Search This Blog

Monday, March 2, 2015

Cosmic ray


From Wikipedia, the free encyclopedia
 


Cosmic ray flux versus particle energy

Cosmic rays are immensely high-energy radiation, mainly originating outside the Solar System.[1] They may produce showers of secondary particles that penetrate and impact the Earth's atmosphere and sometimes even reach the surface. Composed primarily of high-energy protons and atomic nuclei, they are of mysterious origin. Data from the Fermi space telescope (2013)[2] have been interpreted as evidence that a significant fraction of primary cosmic rays originate from the supernovae of massive stars.[3] However, this is not thought to be their only source. Active galactic nuclei probably also produce cosmic rays.

The term ray is a historical accident, as cosmic rays were at first, and wrongly, thought to be mostly electromagnetic radiation. In common scientific usage[4] high-energy particles with intrinsic mass are known as "cosmic" rays, and photons, which are quanta of electromagnetic radiation (and so have no intrinsic mass) are known by their common names, such as "gamma rays" or "X-rays", depending on their frequencies.

Cosmic rays attract great interest practically, due to the damage they inflict on microelectronics and life outside the protection of an atmosphere and magnetic field, and scientifically, because the energies of the most energetic ultra-high-energy cosmic rays (UHECRs) have been observed to approach 3 × 1020 eV,[5] about 40 million times the energy of particles accelerated by the Large Hadron Collider.[6] At 50 J,[7] the highest-energy ultra-high-energy cosmic rays have energies comparable to the kinetic energy of a 90-kilometre-per-hour (56 mph) baseball. As a result of these discoveries, there has been interest in investigating cosmic rays of even greater energies.[8] Most cosmic rays, however, do not have such extreme energies; the energy distribution of cosmic rays peaks at 0.3 gigaelectronvolts (4.8×10−11 J).[9]

Of primary cosmic rays, which originate outside of Earth's atmosphere, about 99% are the nuclei (stripped of their electron shells) of well-known atoms, and about 1% are solitary electrons (similar to beta particles). Of the nuclei, about 90% are simple protons, i. e. hydrogen nuclei; 9% are alpha particles, and 1% are the nuclei of heavier elements, called HZE ions.[10] A very small fraction are stable particles of antimatter, such as positrons or antiprotons. The precise nature of this remaining fraction is an area of active research. An active search from Earth orbit for anti-alpha particles has failed to detect them.

History

After the discovery of radioactivity by Henri Becquerel and Marie Curie in 1896, it was generally believed that atmospheric electricity, ionization of the air, was caused only by radiation from radioactive elements in the ground or the radioactive gases or isotopes of radon they produce. Measurements of ionization rates at increasing heights above the ground during the decade from 1900 to 1910 showed a decrease that could be explained as due to absorption of the ionizing radiation by the intervening air.

Discovery

In 1909 Theodor Wulf developed an electrometer, a device to measure the rate of ion production inside a hermetically sealed container, and used it to show higher levels of radiation at the top of the Eiffel Tower than at its base. However, his paper published in Physikalische Zeitschrift was not widely accepted. In 1911 Domenico Pacini observed simultaneous variations of the rate of ionization over a lake, over the sea, and at a depth of 3 meters from the surface. Pacini concluded from the decrease of radioactivity underwater that a certain part of the ionization must be due to sources other than the radioactivity of the Earth.[11]

Pacini makes a measurement in 1910.

Then, in 1912, Victor Hess carried three enhanced-accuracy Wulf electrometers[12] to an altitude of 5300 meters in a free balloon flight. He found the ionization rate increased approximately fourfold over the rate at ground level.[12] Hess also ruled out the Sun as the radiation's source by making a balloon ascent during a near-total eclipse. With the moon blocking much of the Sun's visible radiation, Hess still measured rising radiation at rising altitudes.[12] He concluded "The results of my observation are best explained by the assumption that a radiation of very great penetrating power enters our atmosphere from above." In 1913–1914, Werner Kolhörster confirmed Victor Hess' earlier results by measuring the increased ionization rate at an altitude of 9 km.

Increase of ionization with altitude as measured by Hess in 1912 (left) and by Kolhörster (right)

Hess received the Nobel Prize in Physics in 1936 for his discovery.[13][14]

The Hess balloon flight took place on 7 August 1912. By sheer coincidence, exactly 100 years later on 7 August 2012, the Mars Science Laboratory rover used its Radiation Assessment Detector (RAD) instrument to begin measuring the radiation levels on another planet for the first time. On 31 May 2013, NASA scientists reported that a possible manned mission to Mars may involve a greater radiation risk than previously believed, based on the amount of energetic particle radiation detected by the RAD on the Mars Science Laboratory while traveling from the Earth to Mars in 2011-2012.[15][16][17]

Hess lands after his balloon flight in 1912.

Identification

In the 1920s the term "cosmic rays" was coined by Robert Millikan who made measurements of ionization due to cosmic rays from deep under water to high altitudes and around the globe. Millikan believed that his measurements proved that the primary cosmic rays were gamma rays, i.e., energetic photons. And he proposed a theory that they were produced in interstellar space as by-products of the fusion of hydrogen atoms into the heavier elements, and that secondary electrons were produced in the atmosphere by Compton scattering of gamma rays. But then, in 1927, J. Clay found evidence,[18] later confirmed in many experiments, of a variation of cosmic ray intensity with latitude, which indicated that the primary cosmic rays are deflected by the geomagnetic field and must therefore be charged particles, not photons. In 1929, Bothe and Kolhörster discovered charged cosmic-ray particles that could penetrate 4.1 cm of gold.[19] Charged particles of such high energy could not possibly be produced by photons from Millikan's proposed interstellar fusion process.

