropical regions, salinity will be higher. Thus, oceanic waters in polar regions have lower salinity content than oceanic waters in temperate and tropical regions.[44]

Salinity can be calculated using the chlorinity, which is a measure of the total mass of halogen ions (includes fluorine, chlorine, bromine, and iodine) in seawater. By international agreement, the following formula is used to determine salinity:

Salinity (in ‰)=1.80655 x Chlorinity (in ‰)

The average chlorinity is about 19.2‰, and, thus, the average salinity is around 34.7‰ [44]

Absorption of light

Absorption of Light in Different Wavelengths by Ocean [44]
Color: Wavelength (nm) Depth wherein 99 percent of wavelength is absorbed (in meters) Percent absorbed in 1 meter of water
Ultraviolet (UV): 310 31 14.0
Violet (V): 400 107 4.2
Blue (B): 475 254 1.8
Green (G): 525 113 4.0
Yellow (Y): 575 51 8.7
Orange (O): 600 25 16.7
Red (R): 725 4 71.0
Infrared (IR): 800 3 82.0

Economic value

The oceans are essential to transportation. This is because most of the world's goods move by ship between the world's seaports. Oceans are also the major supply source for the fishing industry. Some of the more major ones are shrimp, fish, crabs, and lobster.[6]

Waves

The motions of the ocean surface, known as undulations or waves, are the partial and alternate rising and falling of the ocean surface.

Extraterrestrial oceans

Artist's conception of subsurface ocean of Enceladus confirmed April 3, 2014.[45][46]

Two models for the composition of Europa predict a large subsurface ocean of liquid water. Similar models have been proposed for other celestial bodies in the Solar System

Although Earth is the only known planet with large stable bodies of liquid water on its surface and the only one in the Solar System, other celestial bodies are believed to possess large oceans.

Planets

The gas giants, Jupiter and Saturn, are thought to lack surfaces and instead have a stratum of liquid hydrogen, however their planetary geology is not well understood. The possibility of Uranus and Neptune possessing hot, highly compressed, supercritical water under their thick atmospheres has been hypothesised. Although their composition is still not fully understood, a 2006 study by Wiktorowicz et al. ruled out the possibility of such a water "ocean" existing on Neptune,[47] though some studies have suggested that exotic oceans of liquid diamond are possible.[48]

The Mars ocean hypothesis suggests that nearly a third of the surface of Mars was once covered by water, though the water on Mars is no longer oceanic. The possibility continues to be studied along with reasons for their apparent disappearance. Astronomers believe that Venus had liquid water and perhaps oceans in its very early history. If they existed, all later vanished via resurfacing.

Natural satellites

A global layer of liquid water thick enough to decouple the crust from the mantle is believed to be present on Titan, Europa and, with less certainty, Callisto, Ganymede[49][50] and Triton.[51][52] A magma ocean is thought to be present on Io. Geysers have been found on Saturn's moon Enceladus, possibly originating from about 10 kilometers (6.2 mi) deep ocean beneath an ice shell.[45] Other icy moons may also have internal oceans, or may once have had internal oceans that have now frozen.[53]

Large bodies of liquid hydrocarbons are thought to be present on the surface of Titan, although they are not large enough to be considered oceans and are sometimes referred to as lakes or seas. The Cassini–Huygens space mission initially discovered only what appeared to be dry lakebeds and empty river channels, suggesting that Titan had lost what surface liquids it might have had. Cassini's more recent fly-by of Titan offers radar images that strongly suggest hydrocarbon lakes exist near the colder polar regions. Titan is thought to have a subsurface liquid-water ocean under the ice and hydrocarbon mix that forms its outer crust.

Dwarf planets and trans-Neptunian objects


Diagram showing a possible internal structure of Ceres

Ceres appears to be differentiated into a rocky core and icy mantle and may harbour a liquid-water ocean under its surface.[54][55]

Not enough is known of the larger Trans-Neptunian objects to determine whether they are differentiated bodies capable of possessing oceans, although models of radioactive decay suggest that Pluto,[56] Eris, Sedna, and Orcus have oceans beneath solid icy crusts at the core-boundary approximately 100 to 180 km thick.[53]

Extrasolar


Rendering of a hypothetical large extrasolar moon with surface liquid-water oceans

Some planets and natural satellites beyond the Solar System are likely to possess oceans, including possible water ocean planets similar to Earth in the habitable zone or "liquid-water belt". The detection of oceans, even through the spectroscopy method, however is likely to prove extremely difficult and inconclusive.

Theoretical models have been used to predict with high probability that GJ 1214 b, detected by transit, is composed of exotic form of ice VII, making up 75% of its mass,[57] making it an ocean planet.

