Search This Blog

Friday, March 20, 2015

Agriculture


From Wikipedia, the free encyclopedia


Fields in Záhorie (Slovakia) - a typical Central European agricultural region.

Domestic sheep and a cow (heifer) pastured together in South Africa.

Agriculture is the cultivation of animals, plants, fungi, and other life forms for food, fiber, biofuel, medicinals and other products used to sustain and enhance human life.[1] Agriculture was the key development in the rise of sedentary human civilization, whereby farming of domesticated species created food surpluses that nurtured the development of civilization. The study of agriculture is known as agricultural science. The history of agriculture dates back thousands of years, and its development has been driven and defined by greatly different climates, cultures, and technologies. However, all farming generally relies on techniques to expand and maintain the lands that are suitable for raising domesticated species. For plants, this usually requires some form of irrigation, although there are methods of dryland farming. Livestock are raised in a combination of grassland-based and landless systems, in an industry that covers almost one-third of the world's ice- and water-free area. In the developed world, industrial agriculture based on large-scale monoculture has become the dominant system of modern farming, although there is growing support for sustainable agriculture, including permaculture and organic agriculture.

Until the Industrial Revolution, the vast majority of the human population labored in agriculture. Pre-industrial agriculture was typically subsistence agriculture/self-sufficiency in which farmers raised most of their crops for their own consumption instead of cash crops for trade. A remarkable shift in agricultural practices has occurred over the past century in response to new technologies, and the development of world markets. This also has led to technological improvements in agricultural techniques, such as the Haber-Bosch method for synthesizing ammonium nitrate which made the traditional practice of recycling nutrients with crop rotation and animal manure less important.

Modern agronomy, plant breeding, agrochemicals such as pesticides and fertilizers, and technological improvements have sharply increased yields from cultivation, but at the same time have caused widespread ecological damage and negative human health effects. Selective breeding and modern practices in animal husbandry have similarly increased the output of meat, but have raised concerns about animal welfare and the health effects of the antibiotics, growth hormones, and other chemicals commonly used in industrial meat production. Genetically modified organisms are an increasing component of agriculture, although they are banned in several countries. Agricultural food production and water management are increasingly becoming global issues that are fostering debate on a number of fronts. Significant degradation of land and water resources, including the depletion of aquifers, has been observed in recent decades, and the effects of global warming on agriculture and of agriculture on global warming are still not fully understood.

The major agricultural products can be broadly grouped into foods, fibers, fuels, and raw materials. Specific foods include cereals (grains), vegetables, fruits, oils, meats and spices. Fibers include cotton, wool, hemp, silk and flax. Raw materials include lumber and bamboo. Other useful materials are produced by plants, such as resins, dyes, drugs, perfumes, biofuels and ornamental products such as cut flowers and nursery plants. Over one third of the world's workers are employed in agriculture, second only to the services' sector, although the percentages of agricultural workers in developed countries has decreased significantly over the past several centuries.

Etymology and terminology

The word agriculture is a late Middle English adaptation of Latin agricultūra, from ager, "field", and cultūra, "cultivation" or "growing".[2] Agriculture usually refers to human activities, although it is also observed in certain species of ant, termite and ambrosia beetle.[3] To practice agriculture means to use natural resources to "produce commodities which maintain life, including food, fiber, forest products, horticultural crops, and their related services."[4] This definition includes arable farming or agronomy, and horticulture, all terms for the growing of plants, animal husbandry and forestry.[4] A distinction is sometimes made between forestry and agriculture, based on the former's longer management rotations, extensive versus intensive management practices and development mainly by nature, rather than by man. Even then, it is acknowledged that there is a large amount of knowledge transfer and overlap between silviculture (the management of forests) and agriculture.[5] In traditional farming, the two are often combined even on small landholdings, leading to the term agroforestry.[6]

History

A Sumerian harvester's sickle made from baked clay (ca. 3000 BC).

Agricultural practices such as irrigation, crop rotation, application of fertilizers and pesticides, and the domestication of livestock were developed long ago, but have made great progress in the past century. The history of agriculture has played a major role in human history, as agricultural progress has been a crucial factor in worldwide socio-economic change. Division of labour in agricultural societies made commonplace specializations rarely seen in hunter-gatherer cultures, which allowed the growth of towns and cities, and the complex societies we call civilizations. When farmers became capable of producing food beyond the needs of their own families, others in their society were free to devote themselves to projects other than food acquisition. Historians and anthropologists have long argued that the development of agriculture made civilization possible. According to geographer Jared Diamond, the costs of agriculture were: "the average daily number of work hours increased, nutrition deteriorated, infectious disease and body wear increased, and lifespan shortened."[7]

Prehistoric origins

Forest gardening, a plant-based food production system, is thought to be the world's oldest agroecosystem.[8] Forest gardens originated in prehistoric times along jungle-clad river banks and in the wet foothills of monsoon regions. In the gradual process of a family improving their immediate environment, useful tree and vine species were identified, protected and improved whilst undesirable species were eliminated. Eventually superior foreign species were selected and incorporated into the family's garden.[9]