In 1930, Bruno Rossi predicted a difference between the intensities of cosmic rays arriving from the east and the west that depends upon the charge of the primary particles - the so-called "east-west effect."[20] Three independent experiments[21][22][23] found that the intensity is, in fact, greater from the west, proving that most primaries are positive. During the years from 1930 to 1945, a wide variety of investigations confirmed that the primary cosmic rays are mostly protons, and the secondary radiation produced in the atmosphere is primarily electrons, photons and muons. In 1948, observations with nuclear emulsions carried by balloons to near the top of the atmosphere showed that approximately 10% of the primaries are helium nuclei (alpha particles) and 1% are heavier nuclei of the elements such as carbon, iron, and lead.[24][24]

During a test of his equipment for measuring the east-west effect, Rossi observed that the rate of near-simultaneous discharges of two widely separated Geiger counters was larger than the expected accidental rate. In his report on the experiment, Rossi wrote "... it seems that once in a while the recording equipment is struck by very extensive showers of particles, which causes coincidences between the counters, even placed at large distances from one another."[23] In 1937 Pierre Auger, unaware of Rossi's earlier report, detected the same phenomenon and investigated it in some detail. He concluded that high-energy primary cosmic-ray particles interact with air nuclei high in the atmosphere, initiating a cascade of secondary interactions that ultimately yield a shower of electrons, and photons that reach ground level.

Soviet physicist Sergey Vernov was the first to use radiosondes to perform cosmic ray readings with an instrument carried to high altitude by a balloon. On 1 April 1935, he took measurements at heights up to 13.6 kilometers using a pair of Geiger counters in an anti-coincidence circuit to avoid counting secondary ray showers.[25][26]

Homi J. Bhabha derived an expression for the probability of scattering positrons by electrons, a process now known as Bhabha scattering. His classic paper, jointly with Walter Heitler, published in 1937 described how primary cosmic rays from space interact with the upper atmosphere to produce particles observed at the ground level. Bhabha and Heitler explained the cosmic ray shower formation by the cascade production of gamma rays and positive and negative electron pairs.

Energy distribution

Measurements of the energy and arrival directions of the ultra-high energy primary cosmic rays by the techniques of "density sampling" and "fast timing" of extensive air showers were first carried out in 1954 by members of the Rossi Cosmic Ray Group at the Massachusetts Institute of Technology.[27] The experiment employed eleven scintillation detectors arranged within a circle 460 meters in diameter on the grounds of the Agassiz Station of the Harvard College Observatory. From that work, and from many other experiments carried out all over the world, the energy spectrum of the primary cosmic rays is now known to extend beyond 1020 eV. A huge air shower experiment called the Auger Project is currently operated at a site on the pampas of Argentina by an international consortium of physicists, led by James Cronin, winner of the 1980 Nobel Prize in Physics from the University of Chicago, and Alan Watson of the University of Leeds. Their aim is to explore the properties and arrival directions of the very highest-energy primary cosmic rays.[28] The results are expected to have important implications for particle physics and cosmology, due to a theoretical Greisen–Zatsepin–Kuzmin limit to the energies of cosmic rays from long distances (about 160 million light years) which occurs above 1020 eV because of interactions with the remnant photons from the big bang origin of the universe.

High-energy gamma rays (>50 MeV photons) were finally discovered in the primary cosmic radiation by an MIT experiment carried on the OSO-3 satellite in 1967.[29] Components of both galactic and extra-galactic origins were separately identified at intensities much less than 1% of the primary charged particles. Since then, numerous satellite gamma-ray observatories have mapped the gamma-ray sky. The most recent is the Fermi Observatory, which has produced a map showing a narrow band of gamma ray intensity produced in discrete and diffuse sources in our galaxy, and numerous point-like extra-galactic sources distributed over the celestial sphere.

Sources of cosmic rays

Early speculation on the sources of cosmic rays included a 1934 proposal by Baade and Zwicky suggesting cosmic rays originating from supernovae.[30] A 1948 proposal by Horace W. Babcock suggested that magnetic variable stars could be a source of cosmic rays.[31] Subsequently in 1951, Y. Sekido et al. identified the Crab Nebula as a source of cosmic rays.[32] Since then, a wide variety of potential sources for cosmic rays began to surface, including supernovae, active galactic nuclei, quasars, and gamma-ray bursts.[33]

Sources of Ionizing Radiation in Interplanetary Space.

Later experiments have helped to identify the sources of cosmic rays with greater certainty. In 2009, a paper presented at the International Cosmic Ray Conference (ICRC) by scientists at the Pierre Auger Observatory showed ultra-high energy cosmic rays (UHECRs) originating from a location in the sky very close to the radio galaxy Centaurus A, although the authors specifically stated that further investigation would be required to confirm Cen A as a source of cosmic rays.[34] However, no correlation was found between the incidence of gamma-ray bursts and cosmic rays, causing the authors to set upper limits as low as 3.4 × 10−6 erg cm−2 on the flux of 1 GeV-1 TeV cosmic rays from gamma-ray bursts.[35]

In 2009, supernovae were said to have been "pinned down" as a source of cosmic rays, a discovery made by a group using data from the Very Large Telescope.[36] This analysis, however, was disputed in 2011 with data from PAMELA, which revealed that "spectral shapes of [hydrogen and helium nuclei] are different and cannot be described well by a single power law", suggesting a more complex process of cosmic ray formation.[37] In February 2013, though, research analyzing data from Fermi revealed through an observation of neutral pion decay that supernovae were indeed a source of cosmic rays, with each explosion producing roughly 3 × 1042 - 3 × 1043 J of cosmic rays.[2][3] However, supernovae do not produce all cosmic rays, and the proportion of cosmic rays that they do produce is a question which cannot be answered without further study.[38]

Types


Primary cosmic particle collides with a molecule of atmosphere.

Cosmic rays originate as primary cosmic rays, which are those originally produced in various astrophysical processes. Primary cosmic rays are composed primarily of protons and alpha particles (99%), with a small amount of heavier nuclei (~1%) and an extremely minute proportion of positrons and antiprotons.[10] Secondary cosmic rays, caused by a decay of primary cosmic rays as they impact an atmosphere, include neutrons, pions, positrons, and muons. Of these four, the latter three were first detected in cosmic rays.