Other possible candidates are merely speculated based on their mass and position in the habitable zone include planet though little is actually known of their composition. Some scientists speculate Kepler-22b may be an "ocean-like" planet.[58] Models have been proposed for Gliese 581 d that could include surface oceans. Gliese 436 b is speculated to have an ocean of "hot ice".[59] Extrasolar moons orbiting planets, particularly gas giants within their parent star's habitable zone may theoretically possess surface oceans.

Terrestrial planets will acquire water during their accretion, some of which will be buried in the magma ocean but most of it will go into a steam atmosphere, and when the atmosphere cools it will collapse on to the surface forming an ocean. There will also be outgassing of water from the mantle as the magma solidifies—this will happen even for planets with a low percentage of their mass composed of water, so "super-Earth exoplanets may be expected to commonly produce water oceans within tens to hundreds of millions of years of their last major accretionary impact."[60]

Non-water surface liquids

Oceans, seas, lakes, etc., can be composed of liquids other than water: e.g. the hydrocarbon lakes on Titan. The possibility of seas of nitrogen on Triton was also considered but ruled out.[61] Underneath the thick atmospheres of the planets Uranus and Neptune, it is expected that these planets are composed of oceans of hot high-density fluid mixtures of water, ammonia and other volatiles.[62] The gaseous outer layers of Jupiter and Saturn transition smoothly into oceans of supercritical hydrogen.[63][64] There is evidence that the icy surfaces of the moons Ganymede, Callisto, Europa, Titan and Enceladus are shells floating on oceans of very dense liquid water or water–ammonia.[65][66][67][68][69] Earth is often called the ocean planet because it is 70% covered in water.[70][71] The atmosphere of Venus is 96.5% carbon dioxide and at the surface the pressure makes the CO2 a supercritical fluid. Extrasolar terrestrial planets that are extremely close to their parent star will be tidally locked and so one half of the planet will be a magma ocean.[72] It is also possible that terrestrial planets had magma oceans at some point during their formation as a result of giant impacts.[73] Where there are suitable temperatures and pressures, volatile chemicals that might exist as liquids in abundant quantities on planets include ammonia, argon, carbon disulfide, ethane, hydrazine, hydrogen, hydrogen cyanide, hydrogen sulfide, methane, neon, nitrogen, nitric oxide, phosphine, silane, sulfuric acid, and water.[74] Hot Neptunes close to their star could lose their atmospheres via hydrodynamic escape, leaving behind their cores with various liquids on the surface.[75]

Wood


From Wikipedia, the free encyclopedia


Different types of wood (list of names on description page)

Wood is a porous and fibrous structural tissue found in the stems and roots of trees and other woody plants. It has been used for thousands of years for both fuel and as a construction material. It is an organic material, a natural composite of cellulose fibers (which are strong in tension) embedded in a matrix of lignin which resists compression. Wood is sometimes defined as only the secondary xylem in the stems of trees,[1] or it is defined more broadly to include the same type of tissue elsewhere such as in the roots of trees or shrubs.[citation needed] In a living tree it performs a support function, enabling woody plants to grow large or to stand up by themselves. It also conveys water and nutrients between the leaves, other growing tissues, and the roots. Wood may also refer to other plant materials with comparable properties, and to material engineered from wood, or wood chips or fiber.

The Earth contains about one trillion tonnes of wood, which grows at a rate of 10 billion tonnes per year. As an abundant, carbon-neutral renewable resource, woody materials have been of intense interest as a source of renewable energy. In 1991, approximately 3.5 cubic kilometers of wood were harvested. Dominant uses were for furniture and building construction.[2]

History

A 2011 discovery in the Canadian province of New Brunswick uncovered the earliest known plants to have grown wood, approximately 395 to 400 million years ago.[3] Wood can be dated by carbon dating and in some species by dendrochronology to make inferences about when a wooden object was created.

People have used wood for millennia for many purposes, primarily as a fuel or as a construction material for making houses, tools, weapons, furniture, packaging, artworks, and paper. The year-to-year variation in tree-ring widths and isotopic abundances gives clues to the prevailing climate at that time.[4]

Physical properties


Diagram of secondary growth in a tree showing idealised vertical and horizontal sections. A new layer of wood is added in each growing season, thickening the stem, existing branches and roots, to form a growth ring.

Growth rings

Wood, in the strict sense, is yielded by trees, which increase in diameter by the formation, between the existing wood and the inner bark, of new woody layers which envelop the entire stem, living branches, and roots. This process is known as secondary growth; it is the result of cell division in the vascular cambium, a lateral meristem, and subsequent expansion of the new cells. Where there are clear seasons, growth can occur in a discrete annual or seasonal pattern, leading to growth rings; these can usually be most clearly seen on the end of a log, but are also visible on the other surfaces. If these seasons are annual these growth rings are referred to as annual rings. Where there is no seasonal difference growth rings are likely to be indistinct or absent.
If there are differences within a growth ring, then the part of a growth ring nearest the center of the tree, and formed early in the growing season when growth is rapid, is usually composed of wider elements. It is usually lighter in color than that near the outer portion of the ring, and is known as earlywood or springwood. The outer portion formed later in the season is then known as the latewood or summerwood.[5] However, there are major differences, depending on the kind of wood (see below).