Neolithic

Threshing of grain in ancient Egypt

The Fertile Crescent of Western Asia first saw the domestication of animals, starting the Neolithic Revolution. Between 10,000 and 13,000 years ago, the ancestors of modern cattle, sheep, goats and pigs were domesticated in this area. The gradual transition from wild harvesting to deliberate cultivation happened independently in several areas around the globe.[10] Agriculture allowed for the support of an increased population, leading to larger societies and eventually the development of cities. It also created the need for greater organization of political power (and the creation of social stratification), as decisions had to be made regarding labor and harvest allocation and access rights to water and land. Agriculture bred immobility, as populations settled down for long periods of time, which led to the accumulation of material goods.[11]

Early Neolithic villages show evidence of the ability to process grain, and the Near East is the ancient home of the ancestors of wheat, barley and peas. There is evidence of the cultivation of figs in the Jordan Valley as long as 11,300 years ago, and cereal (grain) production in Syria approximately 9,000 years ago. During the same period, farmers in China began to farm rice and millet, using man-made floods and fires as part of their cultivation regimen.[10] Fiber crops were domesticated as early as food crops, with China domesticating hemp, cotton being developed independently in Africa and South America, and the Near East domesticating flax.[12] The use of soil amendments, including manure, fish, compost and ashes, appears to have begun early, and developed independently in several areas of the world, including Mesopotamia, the Nile Valley and Eastern Asia.[13]

Roman harvesting machine

Squash was grown in Mexico nearly 10,000 years ago, while maize-like plants, derived from the wild teosinte, began to be seen at around 9,000 years ago. The derivation of teosinte into modern corn was slow, however, and it took until 5,500[10] to 6,000 years ago to turn into what we know today as maize. It then gradually spread across North America and was the major crop of Native Americans at the time of European exploration.[14] Beans were domesticated around the same time, and together these three plants formed the Three Sisters nutritional foundation of many native populations in North and Central America. Combined with peppers, these crops provided a balanced diet for much of the continent.[15] Grapes were first grown for wine approximately 8,000 years ago, in the Southern Caucasus, and by 3000 BC had spread to the Fertile Crescent, the Jordan Valley and Egypt.[16]

Agriculture advanced to Europe slightly later, reaching the northeast of the continent from the east around 4000 BC. The idea that agriculture spread to Europe, rather than independently developing there, has led to two main hypotheses. The first is a "wave of advance", which holds that agriculture traveled slowly and steadily across the continent, while the second, "population pulse" theory, holds that it moved in jumps.[17] Also around 6000 years ago, horses first began to be domesticated in the Eurasian steppes. Initially used for food, it was quickly discovered that they were useful for field work and carrying goods and people.[18] Around 5,000 years ago, sunflowers were first cultivated in North America, while South America's Andes region was developing the potato.[10] A minor center of domestication, the indigenous peoples of the eastern United States appear to have domesticated numerous crops, including tobacco.[19]

Bronze and Iron Ages

Beginning around 3000 BC, nomadic pastoralism, with societies focused on the care of livestock for subsistence, appeared independently in several areas in Europe and Asia. The main region was the steppes stretching from the Hungarian Plain to Manchuria, where cattle, sheep, horses, and to a lesser extent yaks and bactrian camels provided sustenance. The second was in Arabia, where one-humped camels were the main animal, with sheep, goats and horses also seen. The third area was a band of societies in areas of eastern and central Africa with a tropical savannah climate. Cattle and goats were found most often in this area, with smaller numbers of sheep, horses and camels. A fourth area, more minor than the others, was found in northern Europe and Asia and was focused on reindeer herding.[20]

Between 2500 and 2000 BC, the simplest form of the plough, called the ard, spread throughout Europe, replacing the hoe. This change in equipment significantly increased cultivation ability, and affected the demand for land, as well as ideas about property, inheritance and family rights.[21] Before this period, simple digging sticks or hoes were used. These tools would have also been easier to transport, which was a benefit as people only stayed until the soil's nutrients were depleted. However, as the continuous cultivating of smaller pieces of land became a sustaining practice throughout the world, ards were much more efficient than digging sticks.[22] As humanity became more stationary, empires, such as the New Kingdom of Egypt and the Ancient Romans, arose, dependent upon agriculture to feed their growing populations, and slavery, which was used to provide the labor needed for continually intensifying agricultural processes. Agricultural technology continued to improve, allowing the expansion of available crop varieties, including a wide range of fruits, vegetables, oil crops, spices and other products.[23][24]
China was also an important center for agricultural technology development during this period. During the Zhou dynasty (1666–221 BC), the first canals were built, and irrigation was used extensively. The later Three Kingdoms and Northern and Southern dynasties (221–581 AD) brought the first biological pest control, extensive writings on agricultural topics and technological innovations such as steel and the wheelbarrow.[25]