Primary cosmic rays

Primary cosmic rays primarily originate from outside the Solar System and sometimes even the Milky Way. When they interact with Earth's atmosphere, they are converted to secondary particles. The mass ratio of helium to hydrogen nuclei, 28%, is similar to the primordial elemental abundance ratio of these elements, 24%.[39] The remaining fraction is made up of the other heavier nuclei that are nuclear synthesis end products, products of the Big Bang,[citation needed] primarily lithium, beryllium, and boron. These nuclei appear in cosmic rays in much greater abundance (~1%) than in the solar atmosphere, where they are only about 10−11 as abundant as helium. Cosmic rays made up of charged nuclei heavier than helium are called HZE ions. Due to the high charge and heavy nature of HZE ions, their contribution to an astronaut's radiation dose in space is significant even though they are relatively scarce.

This abundance difference is a result of the way secondary cosmic rays are formed. Carbon and oxygen nuclei collide with interstellar matter to form lithium, beryllium and boron in a process termed cosmic ray spallation. Spallation is also responsible for the abundances of scandium, titanium, vanadium, and manganese ions in cosmic rays produced by collisions of iron and nickel nuclei with interstellar matter.[40]

Primary cosmic ray antimatter

Satellite experiments have found evidence of positrons and a few antiprotons in primary cosmic rays, amounting to less than 1% of the particles in primary cosmic rays. These do not appear to be the products of large amounts of antimatter from the Big Bang, or indeed complex antimatter in the universe. Rather, they appear to consist of only these two elementary particles, newly made in energetic processes.
Preliminary results from the presently operating Alpha Magnetic Spectrometer (AMS-02) on board the International Space Station show that positrons in the cosmic rays arrive with no directionality, and with energies that range from 10 GeV to 250 GeV. In September, 2014, new results with almost twice as much data were presented in a talk at CERN and published in Physical Review Letters.[41][42] A new measurement of positron fraction up to 500 GeV was reported, showing that positron fraction peaks at a maximum of about 16% of total electron+positron events, around an energy of 275 ± 32 GeV. At higher energies, up to 500 GeV, the ratio of positrons to electrons begins to fall again. The absolute flux of positrons also begins to fall before 500 GeV, but peaks at energies far higher than electron energies, which peak about 10 GeV.[43] These results on interpretation have been suggested to be due to positron production in annihilation events of massive dark matter particles.[44]

Cosmic ray antiprotons also have a much higher energy than their normal-matter counterparts (protons). They arrive at Earth with a characteristic energy maximum of 2 GeV, indicating their production in a fundamentally different process from cosmic ray protons, which on average have only one-sixth of the energy.[45]

There is no evidence of complex antimatter atomic nuclei, such as antihelium nuclei (i.e., anti-alpha particles), in cosmic rays. These are actively being searched for. A prototype of the AMS-02 designated AMS-01, was flown into space aboard the Space Shuttle Discovery on STS-91 in June 1998. By not detecting any antihelium at all, the AMS-01 established an upper limit of 1.1×10−6 for the antihelium to helium flux ratio.[46]

The moon in cosmic rays
The moon's muon shadow
The Moon's cosmic ray shadow, as seen in secondary muons detected 700 m below ground, at the Soudan 2 detector
The moon as seen in gamma rays
The moon as seen by the Compton Gamma Ray Observatory, in gamma rays with energies greater than 20 MeV. These are produced by cosmic ray bombardment on its surface.[47]

Secondary cosmic rays

When cosmic rays enter the Earth's atmosphere they collide with molecules, mainly oxygen and nitrogen. The interaction produces a cascade of lighter particles, a so-called air shower secondary radiation that rains down, including x-rays, muons, protons, alpha particles, pions, electrons, and neutrons.[48] All of the produced particles stay within about one degree of the primary particle's path.

Typical particles produced in such collisions are neutrons and charged mesons such as positive or negative pions and kaons. Some of these subsequently decay into muons, which are able to reach the surface of the Earth, and even penetrate for some distance into shallow mines. The muons can be easily detected by many types of particle detectors, such as cloud chambers, bubble chambers or scintillation detectors. The observation of a secondary shower of particles in multiple detectors at the same time is an indication that all of the particles came from that event.

Cosmic rays impacting other planetary bodies in the Solar System are detected indirectly by observing high energy gamma ray emissions by gamma-ray telescope. These are distinguished from radioactive decay processes by their higher energies above  about 10 MeV.

Cosmic-ray flux


An overview of the space environment shows the relationship between the solar activity and galactic cosmic rays.[49]

The flux of incoming cosmic rays at the upper atmosphere is dependent on the solar wind, the Earth's magnetic field, and the energy of the cosmic rays. At distances of ~94 AU from the Sun, the solar wind undergoes a transition, called the termination shock, from supersonic to subsonic speeds. The region between the termination shock and the heliopause acts as a barrier to cosmic rays, decreasing the flux at lower energies (≤ 1 GeV) by about 90%. However, the strength of the solar wind is not constant, and hence it has been observed that cosmic ray flux is correlated with solar activity.

In addition, the Earth's magnetic field acts to deflect cosmic rays from its surface, giving rise to the observation that the flux is apparently dependent on latitude, longitude, and azimuth angle. The magnetic field lines deflect the cosmic rays towards the poles, giving rise to the aurorae.

The combined effects of all of the factors mentioned contribute to the flux of cosmic rays at Earth's surface. For 1 GeV particles, the rate of arrival is about 10,000 per square meter per second. At 1 TeV the rate is 1 particle per square meter per second. At 10 PeV there are only a few particles per square meter per year. Particles above 10 EeV arrive only at a rate of about one particle per square kilometer per year, and above 100 EeV at a rate of about one particle per square kilometer per century.[50]

In the past, it was believed that the cosmic ray flux remained fairly constant over time. However, recent research suggests 1.5 to 2-fold millennium-timescale changes in the cosmic ray flux in the past forty thousand years.[51]

The magnitude of the energy of cosmic ray flux in interstellar space is very comparable to that of other deep space energies: cosmic ray energy density averages about one electron-volt per cubic centimeter of interstellar space, or ~1 eV/cm3, which is comparable to the energy density of visible starlight at 0.3 eV/cm3, the galactic magnetic field energy density (assumed 3 microgauss) which is ~0.25 eV/cm3, or the cosmic microwave background (CMB) radiation energy density at ~ 0.25 eV/cm3.[52]

Detection methods


The VERITAS array of air Cherenkov telescopes.

