Search This Blog

Thursday, February 26, 2015

Soap



From Wikipedia, the free encyclopedia


A collection of decorative soaps, often found in hotels

Two equivalent images of the chemical structure of sodium stearate, a typical soap.

In chemistry, soap is a salt of a fatty acid.[1] Soaps are mainly used as surfactants for washing, bathing, and cleaning, but they are also used in textile spinning and are important components of lubricants. Soaps for cleansing are obtained by treating vegetable or animal oils and fats with a strongly alkaline solution. Fats and oils are composed of triglycerides; three molecules of fatty acids are attached to a single molecule of glycerol.[2] The alkaline solution, which is often called lye (although the term "lye soap" refers almost exclusively to soaps made with sodium hydroxide), brings about a chemical reaction known as saponification. In this reaction, the triglyceride fats are first hydrolyzed into free fatty acids, and then these combine with the alkali to form crude soap, an amalgam of various soap salts, excess fat or alkali, water, and liberated glycerol (glycerin). The glycerin is a useful by-product, which can be left in the soap product as a softening agent, or isolated for other uses.[2]

Soaps are key components of most lubricating greases, which are usually emulsions of calcium soap or lithium soaps and mineral oil. These calcium- and lithium-based greases are widely used. Many other metallic soaps are also useful, including those of aluminium, sodium, and mixtures of them. Such soaps are also used as thickeners to increase the viscosity of oils. In ancient times, lubricating greases were made by the addition of lime to olive oil.[3]

Soap is very important for effective hand washing and hygiene, but if it is not available in difficult situations, then clean ash or sand / soil can be used as substitute as recommended by e.g. World Health Organization.[4]

Mechanism of cleansing soaps


Structure of a micelle, a cell-like structure formed by the aggregation of soap subunits (such as sodium stearate): The exterior of the micelle is hydrophilic (attracted to water) and the interior is lipophilic (attracted to oils).

Action of soap

When used for cleaning, soap allows insoluble particles to become soluble in water and then be rinsed away. For example: oil/fat is insoluble in water, but when a couple of drops of dish soap are added to the mixture, the oil/fat apparently disappears. The insoluble oil/fat molecules become associated inside micelles, tiny spheres formed from soap molecules with polar hydrophilic (water-attracting) groups on the outside and encasing a lipophilic (fat-attracting) pocket, which shields the oil/fat molecules from the water making it soluble. Anything that is soluble will be washed away with the water. Synthetic detergents operate by similar mechanisms to soap.

Effect of the alkali

The type of alkali metal used determines the kind of soap product. Sodium soaps, prepared from sodium hydroxide, are firm, whereas potassium soaps, derived from potassium hydroxide, are softer or often liquid. Historically, potassium hydroxide was extracted from the ashes of bracken or other plants. Lithium soaps also tend to be hard—these are used exclusively in greases.

Effects of fats

Soaps are derivatives of fatty acids. Traditionally they have been made from triglycerides (oils and fats).[5] Triglyceride is the chemical name for the triesters of fatty acids and glycerin. Tallow, i.e., rendered beef fat, is the most available triglyceride from animals. Its saponified product is called sodium tallowate. Typical vegetable oils used in soap making are palm oil, coconut oil, olive oil, and laurel oil.[6] Each species offers quite different fatty acid content and, hence, results in soaps of distinct feel. The seed oils give softer but milder soaps. Soap made from pure olive oil is sometimes called Castile soap or Marseille soap, and is reputed for being extra mild. The term "Castile" is also sometimes applied to soaps from a mixture of oils, but a high percentage of olive oil.
 
Fatty acid content of various fats used for soapmaking

Lauric acid Myristic acid Palmitic acid Stearic acid Oleic acid Linoleic acid Linolenic acid
fats C12 saturated C14 saturated C16 saturated C18 saturated C18 monounsaturated C18 diunsaturated C18 triunsaturated
Tallow 0 4 28 23 35 2 1
Coconut oil 48 18 9 3 7 2 0
Palm kernel oil 46 16 8 3 12 2 0
Laurel oil 54 0 0 0 15 17 0
Olive oil 0 0 11 2 78 10 0
Canola 0 1 3 2 58 9 23

History of cleansing soaps[edit]

Early history


Box for Amigo del Obrero (Worker's Friend) soap from the 20th century, part of the Museo del Objeto del Objeto collection

The earliest recorded evidence of the production of soap-like materials dates back to around 2800 BC in ancient Babylon.[7] A formula for soap consisting of water, alkali, and cassia oil was written on a Babylonian clay tablet around 2200 BC.

The Ebers papyrus (Egypt, 1550 BC) indicates the ancient Egyptians bathed regularly and combined animal and vegetable oils with alkaline salts to create a soap-like substance. Egyptian documents mention a soap-like substance was used in the preparation of wool for weaving.[citation needed]

In the reign of Nabonidus (556–539 BC), a recipe for soap consisted of uhulu [ashes], cypress [oil] and sesame [seed oil] "for washing the stones for the servant girls".[8]

Ancient Roman era

The word sapo, Latin for soap, first appears in Pliny the Elder's Historia Naturalis, which discusses the manufacture of soap from tallow and ashes, but the only use he mentions for it is as a pomade for hair; he mentions rather disapprovingly that the men of the Gauls and Germans were more likely to use it than their female counterparts.[9] Aretaeus of Cappadocia, writing in the first century AD, observes among "Celts, which are men called Gauls, those alkaline substances that are made into balls [...] called soap".[10] The Romans' preferred method of cleaning the body was to massage oil into the skin and then scrape away both the oil and any dirt with a strigil. The Gauls used soap made from animal fat.