In the ancient world, fresh products, such as meats, dairy products and fresh fruits and vegetables, were likely consumed relatively close to where they were produced. Less perishable products, such as grains, preserved foods, olive oil and wine, were often traded over an extensive network of land and sea routes. The ancient trade in agricultural goods was well established, with wine traded in the Mediterranean region in the 6th century BC and Rome receiving extensive shipments of grain as tax payments by the 2nd century BC. Huge amounts of grain were transported, mainly by sea, and it was during this period that the subsidization of grain farming began, for the prevention of famine. Ancient Rome was a major center for agricultural trade. Trade routes stretched from Britain and Scandinavia in the west to India and China in the east, and included major crops, such as grain, wine and olive oil (also a fuel for oil lamps), as well as additional products, including spices, fabrics and drugs.[26]

In Ancient Greece and Rome, many scholars documented farming techniques, including the use of fertilizers.[13] Much of what was believed about farming and plant nutrition at this time was later found to be incorrect, but their theories provided the scientific foundation for the development of agricultural theories through the Middle Ages. Ideas about soil fertility and fertilization remained much the same from the time of Greco-Roman scholars until the 19th century, with correspondingly low crop yields.[13] By the time of Alexander the Great's conquests (330–323 BC), the role of horses had developed, and they played a huge role in warfare and agriculture. Innovations continued to be developed which allowed them to work longer, harder and more efficiently. By medieval times they became the primary source of power for agriculture, transport and warfare, a position they held until the development of the steam and internal combustion engines.[18] The Mayan culture developed several innovations in agriculture during its peak, which ranged from 400 BC to 900 AD and was heavily dependent upon agriculture to support its population. The Mayans used extensive canal and raised field systems to farm the large portions of swampland on the Yucatán Peninsula.[27][28]

Middle Ages


Agricultural calendar from a manuscript of Pietro de Crescenzi.

The Middle Ages saw significant improvements in the agricultural techniques and technology. During this time period, monasteries spread throughout Europe and became important centers for the collection of knowledge related to agriculture and forestry. The manorial system, which existed under different names throughout Europe and Asia, allowed large landowners significant control over both their land and its laborers, in the form of peasants or serfs.[29] During the medieval period, the Arab world was critical in the exchange of crops and technology between the European, Asia and African continents. Besides transporting numerous crops, they introduced the concept of summer irrigation to Europe and developed the beginnings of the plantation system of sugarcane growing through the use of slaves for intensive cultivation.[30] Population continued to increase along with land use. From 100 BC to 1600 AD, methane emissions, produced by domesticated animals and rice growing, increased substantially.[31]

By 900 AD in Europe, developments in iron smelting allowed for increased production, leading to developments in the production of agricultural implements such as ploughs, hand tools and horse shoes. The plough was significantly improved, developing into the mouldboard plough, capable of turning over the heavy, wet soils of northern Europe. This led to the clearing of forests in that area and a significant increase in agricultural production, which in turn led to an increase in population.[32] A similar plough, which may have developed independently, was also found in China as early as the 9th century.[33] At the same time, farmers in Europe moved from a two field crop rotation to a three field crop rotation in which one field of three was left fallow every year. This resulted in increased productivity and nutrition, as the change in rotations led to different crops being planted, including legumes such as peas, lentils and beans. Inventions such as improved horse harnesses and the whippletree also changed methods of cultivation.[32] Watermills were initially developed by the Romans, but were improved throughout the Middle Ages, along with windmills, and used to grind grains into flour, cut wood and process flax and wool, among other uses.[34]

Ancient methods of planting are still widespread in many countries. Here, two members of the Brao ethnic group plant seeds on their land in Laos

Crops included wheat, rye, barley and oats. Peas, beans, and vetches became common from the 13th century onward as a fodder crop for animals and also for their nitrogen-fixation fertilizing properties. Crop yields peaked in the 13th century, and stayed more or less steady until the 18th century.[35] Though the limitations of medieval farming were once thought to have provided a ceiling for the population growth in the Middle Ages, recent studies[36][37] have shown that the technology of medieval agriculture was always sufficient for the needs of the people under normal circumstances, and that it was only during exceptionally harsh times, such as the terrible weather of 1315–17, that the needs of the population could not be met.[38] The Medieval Warm Period, between 900–1300 AD, brought generally warmer global temperatures, leading to increased harvests throughout Europe and a greater northern range for subtropical crops such as figs and olives. Greenland and Iceland were settled by Europeans during this period, and supported agricultural activities. The long-term warming period is generally thought to have occurred mainly in Europe, but other areas of the world experienced shorter warming periods at different times during this period, including China in the 11th and 12th centuries, with similar effects on agriculture. The climate variations found in Europe during the Medieval Warm Period returned to more moderate levels in the 15th century, and terminated in the Little Ice Age of the 16th-mid 19th centuries.[39]

Global exchange


After 1492, a global exchange of previously local crops and livestock breeds occurred. Key crops involved in this exchange included maize, potatoes, sweet potatoes and manioc traveling from the New World to the Old, and several varieties of wheat, barley, rice and turnips going from the Old World to the New. There were very few livestock species in the New World, with horses, cattle, sheep and goats being completely unknown before their arrival with Old World settlers. Crops moving in both directions across the Atlantic Ocean caused population growth around the world, and had a lasting effect on many cultures.[40]