Knots


A knot on a tree at the Garden of the Gods public park in Colorado Springs, Colorado (October 2006)

A knot is a particular type of imperfection in a piece of wood; it will affect the technical properties of the wood, usually for the worse, but may be exploited for visual effect. In a longitudinally sawn plank, a knot will appear as a roughly circular "solid" (usually darker) piece of wood around which the grain of the rest of the wood "flows" (parts and rejoins). Within a knot, the direction of the wood (grain direction) is up to 90 degrees different from the grain direction of the regular wood.

In the tree a knot is either the base of a side branch or a dormant bud. A knot (when the base of a side branch) is conical in shape (hence the roughly circular cross-section) with the inner tip at the point in stem diameter at which the plant's vascular cambium was located when the branch formed as a bud.
During the development of a tree, the lower limbs often die, but may remain attached for a time, sometimes years. Subsequent layers of growth of the attaching stem are no longer intimately joined with the dead limb, but are grown around it. Hence, dead branches produce knots which are not attached, and likely to drop out after the tree has been sawn into boards.

In grading lumber and structural timber, knots are classified according to their form, size, soundness, and the firmness with which they are held in place. This firmness is affected by, among other factors, the length of time for which the branch was dead while the attaching stem continued to grow.

Wood knot in vertical section

"Knots materially affect cracking and warping, ease in working, and cleavability of timber. They are defects which weaken timber and lower its value for structural purposes where strength is an important consideration. The weakening effect is much more serious when timber is subjected to forces perpendicular to the grain and/or tension than where under load along the grain and/or compression. The extent to which knots affect the strength of a beam depends upon their position, size, number, and condition. A knot on the upper side is compressed, while one on the lower side is subjected to tension. If there is a season check in the knot, as is often the case, it will offer little resistance to this tensile stress. Small knots, however, may be located along the neutral plane of a beam and increase the strength by preventing longitudinal shearing. Knots in a board or plank are least injurious when they extend through it at right angles to its broadest surface. Knots which occur near the ends of a beam do not weaken it. Sound knots which occur in the central portion one-fourth the height of the beam from either edge are not serious defects."[6]

Knots do not necessarily influence the stiffness of structural timber, this will depend on the size and location. Stiffness and elastic strength are more dependent upon the sound wood than upon localized defects. The breaking strength is very susceptible to defects. Sound knots do not weaken wood when subject to compression parallel to the grain.

In some decorative applications, wood with knots may be desirable to add visual interest. In applications where wood is painted, such as skirting boards, fascia boards, door frames and furniture, resins present in the timber may continue to 'bleed' through to the surface of a knot for months or even years after manufacture and show as a yellow or brownish stain. A knot primer paint or solution, correctly applied during preparation, may do much to reduce this problem but it is difficult to control completely, especially when using mass-produced kiln-dried timber stocks.

Heartwood and sapwood


A section of a Yew branch showing 27 annual growth rings, pale sapwood, dark heartwood, and pith (center dark spot). The dark radial lines are small knots.

Heartwood (or duramen[7]) is wood that as a result of a naturally occurring chemical transformation has become more resistant to decay. Heartwood formation occurs spontaneously (it is a genetically programmed process). Once heartwood formation is complete, the heartwood is dead.[8] Some uncertainty still exists as to whether heartwood is truly dead, as it can still chemically react to decay organisms, but only once.[9]

Usually heartwood looks different; in that case it can be seen on a cross-section, usually following the growth rings in shape. Heartwood may (or may not) be much darker than living wood. It may (or may not) be sharply distinct from the sapwood. However, other processes, such as decay, can discolor wood, even in woody plants that do not form heartwood, with a similar color difference, which may lead to confusion.

Sapwood (or alburnum[7]) is the younger, outermost wood; in the growing tree it is living wood,[8] and its principal functions are to conduct water from the roots to the leaves and to store up and give back according to the season the reserves prepared in the leaves. However, by the time they become competent to conduct water, all xylem tracheids and vessels have lost their cytoplasm and the cells are therefore functionally dead. All wood in a tree is first formed as sapwood. The more leaves a tree bears and the more vigorous its growth, the larger the volume of sapwood required. Hence trees making rapid growth in the open have thicker sapwood for their size than trees of the same species growing in dense forests. Sometimes trees (of species that do form heartwood) grown in the open may become of considerable size, 30 cm or more in diameter, before any heartwood begins to form, for example, in second-growth hickory, or open-grown pines.