A popular belief claims soap takes its name from a supposed Mount Sapo, where animal sacrifices were supposed to have taken place; tallow from these sacrifices would then have mixed with ashes from fires associated with these sacrifices and with water to produce soap, but there is no evidence of a Mount Sapo in the Roman world and no evidence for the apocryphal story. The Latin word sapo simply means "soap"; it was likely borrowed from an early Germanic language and is cognate with Latin sebum, "tallow", which appears in Pliny the Elder's account.[11] Roman animal sacrifices usually burned only the bones and inedible entrails of the sacrificed animals; edible meat and fat from the sacrifices were taken by the humans rather than the gods.

Zosimos of Panopolis, circa 300 AD, describes soap and soapmaking.[12] Galen describes soap-making using lye and prescribes washing to carry away impurities from the body and clothes. According to Galen, the best soaps were Germanic, and soaps from Gaul were second best. This is a reference to true soap in antiquity.[12]

Ancient China

Soap, or more accurately a detergent similar to soap, was manufactured in ancient China from vegetation and herbs.[13] True soap, made of animal fat, did not appear in China until the modern era.[14] Soap-like detergents were not as popular as ointments and creams.[13]

Middle East

A 12th-century Islamic document describes the process of soap production.[15] It mentions the key ingredient, alkali, which later becomes crucial to modern chemistry, derived from al-qaly or "ashes".
By the 13th century, the manufacture of soap in the Islamic world had become virtually industrialized, with sources in Nablus, Fes, Damascus, and Aleppo.[16][17]

Medieval Europe

Soapmakers in Naples were members of a guild in the late sixth century,[18] and in the eighth century, soap-making was well known in Italy and Spain.[19] The Carolingian capitulary De Villis, dating to around 800, representing the royal will of Charlemagne, mentions soap as being one of the products the stewards of royal estates are to tally. Soapmaking is mentioned both as “women’s work” and as the produce of “good workmen” alongside other necessities, such as the produce of carpenters, blacksmiths, and bakers.[20]

15th–19th centuries


Advertisement for Pears' Soap, 1889

A 1922 magazine advertisement for Palmolive Soap

Liquid soap

Manufacturing process of soaps/detergents

In France, by the second half of the 15th century, the semi-industrialized professional manufacture of soap was concentrated in a few centers of ProvenceToulon, Hyères, and Marseille — which supplied the rest of France.[21] In Marseilles, by 1525, production was concentrated in at least two factories, and soap production at Marseille tended to eclipse the other Provençal centers.[22] English manufacture tended to concentrate in London.[23]

Finer soaps were later produced in Europe from the 16th century, using vegetable oils (such as olive oil) as opposed to animal fats. Many of these soaps are still produced, both industrially and by small-scale artisans. Castile soap is a popular example of the vegetable-only soaps derived from the oldest “white soap” of Italy.

In modern times, the use of soap has become universal in industrialized nations due to a better understanding of the role of hygiene in reducing the population size of pathogenic microorganisms. Industrially manufactured bar soaps first became available in the late 18th century, as advertising campaigns in Europe and the United States promoted popular awareness of the relationship between cleanliness and health.[24]

Until the Industrial Revolution, soapmaking was conducted on a small scale and the product was rough. In 1780 James Keir established a chemical works at Tipton, for the manufacture of alkali from the sulfates of potash and soda, to which he afterwards added a soap manufactory. The method of extraction proceeded on a discovery of Keir's. Andrew Pears started making a high-quality, transparent soap in 1807[25] in London. His son-in-law, Thomas J. Barratt, opened a factory in Isleworth in 1862.

William Gossage produced low-priced, good-quality soap from the 1850s. Robert Spear Hudson began manufacturing a soap powder in 1837, initially by grinding the soap with a mortar and pestle. American manufacturer Benjamin T. Babbitt introduced marketing innovations that included sale of bar soap and distribution of product samples. William Hesketh Lever and his brother, James, bought a small soap works in Warrington in 1886 and founded what is still one of the largest soap businesses, formerly called Lever Brothers and now called Unilever. These soap businesses were among the first to employ large-scale advertising campaigns.

Liquid soap

Liquid soap was not invented until the 1800s; in 1865, William Shepphard patented a liquid version of soap. In 1898, B.J. Johnson developed a soap (made of palm and olive oils); his company (the B.J. Johnson Soap Company) introduced "Palmolive" brand soap that same year. This new brand of the new kind of soap became popular rapidly, and to such a degree that B.J. Johnson Soap Company changed its name to Palmolive. At the turn of the Twentieth century, Palmolive was the world's best-selling soap.[26]
In the early 1900s, other companies began to develop their own liquid soaps. Such products as Pine-Sol and Tide appeared on the market, making the process of cleaning things other than skin (e.g., clothing, floors, bathrooms) much easier.