After its introduction from South America to Spain in the late 1500s, the potato became an important staple crop throughout Europe by the late 1700s. The potato allowed farmers to produce more food, and initially added variety to the European diet. The nutrition boost caused by increased potato consumption resulted in lower disease rates, higher birth rates and lower mortality rates, causing a population boom throughout the British Empire, the US and Europe.[41] The introduction of the potato also brought about the first intensive use of fertilizer, in the form of guano imported to Europe from Peru, and the first artificial pesticide, in the form of an arsenic compound used to fight Colorado potato beetles. Before the adoption of the potato as a major crop, the dependence on grain caused repetitive regional and national famines when the crops failed: 17 major famines in England alone between 1523 and 1623. Although initially almost eliminating the danger of famine, the resulting dependence on the potato eventually caused the European Potato Failure, a disastrous crop failure from disease resulting in widespread famine, and the death of over one million people in Ireland alone.[42]

Modern developments

Plans for Jethro Tull's seed drill, from 1752.

The British Agricultural Revolution, with its massive increases in agricultural productivity and net output, is a topic of ongoing debate among historians and agricultural scholars. The changes in agriculture in Britain between the 16th and 19th centuries would subsequently affect agriculture around the world. Major points of development included enclosure, mechanization, crop rotation and selective breeding. Prior to the 1960s, historians viewed the British Agricultural Revolution of having been "largely facilitated by a small number of key innovators," including Robert Bakewell,[43] Thomas Coke and Charles Townshend. However, modern historians disperse much of the importance surrounding these individual men, and instead point to them holding a smaller position within a major societal shift regarding agriculture in Britain.

The agricultural changes, along with industrialization and migration, allowed the population of Britain, as well as other countries who followed its model, such as the US, Germany and Belgium, to escape from the Malthusian trap and increase both their population and their standard of living. It is estimated that the productivity of wheat in England went up from about 19 bushels per acre in 1720 to 21–22 bushels by the middle of the century and finally stabilized at around 30 bushels by 1840.[44][45][46]

Premodern agriculture across Europe was characterized by the feudal open field system, where farmers worked on strips of land in fields that were held in common; this was inefficient and reduced the incentive to improve productivity.[47] Many farms began to be enclosed by yeomen who improved the use of their land. This process of land reform accelerated in the 18th century with special acts of Parliament to expedite the legal process.[48] The consolidation of large, privately owned holdings, encouraged the improvement of productivity through experimentation by enterprising landowners. By the 1750s, the market for agriculture was substantially commercialized - crop surpluses were routinely sold by the producers on the market or exported elsewhere.[48][49]

These social changes were coupled with technical improvements. New methods of crop rotation and land use resulted in large additions to the amount of arable land. The four-field crop rotation was popularized by Charles Townshend in the 18th century. The system (wheat, turnips, barley and clover), opened up a fodder crop and grazing crop allowing livestock to be bred year-round. Yields of cereal crops increased as farmers utilized nitrogen-rich manure and nitrogen fixing-crops such as clover, increasing the available nitrogen in the soil and removing the limiting factor on cereal productions that had existed prior to the early 19th century. This improved production per farmer led to an increase in population and in the available workforce, creating the labor force needed for the Industrial Revolution.[50]

The development of agriculture into its modern form was made possible through a continuing process of mechanization.[51] Prior to this, basic agricultural tools had slowly been improved over centuries of use. The plough, for example, was a heavy implement with wheels in the 1500s. By the 1600s it was lighter, and by 1730, the Rotherham plough dramatically changed farming with no wheels, interchangeable parts, stronger construction and less weight. During the early 1800s, cast iron replaced wood for many parts, leading to longer-lasting implements. Seed drills had been under development since the early 1500s, but it was Jethro Tull's 1731 invention of a horse-drawn seed drill and horse hoe (a small plough to hoe between crop rows) that would eventually revolutionize planting in Britain, although they would not become popular until the early 1800s.[52] Andrew Meikle patented the first practical threshing machine in 1784.[53]

The Industrial Revolution caused a boom in international trade and shipping. Increased production caused a rise in the need for raw materials, with European merchants purchasing the majority of the goods. The value of goods traded worldwide increased by five times between 1750 and 1914, with annual shipping tonnages increasing from 4 million to 30 million tons between 1800 and 1900. In the second half of the 19th century, trade also expanded in the food (including grain and meat) and wool markets, and England (with the repeal of the Corn Laws in 1846) began to trade quantities of industrial products for wheat from around the world. The vast expansion of railroads that followed the invention of the steam engine further revolutionized world trade, especially in the Americas and East Asia, as goods could now be more easily traded across vast land distances.[54] The developments of heat processing and refrigeration in the 19th century led to a similar revolution in the meat industry, as they allowed meat to be shipped long distances without spoiling. Countries in tropical locations, such as Australia and South America, were at the forefront of this effort.[55]

Early 20th century image of a tractor ploughing an alfalfa field.