The term heartwood derives solely from its position and not from any vital importance to the tree. This is evidenced by the fact that a tree can thrive with its heart completely decayed. Some species begin to form heartwood very early in life, so having only a thin layer of live sapwood, while in others the change comes slowly. Thin sapwood is characteristic of such species as chestnut, black locust, mulberry, osage-orange, and sassafras, while in maple, ash, hickory, hackberry, beech, and pine, thick sapwood is the rule. Others never form heartwood.

No definite relation exists between the annual rings of growth and the amount of sapwood. Within the same species the cross-sectional area of the sapwood is very roughly proportional to the size of the crown of the tree. If the rings are narrow, more of them are required than where they are wide. As the tree gets larger, the sapwood must necessarily become thinner or increase materially in volume. Sapwood is thicker in the upper portion of the trunk of a tree than near the base, because the age and the diameter of the upper sections are less.

When a tree is very young it is covered with limbs almost, if not entirely, to the ground, but as it grows older some or all of them will eventually die and are either broken off or fall off. Subsequent growth of wood may completely conceal the stubs which will however remain as knots. No matter how smooth and clear a log is on the outside, it is more or less knotty near the middle. Consequently the sapwood of an old tree, and particularly of a forest-grown tree, will be freer from knots than the inner heartwood. Since in most uses of wood, knots are defects that weaken the timber and interfere with its ease of working and other properties, it follows that a given piece of sapwood, because of its position in the tree, may well be stronger than a piece of heartwood from the same tree.

It is remarkable that the inner heartwood of old trees remains as sound as it usually does, since in many cases it is hundreds, and in a few instances thousands, of years old. Every broken limb or root, or deep wound from fire, insects, or falling timber, may afford an entrance for decay, which, once started, may penetrate to all parts of the trunk. The larvae of many insects bore into the trees and their tunnels remain indefinitely as sources of weakness. Whatever advantages, however, that sapwood may have in this connection are due solely to its relative age and position.

If a tree grows all its life in the open and the conditions of soil and site remain unchanged, it will make its most rapid growth in youth, and gradually decline. The annual rings of growth are for many years quite wide, but later they become narrower and narrower. Since each succeeding ring is laid down on the outside of the wood previously formed, it follows that unless a tree materially increases its production of wood from year to year, the rings must necessarily become thinner as the trunk gets wider. As a tree reaches maturity its crown becomes more open and the annual wood production is lessened, thereby reducing still more the width of the growth rings. In the case of forest-grown trees so much depends upon the competition of the trees in their struggle for light and nourishment that periods of rapid and slow growth may alternate. Some trees, such as southern oaks, maintain the same width of ring for hundreds of years. Upon the whole, however, as a tree gets larger in diameter the width of the growth rings decreases.

Different pieces of wood cut from a large tree may differ decidedly, particularly if the tree is big and mature. In some trees, the wood laid on late in the life of a tree is softer, lighter, weaker, and more even-textured than that produced earlier, but in other trees, the reverse applies. This may or may not correspond to heartwood and sapwood. In a large log the sapwood, because of the time in the life of the tree when it was grown, may be inferior in hardness, strength, and toughness to equally sound heartwood from the same log. In a smaller tree, the reverse may be true.

Color


The wood of Coast Redwood is distinctively red.

In species which show a distinct difference between heartwood and sapwood the natural color of heartwood is usually darker than that of the sapwood, and very frequently the contrast is conspicuous (see section of yew log above). This is produced by deposits in the heartwood of chemical substances, so that a dramatic color difference does not mean a dramatic difference in the mechanical properties of heartwood and sapwood, although there may be a dramatic chemical difference.

Some experiments on very resinous Longleaf Pine specimens indicate an increase in strength, due to the resin which increases the strength when dry. Such resin-saturated heartwood is called "fat lighter". Structures built of fat lighter are almost impervious to rot and termites; however they are very flammable. Stumps of old longleaf pines are often dug, split into small pieces and sold as kindling for fires. Stumps thus dug may actually remain a century or more since being cut. Spruce impregnated with crude resin and dried is also greatly increased in strength thereby.

Since the latewood of a growth ring is usually darker in color than the earlywood, this fact may be used in judging the density, and therefore the hardness and strength of the material. This is particularly the case with coniferous woods. In ring-porous woods the vessels of the early wood not infrequently appear on a finished surface as darker than the denser latewood, though on cross sections of heartwood the reverse is commonly true. Except in the manner just stated the color of wood is no indication of strength.

Abnormal discoloration of wood often denotes a diseased condition, indicating unsoundness. The black check in western hemlock is the result of insect attacks. The reddish-brown streaks so common in hickory and certain other woods are mostly the result of injury by birds. The discoloration is merely an indication of an injury, and in all probability does not of itself affect the properties of the wood. Certain rot-producing fungi impart to wood characteristic colors which thus become symptomatic of weakness; however an attractive effect known as spalting produced by this process is often considered a desirable characteristic. Ordinary sap-staining is due to fungal growth, but does not necessarily produce a weakening effect.