There are several ground-based methods of detecting cosmic rays currently in use. The first detection method is called the air Cherenkov telescope, designed to detect low-energy (<200 GeV) cosmic rays by means of analyzing their Cherenkov radiation, which for cosmic rays are gamma rays emitted as they travel faster than the speed of light in their medium, the atmosphere.[53] While these telescopes are extremely good at distinguishing between background radiation and that of cosmic-ray origin, they can only function well on clear nights without the Moon shining, and have very small fields of view and are only active for a few percent of the time. Another Cherenkov telescope uses water as a medium through which particles pass and produce Cherenkov radiation to make them detectable.[54]

Comparison of Radiation Doses - includes the amount detected on the trip from Earth to Mars by the RAD on the MSL (2011 - 2013).[15][16][17]

Extensive air shower (EAS) arrays, a second detection method, measure the charged particles which pass through them. EAS arrays measure much higher-energy cosmic rays than air Cherenkov telescopes, and can observe a broad area of the sky and can be active about 90% of the time. However, they are less able to segregate background effects from cosmic rays than can air Cherenkov telescopes. EAS arrays employ plastic scintillators in order to detect particles.

Another method was developed by Robert Fleischer, P. Buford Price, and Robert M. Walker for use in high-altitude balloons.[55] In this method, sheets of clear plastic, like 0.25 mm Lexan polycarbonate, are stacked together and exposed directly to cosmic rays in space or high altitude. The nuclear charge causes chemical bond breaking or ionization in the plastic. At the top of the plastic stack the ionization is less, due to the high cosmic ray speed. As the cosmic ray speed decreases due to deceleration in the stack, the ionization increases along the path. The resulting plastic sheets are "etched" or slowly dissolved in warm caustic sodium hydroxide solution, that removes the surface material at a slow, known rate. The caustic sodium hydroxide dissolves the plastic at a faster rate along the path of the ionized plastic. The net result is a conical etch pit in the plastic. The etch pits are measured under a high-power microscope (typically 1600x oil-immersion), and the etch rate is plotted as a function of the depth in the stacked plastic.

This technique yields a unique curve for each atomic nucleus from 1 to 92, allowing identification of both the charge and energy of the cosmic ray that traverses the plastic stack. The more extensive the ionization along the path, the higher the charge. In addition to its uses for cosmic-ray detection, the technique is also used to detect nuclei created as products of nuclear fission.

A fourth method involves the use of cloud chambers[56] to detect the secondary muons created when a pion decays. Cloud chambers in particular can be built from widely available materials and can be constructed even in a high-school laboratory. A fifth method, involving bubble chambers, can be used to detect cosmic ray particles.[57]

Another method detects the light from nitrogen fluorescence caused by the excitation of nitrogen in the atmosphere by the shower of particles moving through the atmosphere. This method allows for accurate detection of the direction from which the cosmic ray came.[58]

Finally, the CMOS devices in pervasive smartphone cameras have been proposed as a practical distributed network to detect air showers from ultra-high energy cosmic rays (UHECRs) which is at least comparable with that of conventional cosmic ray detectors.[59] The app, which is currently in beta and accepting applications, is CRAYFIS (Cosmic RAYs Found In Smartphones).[60][61]

Effects

Changes in atmospheric chemistry

Cosmic rays ionize the nitrogen and oxygen molecules in the atmosphere, which leads to a number of chemical reactions. One of the reactions results in ozone depletion. Cosmic rays are also responsible for the continuous production of a number of unstable isotopes in the Earth's atmosphere, such as carbon-14, via the reaction:
n + 14N → p + 14C
Cosmic rays kept the level of carbon-14[62] in the atmosphere roughly constant (70 tons) for at least the past 100,000 years, until the beginning of above-ground nuclear weapons testing in the early 1950s. This is an important fact used in radiocarbon dating used in archaeology.
Reaction products of primary cosmic rays, radioisotope half-lifetime, and production reaction.[63]
  • Tritium (12.3 years): 14N(n, 3H)12C (Spallation)
  • Beryllium-7 (53.3 days)
  • Beryllium-10 (1.39 million years): 14N(n,p α)10Be (Spallation)
  • Carbon-14 (5730 years): 14N(n, p)14C (Neutron activation)
  • Sodium-22 (2.6 years)
  • Sodium-24 (15 hours)
  • Magnesium-28 (20.9 hours)
  • Silicon-31 (2.6 hours)
  • Silicon-32 (101 years)
  • Phosphorus-32 (14.3 days)
  • Sulfur-35 (87.5 days)
  • Sulfur-38 (2.8 hours)
  • Chlorine-34 m (32 minutes)
  • Chlorine-36 (300,000 years)
  • Chlorine-38 (37.2 minutes)
  • Chlorine-39 (56 minutes)
  • Argon-39 (269 years)
  • Krypton-85 (10.7 years)

Role in ambient radiation

Cosmic rays constitute a fraction of the annual radiation exposure of human beings on the Earth, averaging 0.39 mSv out of a total of 3 mSv per year (13% of total background) for the Earth's population. However, the background radiation from cosmic rays increases with altitude, from 0.3 mSv per year for sea-level areas to 1.0 mSv per year for higher-altitude cities, raising cosmic radiation exposure to a quarter of total background radiation exposure for populations of said cities.
Airline crews flying long distance high-altitude routes can be exposed to 2.2 mSv of extra radiation each year due to cosmic rays, nearly doubling their total ionizing radiation exposure.