In the mid-1800s, horse drawn machinery, such as the McCormick reaper, revolutionized harvesting, while inventions such as the cotton gin made possible the processing of large amounts of crops. During this same period, farmers began to use steam-powered threshers and tractors, although they were found to be expensive, dangerous and a fire hazard. The first gasoline-powered tractors were successfully developed around 1900, and in 1923, the International Harvester Farmall tractor became the first all-purpose tractor, and marked a major point in the replacement of draft animals (particularly horses) with machines. Since that time, self-propelled mechanical harvesters (combines), planters, transplanters and other equipment have been developed, further revolutionizing agriculture.[51] These inventions allowed farming tasks to be done with a speed and on a scale previously impossible, leading modern farms to output much greater volumes of high-quality produce per land unit.[56]

The scientific investigation of fertilization began at the Rothamsted Experimental Station in 1843 by John Bennet Lawes. He developed the first commercial process for fertilizer production - the obtaining of phosphate from the dissolution of coprolites in sulphuric acid.[57] In 1909 the revolutionary Haber-Bosch method to synthesize ammonium nitrate was first demonstrated; it represented a major breakthrough and allowed crop yields to overcome previous constraints. In the years after World War II, the use of synthetic fertilizer increased rapidly, in sync with the increasing world population.[58]

Recent

Despite the tremendous gains in agricultural productivity, famines continued to sweep the globe through the 20th century. Through the effects of climatic events, government policy, war and crop failure, millions of people died in each of at least ten famines between the 1920s and the 1990s.[59]

Norman Borlaug, father of the Green Revolution, is often credited with saving hundreds of millions of people worldwide from starvation.

The Green Revolution refers to a series of research, development, and technology transfer initiatives, occurring between the 1940s and the late 1970s, that increased agriculture production around the world, beginning most markedly in the late 1960s. It involved the development of high-yielding varieties of cereal grains, expansion of irrigation infrastructure, modernization of management techniques, distribution of hybridized seeds, synthetic fertilizers, and pesticides to farmers.[60] The initiatives, led by Norman Borlaug, the "Father of the Green Revolution", are credited with saving hundreds of millions of people from starvation.[61] Demographer Thomas Malthus in 1798 famously predicted that the Earth would not be able to support its growing population, but technologies such as those promoted by the Green Revolution have thus far allowed the world to produce a surplus of food.[62]

Although the Green Revolution significantly increased rice yields in Asia, yield increases have not occurred in the past 15–20 years. The genetic yield potential has increased for wheat, but the yield potential for rice has not increased since 1966, and the yield potential for maize has "barely increased in 35 years".[63] It takes a decade or two for herbicide-resistant weeds to emerge, and insects become resistant to insecticides within about a decade. Crop rotation helps to prevent resistances.[63]

The cereals rice, corn, and wheat provide 60% of human food supply.[64] Between 1700 and 1980, "the total area of cultivated land worldwide increased 466%" and yields increased dramatically, particularly because of selectively bred high-yielding varieties, fertilizers, pesticides, irrigation, and machinery.[64] However, concerns have been raised over the sustainability of intensive agriculture. Intensive agriculture has become associated with decreased soil quality in India and Asia, and there has been increased concern over the effects of fertilizers and pesticides on the environment, particularly as population increases and food demand expands. The monocultures typically used in intensive agriculture increase the number of pests, which are controlled through pesticides. Integrated pest management (IPM), which "has been promoted for decades and has had some notable successes" has not significantly affected the use of pesticides because policies encourage the use of pesticides and IPM is knowledge-intensive.[64] In the 21st century, plants have been used to grow biofuels, pharmaceuticals (including biopharmaceuticals),[65] and bioplastics.[66]

Contemporary agriculture


Satellite image of farming in Minnesota

Infrared image of the above farms. Various colors indicate healthy crops (red), flooding (black) and unwanted pesticides (brown).

In the past century agriculture has been characterized by increased productivity, the substitution of synthetic fertilizers and pesticides for labor, water pollution, and farm subsidies. In recent years there has been a backlash against the external environmental effects of conventional agriculture, resulting in the organic and sustainable agriculture movements.[67][68] One of the major forces behind this movement has been the European Union, which first certified organic food in 1991 and began reform of its Common Agricultural Policy (CAP) in 2005 to phase out commodity-linked farm subsidies,[69] also known as decoupling. The growth of organic farming has renewed research in alternative technologies such as integrated pest management and selective breeding. Recent mainstream technological developments include genetically modified food.