Water content

"Water occurs in living wood in three conditions, namely: (1) in the cell walls, (2) in the protoplasmic contents of the cells, and (3) as free water in the cell cavities and spaces. In heartwood it occurs only in the first and last forms. Wood that is thoroughly air-dried retains 8–16% of the water in the cell walls, and none, or practically none, in the other forms. Even oven-dried wood retains a small percentage of moisture, but for all except chemical purposes, may be considered absolutely dry.

"The general effect of the water content upon the wood substance is to render it softer and more pliable. A similar effect of common observation is in the softening action of water on rawhide, paper, or cloth. Within certain limits, the greater the water content, the greater its softening effect.

"Drying produces a decided increase in the strength of wood, particularly in small specimens. An extreme example is the case of a completely dry spruce block 5 cm in section, which will sustain a permanent load four times as great as a green (undried) block of the same size will.

The greatest strength increase due to drying is in the ultimate crushing strength, and strength at elastic limit in endwise compression; these are followed by the modulus of rupture, and stress at elastic limit in cross-bending, while the modulus of elasticity is least affected.".[10]

Structure

Wood is a heterogeneous, hygroscopic, cellular and anisotropic material. It consists of cells, and the cell walls are composed of micro-fibrils of cellulose (40% – 50%) and hemicellulose (15% – 25%) impregnated with lignin (15% – 30%).[11]

Sections of tree trunk

In coniferous or softwood species the wood cells are mostly of one kind, tracheids, and as a result the material is much more uniform in structure than that of most hardwoods. There are no vessels ("pores") in coniferous wood such as one sees so prominently in oak and ash, for example.

The structure of hardwoods is more complex.[12] The water conducting capability is mostly taken care of by vessels: in some cases (oak, chestnut, ash) these are quite large and distinct, in others (buckeye, poplar, willow) too small to be seen without a hand lens. In discussing such woods it is customary to divide them into two large classes, ring-porous and diffuse-porous.[13] In ring-porous species, such as ash, black locust, catalpa, chestnut, elm, hickory, mulberry,[citation needed] and oak,[13] the larger vessels or pores (as cross sections of vessels are called) are localised in the part of the growth ring formed in spring, thus forming a region of more or less open and porous tissue. The rest of the ring, produced in summer, is made up of smaller vessels and a much greater proportion of wood fibers. These fiber are the elements which give strength and toughness to wood, while the vessels are a source of weakness.[citation needed]

Magnified cross-section of Black Walnut, showing the vessels, rays (white lines) and annual rings: this is intermediate between diffuse-porous and ring-porous, with vessel size declining gradually

In diffuse-porous woods the pores are evenly sized so that the water conducting capability is scattered throughout the growth ring instead of being collected in a band or row. Examples of this kind of wood are alder,[13] basswood,[citation needed] birch,[13] buckeye, maple, willow,[citation needed] and the Populus species such as aspen, cottonwood and poplar.[13] Some species, such as walnut and cherry, are on the border between the two classes, forming an intermediate group.[citation needed]

Earlywood and latewood

In softwood


Earlywood and latewood in a softwood; radial view, growth rings closely spaced in Rocky Mountain Douglas-fir

In temperate softwoods there often is a marked difference between latewood and earlywood. The latewood will be denser than that formed early in the season. When examined under a microscope the cells of dense latewood are seen to be very thick-walled and with very small cell cavities, while those formed first in the season have thin walls and large cell cavities. The strength is in the walls, not the cavities. Hence the greater the proportion of latewood the greater the density and strength. In choosing a piece of pine where strength or stiffness is the important consideration, the principal thing to observe is the comparative amounts of earlywood and latewood. The width of ring is not nearly so important as the proportion and nature of the latewood in the ring.

If a heavy piece of pine is compared with a lightweight piece it will be seen at once that the heavier one contains a larger proportion of latewood than the other, and is therefore showing more clearly demarcated growth rings. In white pines there is not much contrast between the different parts of the ring, and as a result the wood is very uniform in texture and is easy to work. In hard pines, on the other hand, the latewood is very dense and is deep-colored, presenting a very decided contrast to the soft, straw-colored earlywood.

It is not only the proportion of latewood, but also its quality, that counts. In specimens that show a very large proportion of latewood it may be noticeably more porous and weigh considerably less than the latewood in pieces that contain but little. One can judge comparative density, and therefore to some extent strength, by visual inspection.

No satisfactory explanation can as yet be given for the exact mechanisms determining the formation of earlywood and latewood. Several factors may be involved. In conifers, at least, rate of growth alone does not determine the proportion of the two portions of the ring, for in some cases the wood of slow growth is very hard and heavy, while in others the opposite is true. The quality of the site where the tree grows undoubtedly affects the character of the wood formed, though it is not possible to formulate a rule governing it. In general, however, it may be said that where strength or ease of working is essential, woods of moderate to slow growth should be chosen.