As a detergent, liquid soap tends to be more effective than flake soap, and tends to leave less residue on skin, clothes, and surfaces (e.g., wash basins). Liquid soap also works better for more traditional/non-machine washing methods, such as using a washboard.[27]

Soap-making processes

The industrial production of soap involves continuous processes, such as continuous addition of fat and removal of product. Smaller-scale production involves the traditional batch processes. The three variations are: the 'cold process', wherein the reaction takes place substantially at room temperature, the 'semiboiled' or 'hot process', wherein the reaction takes place near the boiling point, and the 'fully boiled process', wherein the reactants are boiled at least once and the glycerol is recovered. There are two types of 'semiboiled' hot process methods. The first is the ITMHP (in the mold hot process) and the second is the CPHP (crockpot hot process). Typically soapmakers choose the hot process methods if they wish to reduce the cure time to a three-day air dry process. Most soapmakers, however, continue to prefer the cold process method. The cold process and hot process (semiboiled) are the simplest and typically used by small artisans and hobbyists producing handmade decorative soaps.
The glycerine remains in the soap and the reaction continues for many days after the soap is poured into moulds. The glycerine is left during the hot-process method, but at the high temperature employed, the reaction is practically completed in the kettle, before the soap is poured into moulds. This simple and quick process is employed in small factories all over the world.

Handmade soap from the cold process also differs from industrially made soap in that an excess of fat is used, beyond that needed to consume the alkali (in a cold-pour process, this excess fat is called “superfatting”), and the glycerine left in acts as a moisturizing agent. However, the glycerine also makes the soap softer and less resistant to becoming “mushy” if left wet. Since it is better to add too much oil and have left-over fat, than to add too much lye and have left-over lye, soap produced from the hot process also contains left-over glycerine and its concomitant pros and cons. Further addition of glycerine and processing of this soap produces glycerin soap. Superfatted soap is more skin-friendly than one without extra fat. However, if too much fat is added, it can leave a “greasy” feel to the skin. Sometimes, an emollient additive, such as jojoba oil or shea butter, is added “at trace” (i.e., the point at which the saponification process is sufficiently advanced that the soap has begun to thicken in the cold process method) in the belief that nearly all the lye will be spent and it will escape saponification and remain intact. In the case of hot-process soap, an emollient may be added after the initial oils have saponified so they remain unreacted in the finished soap. Superfatting can also be accomplished through a process known as “lye discount” in which the soap maker uses less alkali than required instead of adding extra fats.

Cold process


The lye is dissolved in water.

Even in the cold soapmaking process, some heat is usually required; the temperature is usually raised to a point sufficient to ensure complete melting of the fat being used. The batch may also be kept warm for some time after mixing to ensure the alkali (hydroxide) is completely used up. This soap is safe to use after about 12–48 hours, but is not at its peak quality for use for several weeks.

Cold-process soapmaking requires exact measurements of lye and fat amounts and computing their ratio, using saponification charts to ensure the finished product does not contain any excess hydroxide or too much free unreacted fat. Saponification charts should also be used in hot processes, but are not necessary for the “fully boiled hot-process” soaping.

Historically, lye used in the cold process was made from scratch using rainwater and ashes. Soapmakers deemed the lye solution ready for use when an egg would float in it. Homemade lye making for this process was unpredictable and therefore eventually led to the discovery of the sodium hydroxide by English chemist Sir Humphry Davy in the early 1800s.

A cold-process soapmaker first looks up the saponification value for each unique fat on an oil specification sheet. Oil specification sheets contain laboratory test results for each fat, including the precise saponification value of the fat. The saponification value for a specific fat will vary by season and by specimen species.[28] This value is used to calculate the exact amount of potassium hydroxide to react with the fat to form soap. The saponification value must be converted into an equivalent sodium hydroxide value for use in cold process soapmaking. Excess unreacted lye in the soap will result in a very high pH and can burn or irritate skin; not enough lye leaves the soap greasy. Most soap makers formulate their recipes with a 2–5% deficit of lye, to account for the unknown deviation of saponification value between their oil batch and laboratory averages.

The lye is dissolved in water. Then oils are heated, or melted if they are solid at room temperature. Once the oils are liquefied and the lye is fully dissolved in water, they are combined. This lye-fat mixture is mixed until the two phases (oils and water) are fully emulsified. Emulsification is most easily identified visually when the soap exhibits some level of “trace”, which is the thickening of the mixture. (Modern-day amateur soapmakers often use a stick blender to speed this process). There are varying levels of trace. Depending on how additives will affect trace, they may be added at light trace, medium trace, or heavy trace. After much stirring, the mixture turns to the consistency of a thin pudding. “Trace” corresponds roughly to viscosity. Essential oils and fragrance oils can be added with the initial soaping oils, but solid additives such as botanicals, herbs, oatmeal, or other additives are most commonly added at light trace, just as the mixture starts to thicken.

The batch is then poured into moulds, kept warm with towels or blankets, and left to continue saponification for 12 to 48 hours. (Milk soaps or other soaps with sugars added are the exception. They typically do not require insulation, as the presence of sugar increases the speed of the reaction and thus the production of heat.) During this time, it is normal for the soap to go through a “gel phase”, wherein the opaque soap will turn somewhat transparent for several hours, before once again turning opaque.

After the insulation period, the soap is firm enough to be removed from the mould and cut into bars. At this time, it is safe to use the soap, since saponification is in essence complete. However, cold-process soaps are typically cured and hardened on a drying rack for 2–6 weeks before use. During this cure period, trace amounts of residual lye are consumed by saponification and excess water evaporates.