In 2007, higher incentives for farmers to grow non-food biofuel crops[70] combined with other factors, such as overdevelopment of former farm lands, rising transportation costs, climate change, growing consumer demand in China and India, and population growth,[71] caused food shortages in Asia, the Middle East, Africa, and Mexico, as well as rising food prices around the globe.[72][73] As of December 2007, 37 countries faced food crises, and 20 had imposed some sort of food-price controls. Some of these shortages resulted in food riots and even deadly stampedes.[74][75][76] The International Fund for Agricultural Development posits that an increase in smallholder agriculture may be part of the solution to concerns about food prices and overall food security. They in part base this on the experience of Vietnam, which went from a food importer to large food exporter and saw a significant drop in poverty, due mainly to the development of smallholder agriculture in the country.[77]

Disease and land degradation are two of the major concerns in agriculture today. For example, an epidemic of stem rust on wheat caused by the Ug99 lineage is currently spreading across Africa and into Asia and is causing major concerns due to crop losses of 70% or more under some conditions.[78] Approximately 40% of the world's agricultural land is seriously degraded.[79] In Africa, if current trends of soil degradation continue, the continent might be able to feed just 25% of its population by 2025, according to UNU's Ghana-based Institute for Natural Resources in Africa.[80]

Agrarian structure is a long-term structure in the Braudelian understanding of the concept. On a larger scale the agrarian structure is more dependent on the regional, social, cultural and historical factors than on the state’s undertaken activities. Like in Poland, where despite running an intense agrarian policy for many years, the agrarian structure in 2002 has much in common with that found in 1921 soon after the partitions period.[81]

In 2009, the agricultural output of China was the largest in the world, followed by the European Union, India and the United States, according to the International Monetary Fund (see below). Economists measure the total factor productivity of agriculture and by this measure agriculture in the United States is roughly 1.7 times more productive than it was in 1948.[82]

Workforce

As of 2011, the International Labour Organization states that approximately one billion people, or over 1/3 of the available work force, are employed in the global agricultural sector. Agriculture constitutes approximately 70% of the global employment of children, and in many countries employs the largest percentage of women of any industry.[83] The service sector only overtook the agricultural sector as the largest global employer in 2007. Between 1997 and 2007, the percentage of people employed in agriculture fell by over four percentage points, a trend that is expected to continue.[84] The number of people employed in agriculture varies widely on a per-country basis, ranging from less than 2% in countries like the US and Canada to over 80% in many African nations.[85] In developed countries, these figures are significantly lower than in previous centuries. During the 16th century in Europe, for example, between 55 and 75 percent of the population was engaged in agriculture, depending on the country. By the 19th century in Europe, this had dropped to between 35 and 65 percent.[86] In the same countries today, the figure is less than 10%.[85]

Safety


Agriculture remains a hazardous industry, and farmers worldwide remain at high risk of work-related injuries, lung disease, noise-induced hearing loss, skin diseases, as well as certain cancers related to chemical use and prolonged sun exposure. On industrialized farms, injuries frequently involve the use of agricultural machinery, and a common cause of fatal agricultural injuries in developed countries is tractor rollovers.[87] Pesticides and other chemicals used in farming can also be hazardous to worker health, and workers exposed to pesticides may experience illness or have children with birth defects.[88] As an industry in which families commonly share in work and live on the farm itself, entire families can be at risk for injuries, illness, and death.[89] Common causes of fatal injuries among young farm workers include drowning, machinery and motor vehicle-related accidents.[89]

The International Labour Organization considers agriculture "one of the most hazardous of all economic sectors."[83] It estimates that the annual work-related death toll among agricultural employees is at least 170,000, twice the average rate of other jobs. In addition, incidences of death, injury and illness related to agricultural activities often go unreported.[90] The organization has developed the Safety and Health in Agriculture Convention, 2001, which covers the range of risks in the agriculture occupation, the prevention of these risks and the role that individuals and organizations engaged in agriculture should play.[83]

Agricultural production systems

Crop cultivation systems


Rice cultivation at a paddy field in Bihar state of India

The Banaue Rice Terraces in Ifugao, Philippines

Cropping systems vary among farms depending on the available resources and constraints; geography and climate of the farm; government policy; economic, social and political pressures; and the philosophy and culture of the farmer.[91][92]

Shifting cultivation (or slash and burn) is a system in which forests are burnt, releasing nutrients to support cultivation of annual and then perennial crops for a period of several years.[93] Then the plot is left fallow to regrow forest, and the farmer moves to a new plot, returning after many more years (10–20). This fallow period is shortened if population density grows, requiring the input of nutrients (fertilizer or manure) and some manual pest control. Annual cultivation is the next phase of intensity in which there is no fallow period. This requires even greater nutrient and pest control inputs.

Further industrialization led to the use of monocultures, when one cultivar is planted on a large acreage. Because of the low biodiversity, nutrient use is uniform and pests tend to build up, necessitating the greater use of pesticides and fertilizers.[92] Multiple cropping, in which several crops are grown sequentially in one year, and intercropping, when several crops are grown at the same time, are other kinds of annual cropping systems known as polycultures.[93]

In subtropical and arid environments, the timing and extent of agriculture may be limited by rainfall, either not allowing multiple annual crops in a year, or requiring irrigation. In all of these environments perennial crops are grown (coffee, chocolate) and systems are practiced such as agroforestry. In temperate environments, where ecosystems were predominantly grassland or prairie, highly productive annual cropping is the dominant farming system.[93]