In ring-porous woods


Earlywood and latewood in a ring-porous wood (ash) in a Fraxinus excelsior; tangential view, wide growth rings

In ring-porous woods each season's growth is always well defined, because the large pores formed early in the season abut on the denser tissue of the year before.

In the case of the ring-porous hardwoods there seems to exist a pretty definite relation between the rate of growth of timber and its properties. This may be briefly summed up in the general statement that the more rapid the growth or the wider the rings of growth, the heavier, harder, stronger, and stiffer the wood. This, it must be remembered, applies only to ring-porous woods such as oak, ash, hickory, and others of the same group, and is, of course, subject to some exceptions and limitations.

In ring-porous woods of good growth it is usually the latewood in which the thick-walled, strength-giving fibers are most abundant. As the breadth of ring diminishes, this latewood is reduced so that very slow growth produces comparatively light, porous wood composed of thin-walled vessels and wood parenchyma. In good oak these large vessels of the earlywood occupy from 6 to 10 percent of the volume of the log, while in inferior material they may make up 25% or more. The latewood of good oak is dark colored and firm, and consists mostly of thick-walled fibers which form one-half or more of the wood. In inferior oak, this latewood is much reduced both in quantity and quality. Such variation is very largely the result of rate of growth.

Wide-ringed wood is often called "second-growth", because the growth of the young timber in open stands after the old trees have been removed is more rapid than in trees in a closed forest, and in the manufacture of articles where strength is an important consideration such "second-growth" hardwood material is preferred. This is particularly the case in the choice of hickory for handles and spokes. Here not only strength, but toughness and resilience are important. The results of a series of tests on hickory by the U.S. Forest Service show that:
"The work or shock-resisting ability is greatest in wide-ringed wood that has from 5 to 14 rings per inch (rings 1.8-5 mm thick), is fairly constant from 14 to 38 rings per inch (rings 0.7–1.8 mm thick), and decreases rapidly from 38 to 47 rings per inch (rings 0.5–0.7 mm thick). The strength at maximum load is not so great with the most rapid-growing wood; it is maximum with from 14 to 20 rings per inch (rings 1.3–1.8 mm thick), and again becomes less as the wood becomes more closely ringed. The natural deduction is that wood of first-class mechanical value shows from 5 to 20 rings per inch (rings 1.3–5 mm thick) and that slower growth yields poorer stock. Thus the inspector or buyer of hickory should discriminate against timber that has more than 20 rings per inch (rings less than 1.3 mm thick). Exceptions exist, however, in the case of normal growth upon dry situations, in which the slow-growing material may be strong and tough."[14]
The effect of rate of growth on the qualities of chestnut wood is summarized by the same authority as follows:
"When the rings are wide, the transition from spring wood to summer wood is gradual, while in the narrow rings the spring wood passes into summer wood abruptly. The width of the spring wood changes but little with the width of the annual ring, so that the narrowing or broadening of the annual ring is always at the expense of the summer wood. The narrow vessels of the summer wood make it richer in wood substance than the spring wood composed of wide vessels. Therefore, rapid-growing specimens with wide rings have more wood substance than slow-growing trees with narrow rings. Since the more the wood substance the greater the weight, and the greater the weight the stronger the wood, chestnuts with wide rings must have stronger wood than chestnuts with narrow rings. This agrees with the accepted view that sprouts (which always have wide rings) yield better and stronger wood than seedling chestnuts, which grow more slowly in diameter."[14]

In diffuse-porous woods

In the diffuse-porous woods, the demarcation between rings is not always so clear and in some cases is almost (if not entirely) invisible to the unaided eye. Conversely, when there is a clear demarcation there may not be a noticeable difference in structure within the growth ring.

In diffuse-porous woods, as has been stated, the vessels or pores are even-sized, so that the water conducting capability is scattered throughout the ring instead of collected in the earlywood. The effect of rate of growth is, therefore, not the same as in the ring-porous woods, approaching more nearly the conditions in the conifers. In general it may be stated that such woods of medium growth afford stronger material than when very rapidly or very slowly grown. In many uses of wood, total strength is not the main consideration. If ease of working is prized, wood should be chosen with regard to its uniformity of texture and straightness of grain, which will in most cases occur when there is little contrast between the latewood of one season's growth and the earlywood of the next.

Monocot wood


Trunks of the coconut palm, a monocot, in Java. From this perspective these look not much different from trunks of a dicot or conifer

Structural material that resembles ordinary, "dicot" or conifer wood in its gross handling characteristics is produced by a number of monocot plants, and these also are colloquially called wood. Of these, bamboo, botanically a member of the grass family, has considerable economic importance, larger culms being widely used as a building and construction material in their own right and, these days, in the manufacture of engineered flooring, panels and veneer. Another major plant group that produce material that often is called wood are the palms. Of much less importance are plants such as Pandanus, Dracaena and Cordyline. With all this material, the structure and composition of the structural material is quite different from ordinary wood.