Average annual radiation exposure (millisieverts)
Radiation UNSCEAR[64][65] Princeton[66] Wa State[67] MEXT[68]
Type Source World
average
Typical range USA USA Japan Remark
Natural Air 1.26 0.2-10.0a 2.29 2.00 0.40 Primarily from Radon, (a)depends on indoor accumulation of radon gas.
Internal 0.29 0.2-1.0b 0.16 0.40 0.40 Mainly from radioisotopes in food (40K, 14C, etc.) (b)depends on diet.
Terrestrial 0.48 0.3-1.0c 0.19 0.29 0.40 (c)Depends on soil composition and building material of structures.
Cosmic 0.39 0.3-1.0d 0.31 0.26 0.30 (d)Generally increases with elevation.
Subtotal 2.40 1.0-13.0 2.95 2.95 1.50
Artificial Medical 0.60 0.03-2.0 3.00 0.53 2.30
Fallout 0.007 0 - 1+ - - 0.01 Peaked in 1963 with a spike in 1986; still high near nuclear test and accident sites.
For the United States, fallout is incorporated into other categories.
others 0.0052 0-20 0.25 0.13 0.001 Average annual occupational exposure is 0.7 mSv; mining workers have higher exposure.
Populations near nuclear plants have an additional ~0.02 mSv of exposure annually.
Subtotal 0.6 0 to tens 3.25 0.66 2.311
Total 3.00 0 to tens 6.20 3.61 3.81
Figures are for the time before the Fukushima Daiichi nuclear disaster. Human-made values by UNSCEAR are from the Japanese National Institute of Radiological Sciences, which summarized the UNSCEAR data.

Effect on electronics

Cosmic rays have sufficient energy to alter the states of circuit components in electronic integrated circuits, causing transient errors to occur, such as corrupted data in electronic memory devices, or incorrect performance of CPUs, often referred to as "soft errors" (not to be confused with software errors caused by programming mistakes/bugs). This has been a problem in extremely high-altitude electronics, such as in satellites, but with transistors becoming smaller and smaller, this is becoming an increasing concern in ground-level electronics as well.[69] Studies by IBM in the 1990s suggest that computers typically experience about one cosmic-ray-induced error per 256 megabytes of RAM per month.[70] To alleviate this problem, the Intel Corporation has proposed a cosmic ray detector that could be integrated into future high-density microprocessors, allowing the processor to repeat the last command following a cosmic-ray event.[71]

Cosmic rays are suspected as a possible cause of an in-flight incident in 2008 where an Airbus A330 airliner of Qantas twice plunged hundreds of feet after an unexplained malfunction in its flight control system. Many passengers and crew members were injured, some seriously. After this incident, the accident investigators determined that the airliner's flight control system had received a data spike that could not be explained, and that all systems were in perfect working order. This has prompted a software upgrade to all A330 and A340 airliners, worldwide, so that any data spikes in this system are filtered out electronically.[72]

Significance to space travel

Galactic cosmic rays are one of the most important barriers standing in the way of plans for interplanetary travel by crewed spacecraft. Cosmic rays also pose a threat to electronics placed aboard outgoing probes. In 2010, a malfunction aboard the Voyager 2 space probe was credited to a single flipped bit, probably caused by a cosmic ray. Strategies such as physical or magnetic shielding for spacecraft have been considered in order to minimize the damage to electronics and human beings caused by cosmic rays.[73][74]

Role in lightning

Cosmic rays have been implicated in the triggering of electrical breakdown in lightning. It has been proposed that essentially all lightning is triggered through a relativistic process, "runaway breakdown", seeded by cosmic ray secondaries. Subsequent development of the lightning discharge then occurs through "conventional breakdown" mechanisms.[75]

Postulated role in climate change

A role of cosmic rays directly or via solar-induced modulations in climate change was suggested by Edward P. Ney in 1959[76] and by Robert E. Dickinson in 1975.[77] Despite the opinion of over 97% of climate scientists against this notion,[78] the idea has been revived in recent years, most notably by Henrik Svensmark, who has argued that because solar variations modulate the cosmic ray flux on Earth, they would consequently affect the rate of cloud formation and hence the climate.[79]
Nevertheless, it has been noted by climate scientists actively publishing in the field[who?] that Svensmark has inconsistently altered data on most of his published work on the subject, an example being adjustment of cloud data that understates error in lower cloud data, but not in high cloud data.[80]

The 2007 IPCC synthesis report, however, strongly attributes a major role in the ongoing global warming to human-produced gases such as carbon dioxide, nitrous oxide, and halocarbons, and has stated that models including natural forcings only (including aerosol forcings, which cosmic rays are considered by some to contribute to) would result in far less warming than has actually been observed or predicted in models including anthropogenic forcings.[81]

Svensmark, being one of several scientists outspokenly opposed to the mainstream scientific assessment of global warming, has found eminence among the popular culture movement that denies the scientific consensus. Despite this, Svensmark's work exaggerating the magnitude of the effect of GCR on global warming continues to be refuted in the mainstream science.[82] For instance, a November 2013 study showed that less than 14 percent of global warming since the 1950s could be attributed to cosmic ray rate, and while the models showed a small correlation every 22 years, the cosmic ray rate did not match the changes in temperature, indicating that it was not a causal relationship.[83]

Research and experiments

There are a number of cosmic-ray research initiatives.

Ground-based

Satellite

Balloon-borne


Panasonic


From Wikipedia, the free encyclopedia

Panasonic Corporation
Native name
パナソニック 株式会社
Formerly called
Matsushita Electric
Public
Traded as
Industry
Founded Osaka, Japan (March 13, 1918 (1918-03-13))
Founder Konosuke Matsushita
Headquarters Kadoma, Osaka, Japan
Area served
Worldwide
Key people
Products See products listing
Revenue Decrease ¥7.736 trillion (2014),[* 1]
US$ 64 billion [* 2]
Increase ¥305.1 billion (2014)
US$ 2.52 billion[* 2]
Profit Increase ¥120.4  billion (2014)
US$ 998 million[* 2]
Total assets Decrease ¥5.212 trillion (2014)
US$ 22.02 billion[* 2]
Total equity Decrease ¥1.586 trillion (2014)
US$ 13.16 billion[* 2]
Number of employees
Decrease 271,789 (27 June 2014)[* 3]
Divisions Panasonic Corporation of North America (US)
Subsidiaries
Website Panasonic.net
Footnotes / references
  1. Jump up ^ "Annual Report 2014" (PDF) (Press release). Panasonic Corporation. March 31, 2013. Retrieved 29 December 2014. 
  2. ^ Jump up to: a b c d e "Financial Statements For Panasonic Corp (6752)". Bloomberg Businessweek. Retrieved 2014-12-29. 
  3. Jump up ^ "Panasonic Corp". Bloomberg Businessweek. 29 December 2014. Retrieved 2014-12-29. 
Panasonic Corporation (パナソニック株式会社 Panasonikku Kabushiki-gaisha?), formerly known as Matsushita Electric Industrial Co., Ltd. (松下電器産業株式会社 Matsushita Denki Sangyō Kabushiki-gaisha?), is a Japanese multinational electronics corporation headquartered in Kadoma, Osaka, Japan.[1]