Crop statistics

Important categories of crops include cereals and pseudocereals, pulses (legumes), forage, and fruits and vegetables. Specific crops are cultivated in distinct growing regions throughout the world. In millions of metric tons, based on FAO estimate.
Top agricultural products, by crop types
(million tonnes) 2004 data
Cereals 2,263
Vegetables and melons 866
Roots and tubers 715
Milk 619
Fruit 503
Meat 259
Oilcrops 133
Fish (2001 estimate) 130
Eggs 63
Pulses 60
Vegetable fiber 30
Source:
Food and Agriculture Organization (FAO)
[94]
Top agricultural products, by individual crops
(million tonnes) 2011 data
Sugar cane 1794
Maize 883
Rice 722
Wheat 704
Potatoes 374
Sugar beet 271
Soybeans 260
Cassava 252
Tomatoes 159
Barley 134
Source:
Food and Agriculture Organization (FAO)
[94]

Livestock production systems

Ploughing rice paddies with water buffalo, in Indonesia

Animals, including horses, mules, oxen, water buffalo, camels, llamas, alpacas, donkeys, and dogs, are often used to help cultivate fields, harvest crops, wrangle other animals, and transport farm products to buyers. Animal husbandry not only refers to the breeding and raising of animals for meat or to harvest animal products (like milk, eggs, or wool) on a continual basis, but also to the breeding and care of species for work and companionship.

Livestock production systems can be defined based on feed source, as grassland-based, mixed, and landless.[95] As of 2010, 30% of Earth's ice- and water-free area was used for producing livestock, with the sector employing approximately 1.3 billion people. Between the 1960s and the 2000s, there was a significant increase in livestock production, both by numbers and by carcass weight, especially among beef, pigs and chickens, the latter of which had production increased by almost a factor of 10. Non-meat animals, such as milk cows and egg-producing chickens, also showed significant production increases. Global cattle, sheep and goat populations are expected to continue to increase sharply through 2050.[96] Aquaculture or fish farming, the production of fish for human consumption in confined operations, is one of the fastest growing sectors of food production, growing at an average of 9% a year between 1975 and 2007.[97]

During the second half of the 20th century, producers using selective breeding focused on creating livestock breeds and crossbreeds that increased production, while mostly disregarding the need to preserve genetic diversity. This trend has led to a significant decrease in genetic diversity and resources among livestock breeds, leading to a corresponding decrease in disease resistance and local adaptations previously found among traditional breeds.[98]

Grassland based livestock production relies upon plant material such as shrubland, rangeland, and pastures for feeding ruminant animals. Outside nutrient inputs may be used, however manure is returned directly to the grassland as a major nutrient source. This system is particularly important in areas where crop production is not feasible because of climate or soil, representing 30–40 million pastoralists.[93] Mixed production systems use grassland, fodder crops and grain feed crops as feed for ruminant and monogastric (one stomach; mainly chickens and pigs) livestock. Manure is typically recycled in mixed systems as a fertilizer for crops.[95]

Landless systems rely upon feed from outside the farm, representing the de-linking of crop and livestock production found more prevalently in Organisation for Economic Co-operation and Development(OECD) member countries. Synthetic fertilizers are more heavily relied upon for crop production and manure utilization becomes a challenge as well as a source for pollution.[95] Industrialized countries use these operations to produce much of the global supplies of poultry and pork. Scientists estimate that 75% of the growth in livestock production between 2003 and 2030 will be in confined animal feeding operations, sometimes called factory farming. Much of this growth is happening in developing countries in Asia, with much smaller amounts of growth in Africa.[96] Some of the practices used in commercial livestock production, including the usage of growth hormones, are controversial.[99]

Production practices


Road leading across the farm allows machinery access to the farm for production practices.

Tillage is the practice of plowing soil to prepare for planting or for nutrient incorporation or for pest control. Tillage varies in intensity from conventional to no-till. It may improve productivity by warming the soil, incorporating fertilizer and controlling weeds, but also renders soil more prone to erosion, triggers the decomposition of organic matter releasing CO2, and reduces the abundance and diversity of soil organisms.[100][101]

Pest control includes the management of weeds, insects, mites, and diseases. Chemical (pesticides), biological (biocontrol), mechanical (tillage), and cultural practices are used. Cultural practices include crop rotation, culling, cover crops, intercropping, composting, avoidance, and resistance. Integrated pest management attempts to use all of these methods to keep pest populations below the number which would cause economic loss, and recommends pesticides as a last resort.[102]

Nutrient management includes both the source of nutrient inputs for crop and livestock production, and the method of utilization of manure produced by livestock. Nutrient inputs can be chemical inorganic fertilizers, manure, green manure, compost and mined minerals.[103] Crop nutrient use may also be managed using cultural techniques such as crop rotation or a fallow period.[104][105] Manure is used either by holding livestock where the feed crop is growing, such as in managed intensive rotational grazing, or by spreading either dry or liquid formulations of manure on cropland or pastures.