During the curing process, some molecules in the outer layer of the solid soap react with the carbon dioxide of the air and produce a dusty sheet of sodium carbonate. This reaction is more intense if the mass is exposed to wind or low temperatures.

Hot processes

Hot-processed soaps are created by encouraging the saponification reaction by adding heat to speed up the reaction. In contrast with cold-pour soap which is poured into moulds and for the most part only then saponifies, hot-process soaping for the most part saponifies the oils completely and only then is poured into moulds.

In the hot process, the hydroxide and the fat are heated and mixed together at 80–100 °C, a little below boiling point, until saponification is complete, which, before modern scientific equipment, the soapmaker determined by taste (the sharp, distinctive taste of the hydroxide disappears after it is saponified) or by eye; the experienced eye can tell when gel stage and full saponification has occurred. Beginners can find this information through research and classes. Tasting soap for readiness is not recommended, as sodium and potassium hydroxides, when not saponified, are highly caustic.

An advantage of the fully boiled hot process in soapmaking is the exact amount of hydroxide required need not be known with great accuracy. They originated when the purity of the alkali hydroxides were unreliable, as these processes can use even naturally found alkalis, such as wood ashes and potash deposits. In the fully boiled process, the mix is actually boiled (100+ °C), and, after saponification has occurred, the “neat soap” is precipitated from the solution by adding common salt, and the excess liquid is drained off. This excess liquid carries away with it much of the impurities and color compounds in the fat, to leave a purer, whiter soap, and with practically all the glycerine removed. The hot, soft soap is then pumped into a mould. The spent hydroxide solution is processed for recovery of glycerine.

Molds


Logs of soap after demolding.

Many commercially available soap molds are made of silicone or various types of plastic, although many soapmaking hobbyists may use cardboard boxes lined with a plastic film. Wooden molds lined with silicone sleeves are also readily available to the general public. Soaps can be made in long bars that are cut into individual portions, or cast into individual molds.

Purification and finishing

In the fully boiled process on an industrial scale, the soap is further purified to remove any excess sodium hydroxide, glycerol, and other impurities, colour compounds, etc. These components are removed by boiling the crude soap curds in water and then precipitating the soap with salt.

At this stage, the soap still contains too much water, which has to be removed. This was traditionally done on chill rolls, which produced the soap flakes commonly used in the 1940s and 1950s. This process was superseded by spray dryers and then by vacuum dryers.

The dry soap (about 6–12% moisture) is then compacted into small pellets or noodles. These pellets or noodles are then ready for soap finishing, the process of converting raw soap pellets into a saleable product, usually bars.

Soap pellets are combined with fragrances and other materials and blended to homogeneity in an amalgamator (mixer). The mass is then discharged from the mixer into a refiner, which, by means of an auger, forces the soap through a fine wire screen. From the refiner, the soap passes over a roller mill (French milling or hard milling) in a manner similar to calendering paper or plastic or to making chocolate liquor. The soap is then passed through one or more additional refiners to further plasticize the soap mass. Immediately before extrusion, the mass is passed through a vacuum chamber to remove any trapped air. It is then extruded into a long log or blank, cut to convenient lengths, passed through a metal detector, and then stamped into shape in refrigerated tools. The pressed bars are packaged in many ways.

Sand or pumice may be added to produce a scouring soap. The scouring agents serve to remove dead cells from the skin surface being cleaned. This process is called exfoliation. Many newer materials that are effective, yet do not have the sharp edges and poor particle size distribution of pumice, are used for exfoliating soaps.

To make antibacterial soap, compounds such as triclosan or triclocarban can be added. There is some concern that use of antibacterial soaps and other products might encourage antibiotic resistance in microorganisms.[29]

Salt



From Wikipedia, the free encyclopedia


Salt deposits beside the Dead Sea.

Common salt is a mineral composed primarily of sodium chloride (NaCl), a chemical compound belonging to the larger class of salts; salt in its natural form as a crystalline mineral is known as rock salt or halite. Salt is present in vast quantities in the sea, where it is the main mineral constituent; the open ocean has about 35 grams (1.2 oz) of solids per litre, a salinity of 3.5%. Salt is essential for animal life, and saltiness is one of the basic human tastes. The tissues of animals contain larger quantities of salt than do plant tissues; therefore the typical diets of nomads who subsist on their flocks and herds require little or no added salt, whereas cereal-based diets require supplementation. Salt is one of the oldest and most ubiquitous of food seasonings, and salting is an important method of food preservation.

Some of the earliest evidence of salt processing dates to around 6,000 years ago, when people living in Romania were boiling spring water to extract the salts; a saltworks in China has been found which dates to approximately the same period. Salt was prized by the ancient Hebrews, the Greeks, the Romans, the Byzantines, the Hittites and the Egyptians. Salt became an important article of trade and was transported by boat across the Mediterranean Sea, along specially built salt roads, and across the Sahara in camel caravans. The scarcity and universal need for salt has led nations to go to war over salt and use it to raise tax revenues. Salt is also used in religious ceremonies and has other cultural significance.