Specific gravity

The single most revealing property of wood as an indicator of wood quality is specific gravity (Timell 1986),[15] as both pulp yield and lumber strength are determined by it. Specific gravity is the ratio of the mass of a substance to the mass of an equal volume of water; density is the ratio of a mass of a quantity of a substance to the volume of that quantity and is expressed in mass per unit substance, e.g., grams per millilitre (g/cm3 or g/ml). The terms are essentially equivalent as long as the metric system is used. Upon drying, wood shrinks and its density increases. Minimum values are associated with green (water-saturated) wood and are referred to as basic specific gravity (Timell 1986).[15]

Wood density

Wood density is determined by multiple growth and physiological factors compounded into “one fairly easily measured wood characteristic” (Elliott 1970).[16]

Age, diameter, height, radial growth, geographical location, site and growing conditions, silvicultural treatment, and seed source, all to some degree influence wood density. Variation is to be expected. Within an individual tree, the variation in wood density is often as great as or even greater than that between different trees (Timell 1986).[15] Variation of specific gravity within the bole of a tree can occur in either the horizontal or vertical direction.

Hard and soft woods

There is a strong relationship between the properties of wood and the properties of the particular tree that yielded it. The density of wood varies with species. The density of a wood correlates with its strength (mechanical properties). For example, mahogany is a medium-dense hardwood that is excellent for fine furniture crafting, whereas balsa is light, making it useful for model building. One of the densest woods is black ironwood.

It is common to classify wood as either softwood or hardwood. The wood from conifers (e.g. pine) is called softwood, and the wood from dicotyledons (usually broad-leaved trees, e.g. oak) is called hardwood. These names are a bit misleading, as hardwoods are not necessarily hard, and softwoods are not necessarily soft. The well-known balsa (a hardwood) is actually softer than any commercial softwood. Conversely, some softwoods (e.g. yew) are harder than many hardwoods.

Chemistry of wood


Chemical structure of lignin, which comprises approximately 30% of wood and is responsible for many of its properties.

The chemical composition of wood varies from species to species, but is approximately 50% carbon, 42% oxygen, 6% hydrogen, 1% nitrogen, and 1% other elements (mainly calcium, potassium, sodium, magnesium, iron, and manganese) by weight.[17] Wood also contains sulfur, chlorine, silicon, phosphorus, and other elements in small quantity.

Aside from water, wood has three main components. Cellulose, a crystalline polymer derived from glucose, constitutes about 41–43%. Next in abundance is hemicellulose, which is around 20% in deciduous trees but near 30% in conifers. It is mainly five-carbon sugars that are linked in an irregular manner, in contrast to the cellulose. Lignin is the third component at around 27% in coniferous wood vs 23% in deciduous trees. Lignin confers the hydrophobic properties reflecting the fact that it is based on aromatic rings. These three components are interwoven, and direct covalent linkages exist between the lignin and the hemicellulose. A major focus of the paper industry is the separation of the lignin from the cellulose, from which paper is made.

In chemical terms, the difference between hardwood and softwood is reflected in the composition of the constituent lignin. Hardwood lignin is primarily derived from sinapyl alcohol and coniferyl alcohol. Softwood lignin is mainly derived from coniferyl alcohol.[18]

Extractives

Aside from the lignocellulose, wood consists of a variety of low molecular weight organic compounds, called extractives. The wood extractives are fatty acids, resin acids, waxes and terpenes.[19] For example, rosin is exuded by conifers as protection from insects. The extraction of these organic materials from wood provides tall oil, terpentine, and rosin.[20]

Uses

Fuel

Wood has a long history of being used as fuel, which continues to this day, mostly in rural areas of the world. Hardwood is preferred over softwood because it creates less smoke and burns longer. 
Adding a woodstove or fireplace to a home is often felt to add ambiance and warmth. Nowadays, wood and pellets have become one of the most important heating fuels for homes in USA, with an increase of approx. 34% over the last decade.[21]

The churches of Kizhi, Russia are among a handful of World Heritage Sites built entirely of wood, without metal joints. See Kizhi Pogost for more details.

The Saitta House, Dyker Heights, Brooklyn, New York built in 1899 is made of and decorated in wood.[22]

Construction

Wood has been an important construction material since humans began building shelters, houses and boats. Nearly all boats were made out of wood until the late 19th century, and wood remains in common use today in boat construction. Elm in particular was used for this purpose as it resisted decay as long as it was kept wet (it also served for water pipe before the advent of more modern plumbing).