The company was founded in 1918, and has grown to become one of the largest Japanese electronics producers alongside Sony, Hitachi, Toshiba and Canon Inc. In addition to electronics, it offers non-electronic products and services such as home renovation services. Panasonic is the world's fourth-largest television manufacturer by 2012 market share.[2]

Panasonic has a primary listing on the Tokyo Stock Exchange and is a constituent of the Nikkei 225 and TOPIX indices. It has a secondary listing on the Nagoya Stock Exchange.Name[edit]
From 1935 to October 1, 2008, the company name was "Matsushita Electric Industrial Co., Ltd."[3][4] On January 10, 2008, the company announced that it would change its name to "Panasonic Corporation", in effect on October 1, 2008, to conform with its global brand name "Panasonic".[5] The name change was approved at a shareholders' meeting on June 26, 2008 after consultation with the Matsushita family.[6]

History

1918 to 2000

Panasonic was founded in 1918 by Konosuke Matsushita as a vendor of duplex lamp sockets.[7] In 1927, it began producing bicycle lamps, the first product which it marketed under the brand name National.

During World War II the company operated factories in Japan and other parts of Asia which produced electrical components and appliances such as light fixtures, motors, electric irons, wireless equipment, and its first vacuum tubes.[8]

After the war, Panasonic regrouped as a Keiretsu and began to supply the post war boom in Japan with radios and appliances, as well as bicycles. Matsushita's brother-in-law, Toshio Iue, founded Sanyo as a subcontractor for components after World War II. Sanyo grew to become a competitor to Panasonic, but was later acquired by Panasonic in December 2009.

In 1961, Konosuke Matsushita traveled to the United States and met with American dealers. The company began producing television sets for the U.S. market under the Panasonic brand name, and expanded the use of the brand to Europe in 1979.[9]

The company used the National brand outside of North America from the 1950s to the 1970s (the trademark could not be used in the United States because it was already in use by the National Radio Company in a closely related product area). It sold televisions, VHS VCRs, high fidelity stereo receivers, multi-band shortwave radios, and marine radio direction finders, often exported to North America under various U.S. brand names, such as Technics, Emerson, Curtis Mathes and of course Panasonic. The company also developed a line of home appliances such as rice cookers for the Japanese and Asian markets. Rapid growth resulted in the company opening manufacturing plants around the world.

The company debuted a hi-fidelity audio speaker in Japan in 1965 with the brand Technics. This line of high quality stereo components became worldwide favorites. The most famous products being its turntables, such as the SL-1200 record player, known for its high performance, precision, and durability. Throughout the 1970s and early 1980s, Panasonic continued to produce high-quality specialized electronics for niche markets such as shortwave radios, as well as developing a successful line of stereo receivers, CD players, and other components.

In 1973, Matsushita formed a joint venture with Anam Group, Anam National.

In 1983, Matsushita launched the Panasonic Senior Partner, the first fully IBM PC compatible Japanese-made computer.[10]

In November 1990, Matsushita agreed to acquire the American media company MCA Inc. for US$6.59 billion.[11][12] Matsushita subsequently sold 80% of MCA to Seagram Company for US$7 billion in April 1995.[13][14]

In 1998, Matsushita sold Anam National to Anam Electronics.

In November 1999, the Japan Times reported that Panasonic planned to develop a "next generation first aid kit" called the Electronic Health Checker. At the time, the target market was said to be elderly people, especially those living in rural areas where medical help might not be immediately available, so it was planned that the kit would include support for telemedicine. The kits were then in the testing stage, with plans for eventual overseas distribution, to include the United States.

2000 to present


A 152 inch Panasonic plasma display on show at IFA 2010

On May 2, 2002, Panasonic Canada marked its 35th anniversary in this country by giving $5-million to help build a "music city" on Toronto's waterfront.[15]

On January 19, 2006, Panasonic announced that it would stop producing analog televisions (then 30% of its total TV business) from the next month, in order to concentrate on digital televisions.[16]

On November 3, 2008, Panasonic and Sanyo announced that they were holding merger talks, which eventually resulted in the acquisition of Sanyo by Panasonic.[17][18] The merger was completed in December 2009, and resulted in a corporation with revenues of over ¥11.2 trillion (around $110 billion).[19]

With the announcement that Pioneer would exit the production of its Kuro plasma HDTV displays, Panasonic purchased many of the patents and incorporated these technologies into its own plasma displays.