Salt is produced from salt mines or by the evaporation of seawater or mineral-rich spring water in shallow pools. Its major industrial products are caustic soda and chlorine, and it is used in many industrial processes and in the manufacture of polyvinyl chloride, plastics, paper pulp and many other products. Of the annual production of around two hundred million tonnes of salt, only about 6% is used for human consumption; other uses include water conditioning processes, de-icing highways and agricultural use. Edible salt is sold in forms such as sea salt and table salt which usually contains an anti-caking agent and may be iodised to prevent iodine deficiency. As well as its use in cooking and at the table, salt is present in many processed foods. Too much sodium in the diet raises blood pressure and may increase the risk of heart attacks and strokes. The World Health Organization recommends that adults should consume less than 2,000 mg of sodium which is equivalent to 5 grams of salt per day.[1]

History


Salt production in Halle, Saxony-Anhalt (1670)

While people have used canning and artificial refrigeration to preserve food for the last hundred years or so, salt has been the best-known food preservative, especially for meat, for many thousands of years.[2] A very ancient saltworks operation has been discovered at the Poiana Slatinei archaeological site next to a salt spring in Lunca, Neamț County, Romania. Evidence indicates that Neolithic people of the Precucuteni Culture were boiling the salt-laden spring water through the process of briquetage to extract the salt as far back as 6050 BC.[3] The salt extracted from this operation may have had a direct correlation to the rapid growth of this society's population soon after its initial production began.[4] The harvest of salt from the surface of Xiechi Lake near Yuncheng in Shanxi, China, dates back to at least 6000 BC, making it one of the oldest verifiable saltworks.[5]

There is more salt in animal tissues such as meat, blood and milk, than there is in plant tissues.[6] Nomads who subsist on their flocks and herds do not eat salt with their food, but agriculturalists, feeding mainly on cereals and vegetable matter, need to supplement their diet with salt.[7] With the spread of civilization, salt became one of the world's main trading commodities. It was of high value to the ancient Hebrews, the Greeks, the Romans, the Byzantines, the Hittites and other peoples of antiquity. In the Middle East, salt was used to ceremonially seal an agreement, and the ancient Hebrews made a "covenant of salt" with God and sprinkled salt on their offerings to show their trust in Him.[8] An ancient practice in time of war was salting the earth: scattering salt around in a defeated city in order to prevent plant growth. Abimelech was ordered by God to do this at Shechem,[9] and various texts claim that the Roman general Scipio Aemilianus Africanus ploughed over and sowed the city of Carthage with salt after it was defeated in the Third Punic War (146 BC).[10]

Ponds near Maras, Peru, fed from a mineral spring and used for salt production since the time of the Incas.

Salt may have been used for barter in connection with the obsidian trade in Anatolia in the Neolithic Era.[11] Herodotus described salt trading routes across Libya back in the 5th century BC. In the early years of the Roman Empire, roads such as the Via Salaria were built for the transportation of salt from the salt pans of Ostia to the capital.[12] Salt was included among funeral offerings found in ancient Egyptian tombs from the third millennium BC, as were salted birds, and salt fish.[13] From about 2800 BC, the Egyptians began exporting salt fish to the Phoenicians in return for Lebanon cedar, glass and the dye Tyrian purple; the Phoenicians traded Egyptian salt fish and salt from North Africa throughout their Mediterranean trade empire.[14]

In Africa, salt was used as currency south of the Sahara, and slabs of rock salt were used as coins in Abyssinia.[7] Moorish merchants in the 6th century traded salt for gold, weight for weight. The Tuareg have traditionally maintained routes across the Sahara especially for the transportation of salt by Azalai (salt caravans). The caravans still cross the desert from southern Niger to Bilma, although much of the trade now takes place by truck. Each camel takes two bales of fodder and two of trade goods northwards and returns laden with salt pillars and dates.[15]

Salzburg, Hallstatt, and Hallein lie within 17 km (11 mi) of each other on the river Salzach in central Austria in an area with extensive salt deposits. Salzach literally means "salt river" and Salzburg "salt castle", both taking their names from the German word Salz meaning salt and Hallstatt was the site of the world's first salt mine.[16] The town gave its name to the Hallstatt culture that began mining for salt in the area in about 800 BC. Around 400 BC, the townsfolk, who had previously used pickaxes and shovels, began open pan salt making. During the first millennium BC, Celtic communities grew rich trading salt and salted meat to Ancient Greece and Ancient Rome in exchange for wine and other luxuries.[2] The word salary originates from Latin: salarium which referred to the money paid to the Roman Army's soldiers for the purchase of salt.[17] The word salad literally means "salted", and comes from the ancient Roman practice of salting leaf vegetables.[18]

Wars have been fought over salt. Venice fought and won a war with Genoa over the product, and it played an important part in the American Revolution. Cities on overland trade routes grew rich by levying duties,[19] and towns like Liverpool flourished on the export of salt extracted from the salt mines of Cheshire.[20] Various governments have at different times imposed salt taxes on their peoples. The voyages of Christopher Columbus are said to have been financed from salt production in southern Spain, and the oppressive salt tax in France was one of the causes of the French Revolution. After being repealed, this tax was reimposed by Napoleon when he became emperor to pay for his foreign wars, and was not finally abolished until 1945.[19] In 1930, Mahatma Gandhi led at least 100,000 people on the "Dandi March" or "Salt Satyagraha", in which protesters made their own salt from the sea thus defying British rule and avoiding paying the salt tax. This civil disobedience inspired millions of common people, and elevated the Indian independence movement from an elitist movement to a national struggle.[21]