Wood to be used for construction work is commonly known as lumber in North America. Elsewhere, lumber usually refers to felled trees, and the word for sawn planks ready for use is timber. In Medieval Europe oak was the wood of choice for all wood construction, including beams, walls, doors, and floors. Today a wider variety of woods is used: solid wood doors are often made from poplar, small-knotted pine, and Douglas fir.

New domestic housing in many parts of the world today is commonly made from timber-framed construction. Engineered wood products are becoming a bigger part of the construction industry.
They may be used in both residential and commercial buildings as structural and aesthetic materials.
In buildings made of other materials, wood will still be found as a supporting material, especially in roof construction, in interior doors and their frames, and as exterior cladding.

Wood is also commonly used as shuttering material to form the mould into which concrete is poured during reinforced concrete construction.

Wood flooring

Engineered wood


Wood can be cut into straight planks and made into a wood flooring.

Engineered wood products, glued building products "engineered" for application-specific performance requirements, are often used in construction and industrial applications. Glued engineered wood products are manufactured by bonding together wood strands, veneers, lumber or other forms of wood fiber with glue to form a larger, more efficient composite structural unit.[23]
These products include glued laminated timber (glulam), wood structural panels (including plywood, oriented strand board and composite panels), laminated veneer lumber (LVL) and other structural composite lumber (SCL) products, parallel strand lumber, and I-joists.[23] Approximately 100 million cubic meters of wood was consumed for this purpose in 1991.[2] The trends suggest that particle board and fiber board will overtake plywood.

Wood unsuitable for construction in its native form may be broken down mechanically (into fibers or chips) or chemically (into cellulose) and used as a raw material for other building materials, such as engineered wood, as well as chipboard, hardboard, and medium-density fiberboard (MDF). Such wood derivatives are widely used: wood fibers are an important component of most paper, and cellulose is used as a component of some synthetic materials. Wood derivatives can also be used for kinds of flooring, for example laminate flooring.

Furniture and utensils

Wood has always been used extensively for furniture, such as chairs and beds. Also for tool handles and cutlery, such as chopsticks, toothpicks, and other utensils, like the wooden spoon.

Next generation wood products

Further developments include new lignin glue applications, recyclable food packaging, rubber tire replacement applications, anti-bacterial medical agents, and high strength fabrics or composites.[24]
As scientists and engineers further learn and develop new techniques to extract various components from wood, or alternatively to modify wood, for example by adding components to wood, new more advanced products will appear on the marketplace. Moisture content electronic monitoring can also enhance next generation wood protection.[25]

In the arts


Stringed instrument bows are often made from brazilwood (also called pernambuco).

Wood has long been used as an artistic medium. It has been used to make sculptures and carvings for millennia. Examples include the totem poles carved by North American indigenous people from conifer trunks, often Western Red Cedar (Thuja plicata), and the Millennium clock tower,[26] now housed in the National Museum of Scotland in Edinburgh.

It is also used in woodcut printmaking, and for engraving.

Certain types of musical instruments, such as those of the violin family, the guitar, the clarinet and recorder, the xylophone, and the marimba, are made mostly or entirely of wood. The choice of wood may make a significant difference to the tone and resonant qualities of the instrument, and tonewoods have widely differing properties, ranging from the hard and dense african blackwood (used for the bodies of clarinets) to the light but resonant European spruce (Picea abies) (traditionally used for the soundboards of violins). The most valuable tonewoods, such as the ripple sycamore (Acer pseudoplatanus), used for the backs of violins, combine acoustic properties with decorative color and grain which enhance the appearance of the finished instrument.

Despite their collective name, not all woodwind instruments are made entirely of wood. The reeds used to play them, however, are usually made from Arundo donax, a type of monocot cane plant.

Sports and recreational equipment

Many types of sports equipment are made of wood, or were constructed of wood in the past. For example, cricket bats are typically made of white willow. The baseball bats which are legal for use in Major League Baseball are frequently made of ash wood or hickory, and in recent years have been constructed from maple even though that wood is somewhat more fragile. In softball, however, bats are more commonly made of aluminium (this is especially true for fastpitch softball). NBA courts have been traditionally made out of hardwood, Main article: Parquetry#Use in the NBA.

Many other types of sports and recreation equipment, such as skis, ice hockey sticks, lacrosse sticks and archery bows, were commonly made of wood in the past, but have since been replaced with more modern materials such as aluminium, fiberglass, carbon fiber, titanium, and composite materials. One noteworthy example of this trend is the golf club commonly known as the wood, the head of which was traditionally made of persimmon wood in the early days of the game of golf, but is now generally made of synthetic materials.

Bacterial degradation

Little is known about the bacteria that degrade cellulose. Symbiotic bacteria in Xylophaga may play a role in the degradation of sunken wood; while bacteria such as Alphaproteobacteria, Flavobacteria, Actinobacteria, Clostridia, and Bacteroidetes have been detected in wood submerged over a year.[27]

Cryogenics

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Cryogenics...