In April 2011, it was announced that Panasonic would cut its work force by 40,000 by the end of fiscal 2012 in a bid to streamline overlapping operations. The curtailment is about 10 percent of its group work force.[20]

In October 2011, Panasonic announced that it would trim its money-losing TV business by ceasing production of Plasma TVs at its plant in Amagasaki, Hyogo Prefecture by March 2012, cutting 1,000 jobs in the process.[21]

In January 2012, Panasonic announced that it had struck a deal with Myspace on its new venture, Myspace TV.[22] Myspace TV will allow users to watch live television while chatting with other users on a laptop, tablet or the television itself. With the partnership, Myspace TV will be integrated into Panasonic Viera televisions.[23]

On May 11, 2012, Panasonic announced plans to acquire a 76.2% stake in FirePro Systems, an India-based company in infrastructure protection and security solutions such as fire alarm, fire suppression, video surveillance and building management.[24]

In line with company prediction of a net loss of 765 billion yen, on November 5, 2012, the shares fell to the lowest level since February 1975 to 388 yen. In 2012, the shares plunged 41 percent.[25] On November 14, 2012, Panasonic said it will cut 10,000 jobs and make further divestments.[26]

On May 18, 2013, Panasonic announced that it would invest $40 million in building a factory in Binh Duong, Vietnam which is expected to be completed in 2014.[27]

In July 2013, Panasonic agreed to acquire a 13% stake in the Slovenian household appliance manufacturer Gorenje for around €10 million.[28]

In a press release following its announcement at IFA 2013, Panasonic announced that it had acquired the "Cameramanager video surveillance service" with the intention of expanding its reach to cloud-based solutions.[29]

In July 2014, it was announced that Panasonic has reached a basic agreement with Tesla Motors to participate in the Gigafactory, the huge battery plant that the American electric vehicle manufacturer plans to build in the U.S.[30] In August 2014 Tesla said the plant would be built in the Southwest or Western United States by 2020. The $5 billion plant would employ 6,500 people, and reduce Tesla's battery costs by 30 percent. The company said it was looking at potential sites in Nevada, Arizona, Texas, New Mexico and California.[31]

In October 2014, Panasonic announced its initial investment in Tesla Motors’ battery factory would amount to “tens of billions” of yen, according to the firm’s CEO.[32]

In November 2014, Panasonic announced its partnership with Photon Interactive to create customized and personalized digital signs in stores.[33]

In January 2015, Panasonic announced it has stopped making TVs in China and plans to liquidate its joint venture in Shandong.[34]

Current operations

As of March 31, 2012, Panasonic employed around 330,000 staff and had around 580 subsidiary companies.[35] Panasonic had total revenues of ¥7,846,216 million in 2012, of which 53% were generated in Japan, 25% in Asia (excluding Japan), 12% in the Americas and 10% in Europe.[35]
Panasonic's operations are organised into three broad "business fields" - Consumer, Solutions and Components & Devices - and nine "domain companies" - AVC Networks (which generated 17% of Panasonic's total 2012 revenues), Eco Solutions (15% of revenues), Appliances (15% of revenues), Industrial Devices (14% of revenues), Systems and Communications (8% of revenues), Automotive Systems (7% of revenues), Energy (6% of revenues), Healthcare, and Manufacturing Solutions.[35]

Panasonic invested a total of ¥520,216 million in research and development in 2012, equivalent to 6.6% of its revenues in that year.[35] As of March 31, 2012, Panasonic held a total of 140,146 patents worldwide.[35]
The Panasonic Center in Tokyo, Japan 
The Panasonic IMP Building in Osaka, Japan 
The Panasonic R&D facility at Yokosuka Research Park, Japan 

Panasonic Automotive Systems

Panasonic Automotive Systems is an original equipment manufacturer of factory installed mobile audio equipment such as headunits, speakers and navigation modules. It is a subcontractor to most major auto manufacturers, supplying virtually every Japanese automaker, along with Europe's largest automaker, Volkswagen and America's largest automaker, General Motors.[citation needed]

Panasonic also formerly manufactured aftermarket vehicle audio products such as head units and speakers.

Panasonic Avionics Corporation

Panasonic Avionics Corporation (PAC), a subsidiary of Panasonic Corporation of North America, is a supplier of in-flight entertainment (IFE) and communication systems.[36] Headquartered in Lake Forest, California where engineering, development and testing is performed while system installation, field engineering, major quality functions, certification and program management are performed at the Bothell, Washington facility - Panasonic Avionics Corporation employs approximately 3,300 employees based in over 70 locations worldwide, with major facilities in London, Toulouse, Hamburg, Dallas, Dubai and Singapore.[citation needed] A majority of the component manufacturing is carried out in Osaka, Japan.

Panasonic Mobile Communications

Panasonic Mobile Communications manufactures mobile phone handsets and related equipment.
As of 2012, it had around a 20 per cent share of the Japanese handset market.[37] Panasonic used to market mobile phone handsets worldwide, but in December 2005 announced its withdrawal from overseas markets due to poor sales. Panasonic returned to the overseas market in 2012, with the release of the Panasonic Eluga Android-powered smartphone. In July 2013, Panasonic announced the company will not supply a new model of smartphone to NTT DoCoMo Inc., because NTT DoCoMo will focus with Sony and Samsung products. In Q2 2013, Panasonic Mobile Communications booked a 5.4 billion yen operating loss.[38]

Panasonic Corporation of North America

Panasonic Corporation of North America is Panasonic's principal subsidiary in the United States. It has been headquartered in Newark, New Jersey since 2013, after being previously headquartered in Secaucus, since the 1980s;[39] both Newark and Secaucus are located within New Jersey's Gateway Region.

Founded in New York City at the MetLife Building in September 1959, it was known as Matsushita Electric Corporation of America (MECA) prior to 2005.

Panasonic Corporation in Europe

Panasonic's principal subsidiaries in Europe are Panasonic Europe Ltd.[40] and Panasonic Marketing Europe GmbH.[41] Panasonic employs around 12,000 people in Europe, and the region generates around 10 per cent of its total revenues.[42] In 2012, Panasonic had around a 10 per cent share of the consumer electronics market in Europe, ranking third behind Samsung Electronics (with 26 per cent) and LG Electronics (with 12 per cent).[42]

Panasonic operates a chain of stores in the United Kingdom and Ireland called "Panasonic Store" which exclusively sell Panasonic products. Prior to 2008 the chain was named "shop@Panasonic".

In November 2010, Panasonic Electric Works established Panasonic Electric Works Vossloh-Schwabe Serbia d.o.o, a new company in Svilajnac, Serbia, to manufacture energy-efficient electronic devices (ballasts) for lighting fixtures. Volume production commenced in January 2011.[43]

Panasonic Corporation of India

Mr. Deepak of NPS Mandanpur Baheri, Bareilly Ito serves as Group President for Panasonic Regional Headquarters India at Panasonic India Pvt.