Chemistry


SEM image of a grain of table salt
 Salt is mostly sodium chloride, the ionic compound with the formula NaCl, representing equal proportions of sodium and chlorine. Sea salt and freshly mined salt (much of which is sea salt from prehistoric seas) also contain small amounts of trace elements (which in these small amounts are generally good for plant and animal health). Mined salt is often refined in the production of table salt; it is dissolved in water, purified via precipitation of other minerals out of solution, and reevaporated. During this same refining process it is often also iodized. Salt crystals are translucent and cubic in shape; they normally appear white but impurities may give them a blue or purple tinge. The molar mass of salt is 58.443 g/mol, its melting point is 801 °C (1,474 °F) and its boiling point 1,465 °C (2,669 °F). Its density is 2.17 grams per cubic centimetre and it is readily soluble in water. When dissolved in water it separates into Na+ and Cl ions and the solubility is 359 grams per litre.[22] From cold solutions, salt crystallises as the dihydrate NaCl·2H2O. Solutions of sodium chloride have very different properties from those of pure water; the freezing point is −21.12 °C (−6.02 °F) for 23.31 wt% of salt, and the boiling point of saturated salt solution is around 108.7 °C (227.7 °F).[23]

Edible salt

Salt is essential to the health of people and animals and is used universally as a seasoning. It is used in cooking, is added to manufactured foodstuffs and is often present on the table at mealtimes for individuals to sprinkle on their own food. Saltiness is one of the five basic taste sensations.[24]

Salt shaker

In many cuisines around the world, salt is used in cooking, and is often found in salt shakers on diners' eating tables for their personal use on food. Table salt is a refined salt containing about 97 to 99 percent sodium chloride.[25][26][27] Usually, anticaking agents such as sodium aluminosilicate or magnesium carbonate are added to make it free-flowing. Some people put a desiccant, such as a few grains of uncooked rice[28] or a saltine cracker, in their salt shakers to absorb extra moisture and help break up salt clumps that may otherwise form.[29]

Fortified table salt

Some table salt sold for consumption contain additives which address a variety of health concerns, especially in the developing world. The identities and amounts of additives vary widely from country to country. Iodine is an important micronutrient for humans, and a deficiency of the element can cause lowered production of thyroxine (hypothyroidism) and enlargement of the thyroid gland (endemic goitre) in adults or cretinism in children.[30] Iodized salt has been used to correct these conditions since 1924[31] and consists of table salt mixed with a minute amount of potassium iodide, sodium iodide or sodium iodate. A small amount of dextrose may also be added to stabilize the iodine.[32] Iodine deficiency affects about two billion people around the world and is the leading preventable cause of mental retardation.[33] Iodized table salt has significantly reduced disorders of iodine deficiency in countries where it is used.[34]

The amount of iodine and the specific iodine compound added to salt varies from country to country. In the United States, the Food and Drug Administration (FDA) recommends [21 CFR 101.9 (c)(8)(iv)] 150 micrograms of iodine per day for both men and women. US iodized salt contains 46–77 ppm (parts per million), whereas in the UK the iodine content of iodized salt is recommended to be 10–22 ppm.[35]

Sodium ferrocyanide, also known as yellow prussiate of soda, is sometimes added to salt as an anticaking agent. The additive is considered safe for human consumption.[36][37] Such anti-caking agents have been added since at least 1911 when magnesium carbonate was first added to salt to make it flow more freely.[38] The safety of sodium ferrocyanide as a food additive was found to be provisionally acceptable by the Committee on Toxicity in 1988.[36] Other anticaking agents sometimes used include tricalcium phosphate, calcium or magnesium carbonates, fatty acid salts (acid salts), magnesium oxide, silicon dioxide, calcium silicate, sodium aluminosilicate and calcium aluminosilicate. Both the European Union and the United States Food and Drug Administration permitted the use of aluminium in the latter two compounds.[39]

In "doubly fortified salt", both iodide and iron salts are added. The latter alleviates iron deficiency anaemia, which interferes with the mental development of an estimated 40% of infants in the developing world. A typical iron source is ferrous fumarate.[40] Another additive, especially important for pregnant women, is folic acid (vitamin B9), which gives the table salt a yellow color. Folic acid helps prevent neural tube defects and anaemia, which affect young mothers, especially in developing countries.[40]

A lack of fluorine in the diet is the cause of a greatly increased incidence of dental caries.[41] Fluoride salts can be added to table salt with the goal of reducing tooth decay, especially in countries that have not benefited from fluoridated toothpastes and fluoridated water. The practice is more common in some European countries where water fluoridation is not carried out. In France, 35% of the table salt sold contains added sodium fluoride.[40]

Other kinds


Irregular crystals of sea salt

Unrefined sea salt contains small amounts of magnesium and calcium halides and sulphates, traces of algal products, salt-resistant bacteria and sediment particles. The calcium and magnesium salts confer a faintly bitter overtone, and they make unrefined sea salt hygroscopic (i.e., it gradually absorbs moisture from air if stored uncovered). Algal products contribute a mildly "fishy" or "sea-air" odour, the latter from organobromine compounds. Sediments, the proportion of which varies with the source, give the salt a dull grey appearance. Since taste and aroma compounds are often detectable by humans in minute concentrations, sea salt may have a more complex flavor than pure sodium chloride when sprinkled on top of food. When salt is added during cooking however, these flavors would likely be overwhelmed by those of the food ingredients.[42] The refined salt industry cites scientific studies saying that raw sea and rock salts do not contain enough iodine salts to prevent iodine deficiency diseases.[43]

Different natural salts have different mineralities depending on their source, giving each one a unique flavour. Fleur de sel, a natural sea salt from the surface of evaporating brine in salt pans, has a unique flavour varying with the region from which it is produced. In traditional Korean cuisine, so-called "bamboo salt" is prepared by roasting salt[44] in a bamboo container plugged with mud at both ends. This product absorbs minerals from the bamboo and the mud, and has been claimed to increase the anticlastogenic and antimutagenic properties of doenjang (a fermented bean paste).[45]

Kosher salt, though refined, contains no iodine and has a much larger grain size than most refined salts. This can give it different properties when used in cooking, and can be useful for preparing kosher meat. Some kosher salt has been certified to meet kosher requirements by a hechsher, but this is not true for all products labelled as kosher salt.[46]

Salt in food

Salt is present in most foods, but in naturally occurring foodstuffs such as meats, vegetables and fruit, it is present in very small quantities. It is often added to processed foods (such as canned foods and especially salted foods, pickled foods, and snack foods or other convenience foods), where it functions as both a preservative and a flavoring. Before the advent of electrically powered refrigeration, salting was one of the main methods of food preservation. Thus, herring contains 67 mg sodium per 100 g, while kipper, its preserved form, contains 990 mg. Similarly, pork typically contains 63 mg while bacon contains 1480 mg, and potatoes contain 7 mg but potato crisps 800 mg per 100 g.[6] The main sources of salt in the diet, apart from direct use of sodium chloride, are bread and cereal products, meat products and milk and dairy products.[6]

In many East Asian cultures, salt is not traditionally used as a condiment.[47] In its place, condiments such as soy sauce, fish sauce and oyster sauce tend to have a high sodium content and fill a similar role to table salt in western cultures. They are most often used for cooking rather than as table condiments.[48]

Diet and health

Table salt is made up of just under 40% sodium by weight, so a 6 g serving (1 teaspoon) contains about 2,300 mg of sodium.[49] Sodium serves a vital purpose in the human body: it helps nerves and muscles to function correctly, and it is one of the factors involved in the regulation of water content (fluid balance).[50] Most of the sodium in the Western diet comes from salt.[51] The habitual salt intake in many Western countries is about 10 g per day, and it is higher than that in many countries in Eastern Europe and Asia.[52] The high level of sodium in many processed foods has a major impact on the total amount consumed.[53] In the United States, 77% of the sodium eaten comes from processed and restaurant foods, 11% from cooking and table use and the rest from what is found naturally in foodstuffs.[54]
The effects of recommending decreasing sodium intake are not entirely clear.[55] It is believed that too much is bad for health, and health organizations generally recommend that people reduce their dietary intake of salt.[56][57] High salt intake is associated with a greater risk of stroke and total cardiovascular disease in susceptible people.[52] Direct evidence, however, is unclear if a low salt diet affects overall or cardiovascular related deaths.[58] In adults and children with no acute illness, a decrease in the intake of sodium from the typical high levels reduces blood pressure.[56][59] A low salt diet results in a greater improvement in blood pressure in those with hypertension than in those without.[60]

The World Health Organization recommends that all adults should consume less than 2,000 mg of sodium (which is equivalent to 5 g of salt) per day[57] with some advocating for less than 1,200 mg of sodium (3 g of salt) per day.[56] There is insufficient evidence to show that there is additional benefit in lowering sodium intake to less than 2,300 mg per day.[61] In those with heart failure a very low sodium diet may be worse than a diet with slightly more salt.[58]

Non-dietary uses

Cow and calf licking a mineral block

Only about 6% of the salt manufactured in the world is used in food. Of the remainder, 12% is used in water conditioning processes, 8% goes for de-icing highways and 6% is used in agriculture. The rest (68%) is used for manufacturing and other industrial processes,[62] and sodium chloride is one of the largest inorganic raw materials used by volume. Its major chemical products are caustic soda and chlorine, which are separated by the electrolysis of a pure brine solution. These are used in the manufacture of PVC, plastics, paper pulp and many other inorganic and organic compounds. Salt is also used as a flux in the production of aluminium. For this purpose, a layer of melted salt floats on top of the molten metal and removes iron and other metal contaminants. It is also used in the manufacture of soaps and glycerine, where it is added to the vat to precipitate out the saponified products. As an emulsifier, salt is used in the manufacture of synthetic rubber, and another use is in the firing of pottery, when salt added to the furnace vaporises before condensing onto the surface of the ceramic material, forming a strong glaze.[63]

When drilling through loose materials such as sand or gravel, salt may be added to the boring mud to provide a stable "wall" to prevent the hole collapsing. There are many other processes in which salt is involved. These include its use as a mordant in textile dying, to regenerate resins in water softening, for the tanning of hides, the preservation of meat and fish and the canning of meat and vegetables.[63][64][65]

Production

Brine from salt wells is boiled to produce salt at Bo Kluea, Nan Province, Thailand
Salt mounds in Salar de Uyuni, Bolivia

The manufacture of salt is one of the oldest chemical industries.[66] A major source of salt is seawater, which has a salinity of approximately 3.5%. This means that there are about 35 grams (1.2 oz) of dissolved salts, predominantly sodium (Na+) and chloride (Cl) ions, per kilogram (2.2 lbs) of water.[67] The world's oceans are a virtually inexhaustible source of salt, and this abundance of supply means that reserves have not been calculated.[64] The evaporation of seawater is the production method of choice in marine countries with high evaporation and low precipitation rates. Salt evaporation ponds are filled from the ocean and salt crystals can be harvested as the water dries up. Sometimes these ponds have vivid colours, as some species of algae and other micro-organisms thrive in conditions of high salinity.[68]