Panasonic Corporation in Indonesia

PT Panasonic Gobel Indonesia (formerly known as PT National Gobel Indonesia) is the name of the company's Indonesia division based in Cawang, East Jakarta. Hiroyoshi Suga is the current President Director and Rachmat Gobel is the current Commissioners. Rachmat Gobel also Commissioners of Indosat. Panasonic Gobel Indonesia is a joint venture company between Panasonic Corporation Japan and Gobel Group of Indonesia.

Former operations

Universal Studios

Panasonic used to own Universal Studios, then known as the Music Corporation of America, since acquiring the company in 1990 but sold it to Seagram in 1995. Universal Studios is now a unit of NBCUniversal, which is now owned by Philadelphia based Comcast.

Products

Panasonic offers a wide range of products and services, including air conditioners, refrigerators, washing machines, compressors, lighting, televisions, personal computers, mobile phones, audio equipment, cameras, broadcasting equipment, projectors, automotive electronics, aircraft in-flight entertainment systems, semiconductors, batteries, electrical components, optical devices, bicycles and electronic materials.[44]
A Panasonic Lumix camera 
A Panasonic Toughbook field computer 
A Panasonic mobile phone 
A display of Panasonic televisions 
Technics headphones 

Brand names


Panasonic's current and historic brands

Panasonic Corporation sells virtually all of its products and services worldwide under the Panasonic brand, having phased out the Sanyo brand in the first quarter of 2012.[45] The company has sold products under a number of other brand names during its history.

In 1927, the company founder adopted the brand name "National" (ナショナル Nashonaru?) for a new lamp product.[46] In 1955, the company began branding audio speakers and lamps for markets outside Japan as "PanaSonic", which was the first time it used the "Panasonic" brand name.[47] The company began to use the brand name "Technics" (テクニクス Tekunikusu?)" in 1965 for audio equipment.[47] The use of multiple brands lasted for some decades.[47]

In May 2003, the company announced that "Panasonic" would become its global brand, and launched the global tagline "Panasonic ideas for life."[48] The company began to unify its brands to "Panasonic" and, by March 2004 replaced "National" for products and outdoor signboards, except for those in Japan.[48] In January 2008, the company announced that it would phase out the brand "National" in Japan, replacing it with the global brand "Panasonic" by March 2010.[5] In September 2013, the company announced a revision of the decade-old tagline to better illustrate the company vision: "A Better Life, A Better World." [49]

Rasonic is a brand name of Shun Hing Electric Works and Engineering Co. Ltd (信興電工工程有限公司), a company that has imported Panasonic and National branded product since Matsushita Electric Industrial era, and has also sold MEI/Panasonic products under the original brand names. In June 1994, Panasonic Shun Hing Industrial Devices Sales (Hong Kong) Co., Ltd. (松下信興機電(香港)有限公司) and Panasonic SH Industrial Sales (Shenzhen) Co., Ltd. (松下電器機電(深圳)有限公司) were established by joint venture between Matsushita Electric Industrial and Shun Hing Group respectively,[50][51] making Rasonic a product brand for MEI and subsequent Panasonic Corporation.

In September 2014, Panasonic announced they will revive the Technics brand.

Sponsorships

Football

Panasonic sponsors the German football player Marco Reus, who plays for Bundesliga club Borussia Dortmund and Germany.[52]

Panasonic owns Gamba Osaka, a club from the J. League, the main Japanese Professional Football League.[citation needed]

Panasonic is an official partner and sponsor of AFC Champions League and Major League Soccer.[53]

Between 1981 and 1983, Panasonic was the shirt sponsor of English football club Nottingham Forest F.C.[citation needed]

On January 16, 2010, Panasonic signed a three-year, Rs. 4.7 crores (US$1 million) jersey sponsorship deal for the India national football team.[54]

Other


Panasonic was the principal sponsor of the now-defunct Toyota Racing Formula One team

Panasonic were a primary sponsor of Toyota's Formula One program, Panasonic Toyota Racing.[55] Hiro Matsushita, grandson of the company founder, is a former race car driver who ran a company overseeing sponsorship arrangements for the company.

Panasonic was also a sponsor in NASCAR's Busch Series in 2005, sponsoring the No. 67 Smith Brothers Racing Dodge for Ken Schrader,[56] Bryan Reffner,[57] C.W. Smith,[58] and Johnny Benson, Jr..[59] In 2007, Panasonic became a technology partner with Hendrick Motorsports, and will serve as a primary sponsor of the team's No. 24 car with Jeff Gordon for two races in 2014 and through 2016.[60]

Panasonic has sponsored some professional filmmakers by allowing them to borrow a camera for their projects. One such Panasonic Lumix DMC-GH1 model camera was used to film the pilot of the Swedish horror film Marianne.[61]

Panasonic has been a top level sponsor of the Olympic Games since the Seoul Olympics in 1988.[62]

Panasonic was the official partner and sponsor of the Boston Celtics from 1975 to 1989, along with Technics.[citation needed] Various Panasonic ads appeared at the old Boston Garden during the 1980s.

Environmental record

Panasonic is ranked in joint 9th place (out of 15) in Greenpeace’s Guide to Greener Electronics, which ranks electronics manufacturers on policies and practices to reduce their impact on the climate, produce greener products, and make their operations more sustainable.[63] The company is one of the top scorers on the Products criteria, praised for its good product life cycles and the number of products which are free from polyvinyl chloride plastic (PVC). It also scores maximum points for the energy efficiency of its products with 100 percent of its TVs meeting the latest Energy Star standards and exceeding the standby power requirement.

However, Panasonic's score is let down by its low score on the Energy criteria, with the Guide stating it must focus on planned reductions of greenhouse gases (GHG), set targets to reduce GHG emissions by at least 30% by 2015 and increase renewable energy use by 2020.[63]

In 2014, an article in 'The Guardian' reported that Panasonic will compensate its expatriate workers in China a "hazard pay" as compensation for the chronic air pollution they are subjected to as they work.[64]

Slogans

Introduction to entropy

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Introduct...