Elsewhere, salt is extracted from the vast sedimentary deposits which have been laid down over the millennia from the evaporation of seas and lakes. These are either mined directly, producing rock salt, or are extracted in solution by pumping water into the deposit. In either case, the salt may be purified by mechanical evaporation of brine. Traditionally, this was done in shallow open pans which were heated to increase the rate of evaporation. More recently, the process is performed in pans under vacuum.[65] The raw salt is refined to purify it and improve its storage and handling characteristics. This usually involves recrystallization during which a brine solution is treated with chemicals that precipitate most impurities (largely magnesium and calcium salts). Multiple stages of evaporation are then used to collect pure sodium chloride crystals, which are kiln-dried.[69] Some salt is produced using the Alberger process, which involves vacuum pan evaporation combined with the seeding of the solution with cubic crystals, and produces a grainy-type flake.[70] The Ayoreo, an indigenous group from the Paraguayan Chaco, obtain their salt from the ash produced by burning the timber of the Indian salt tree (Maytenus vitis-idaea) and other trees.[71]

One of the largest salt mining operations in the world is at the Khewra Salt Mine in Pakistan. The mine has nineteen storeys, eleven of which are underground, and 400 km (250 mi) of passages. The salt is dug out by the room and pillar method, where about half the material is left in place to support the upper levels. Extraction of Himalayan salt is expected to last 350 years at the present rate of extraction of around 385,000 tons per annum.[72]

In 2002, total world production (of sodium chloride in general, not just table salt) was estimated at 210 million tonnes, the top five producers being the United States (40.3 million tonnes), China (32.9), Germany (17.7), India (14.5) and Canada (12.3).[73] During the period 2003 to 2008, global production of salt increased by 12% per year, and China took over as the largest producing nation as its chemical industry expanded.[64] Food grade salt accounts for only a small part of salt production in industrialized countries (7% in Europe),[74] although worldwide, food uses account for 17.5% of salt production.[75]

Usage in religion


Bread and salt at a Russian wedding ceremony

Salt has long held an important place in religion and culture. At the time of Brahmanic sacrifices, in Hittite rituals and during festivals held by Semites and Greeks at the time of the new moon, salt was thrown into a fire where it produced crackling noises.[76] The ancient Egyptians, Greeks and Romans invoked their gods with offerings of salt and water and some people think this to be the origin of Holy Water in the Christian faith.[77] In Aztec mythology, Huixtocihuatl was a fertility goddess who presided over salt and salt water.[78]

In one of the hadiths recorded in Sunan Ibn Majah, the Islamic Prophet Muhammad is reported to have said that: "Salt is the master of your food. God sent down four blessings from the sky – fire, water, iron and salt".[79] Salt is considered to be a very auspicious substance in Hinduism and is used in particular religious ceremonies like house-warmings and weddings.[79] In Jainism, devotees lay an offering of raw rice with a pinch of salt before a deity to signify their devotion and salt is sprinkled on a person's cremated remains before the ashes are buried.[80] Salt is believed to ward off evil spirits in Mahayana Buddhist tradition, and when returning home from a funeral, a pinch of salt is thrown over the left shoulder as this prevents evil spirits from entering the house.[81] In Shinto, salt is used for ritual purification of locations and people (harae, specifically shubatsu), and small piles of salt are placed in dishes by the entrance of establishments for the two-fold purposes of warding off evil and attracting patrons.[82]

In the Hebrew Bible, there are thirty-five verses which mention salt.[83] One of these is the story of Lot's wife, who was turned into a pillar of salt when she looked back at the cities of Sodom and Gomorrah (Genesis 19:26) as they were destroyed. When the judge Abimelech destroyed the city of Shechem, he is said to have "sown salt on it," probably as a curse on anyone who would re-inhabit it (Judges 9:45). The Book of Job contains the first mention of salt as a condiment. "Can that which is unsavoury be eaten without salt? or is there any taste in the white of an egg?" (Job 6:6).[83] In the New Testament, six verses mention salt. In the Sermon on the Mount, Jesus referred to his followers as the "salt of the earth". The apostle Paul also encouraged Christians to "let your conversation be always full of grace, seasoned with salt" (Colossians 4:6).[83] Salt is mandatory in the rite of the Tridentine Mass.[84] Salt is used in the third item (which includes an Exorcism) of the Celtic Consecration (cf. Gallican Rite) that is employed in the consecration of a church. Salt may be added to the water "where it is customary" in the Roman Catholic rite of Holy water.[84]

In Judaism, it is recommended to have either a salty bread or to add salt to the bread if this bread is unsalted when doing Kiddush for Shabbat. It is customary to spread some salt over the bread or to dip the bread in a little salt when passing the bread around the table after the Kiddush.[85] To preserve the covenant between their people and God, Jews dip the Sabbath bread in salt.[77] In Wicca, salt is symbolic of the element Earth. It is also believed to cleanse an area of harmful or negative energies. A dish of salt and a dish of water are almost always present on an altar, and salt is used in a wide variety of rituals and ceremonies.[86]

Introduction to entropy

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Introduct...