Water management is needed where rainfall is insufficient or variable, which occurs to some degree in most regions of the world.[93] Some farmers use irrigation to supplement rainfall. In other areas such as the Great Plains in the U.S. and Canada, farmers use a fallow year to conserve soil moisture to use for growing a crop in the following year.[106] Agriculture represents 70% of freshwater use worldwide.[107]

According to a report by the International Food Policy Research Institute, agricultural technologies will have the greatest impact on food production if adopted in combination with each other; using a model that assessed how eleven technologies could impact agricultural productivity, food security and trade by 2050, the International Food Policy Research Institute found that the number of people at risk from hunger could be reduced by as much as 40% and food prices could be reduced by almost half.[108]

"Payment for ecosystem services (PES) can further incentivise efforts to green the agriculture sector. This is an approach that verifies values and rewards the benefits of ecosystem services provided by green agricultural practices."[109] "Innovative PES measures could include reforestation payments made by cities to upstream communities in rural areas of shared watersheds for improved quantities and quality of fresh water for municipal users. Ecoservice payments by farmers to upstream forest stewards for properly managing the flow of soil nutrients, and methods to monetise the carbon sequestration and emission reduction credit benefits of green agriculture practices in order to compensate farmers for their efforts to restore and build SOM and employ other practices." [109]

Crop alteration and biotechnology


Crop alteration has been practiced by humankind for thousands of years, since the beginning of civilization. Altering crops through breeding practices changes the genetic make-up of a plant to develop crops with more beneficial characteristics for humans, for example, larger fruits or seeds, drought-tolerance, or resistance to pests. Significant advances in plant breeding ensued after the work of geneticist Gregor Mendel. His work on dominant and recessive alleles, although initially largely ignored for almost 50 years, gave plant breeders a better understanding of genetics and breeding techniques. Crop breeding includes techniques such as plant selection with desirable traits, self-pollination and cross-pollination, and molecular techniques that genetically modify the organism.[110]

Domestication of plants has, over the centuries increased yield, improved disease resistance and drought tolerance, eased harvest and improved the taste and nutritional value of crop plants. Careful selection and breeding have had enormous effects on the characteristics of crop plants. Plant selection and breeding in the 1920s and 1930s improved pasture (grasses and clover) in New Zealand. Extensive X-ray and ultraviolet induced mutagenesis efforts (i.e. primitive genetic engineering) during the 1950s produced the modern commercial varieties of grains such as wheat, corn (maize) and barley.[111][112]

The Green Revolution popularized the use of conventional hybridization to sharply increase yield by creating "high-yielding varieties". For example, average yields of corn (maize) in the USA have increased from around 2.5 tons per hectare (t/ha) (40 bushels per acre) in 1900 to about 9.4 t/ha (150 bushels per acre) in 2001. Similarly, worldwide average wheat yields have increased from less than 1 t/ha in 1900 to more than 2.5 t/ha in 1990. South American average wheat yields are around 2 t/ha, African under 1 t/ha, and Egypt and Arabia up to 3.5 to 4 t/ha with irrigation. In contrast, the average wheat yield in countries such as France is over 8 t/ha. Variations in yields are due mainly to variation in climate, genetics, and the level of intensive farming techniques (use of fertilizers, chemical pest control, growth control to avoid lodging).[113][114][115]

Genetic engineering

Genetically modified organisms (GMO) are organisms whose genetic material has been altered by genetic engineering techniques generally known as recombinant DNA technology. Genetic engineering has expanded the genes available to breeders to utilize in creating desired germlines for new crops. Increased durability, nutritional content, insect and virus resistance and herbicide tolerance are a few of the attributes bred into crops through genetic engineering.[116] For some, GMO crops cause food safety and food labeling concerns. Numerous countries have placed restrictions on the production, import or use of GMO foods and crops, which have been put in place due to concerns over potential health issues, declining agricultural diversity and contamination of non-GMO crops.[117] Currently a global treaty, the Biosafety Protocol, regulates the trade of GMOs. There is ongoing discussion regarding the labeling of foods made from GMOs, and while the EU currently requires all GMO foods to be labeled, the US does not.[118]
Herbicide-resistant seed has a gene implanted into its genome that allows the plants to tolerate exposure to herbicides, including glyphosates. These seeds allow the farmer to grow a crop that can be sprayed with herbicides to control weeds without harming the resistant crop. Herbicide-tolerant crops are used by farmers worldwide.[119] With the increasing use of herbicide-tolerant crops, comes an increase in the use of glyphosate-based herbicide sprays. In some areas glyphosate resistant weeds have developed, causing farmers to switch to other herbicides.[120][121] Some studies also link widespread glyphosate usage to iron deficiencies in some crops, which is both a crop production and a nutritional quality concern, with potential economic and health implications.[122]

Other GMO crops used by growers include insect-resistant crops, which have a gene from the soil bacterium Bacillus thuringiensis (Bt), which produces a toxin specific to insects. These crops protect plants from damage by insects.[123] Some believe that similar or better pest-resistance traits can be acquired through traditional breeding practices, and resistance to various pests can be gained through hybridization or cross-pollination with wild species. In some cases, wild species are the primary source of resistance traits; some tomato cultivars that have gained resistance to at least 19 diseases did so through crossing with wild populations of tomatoes.[124]

Environmental impact


Agriculture imposes external costs upon society through pesticides, nutrient runoff, excessive water usage, loss of natural environment and assorted other problems. A 2000 assessment of agriculture in the UK determined total external costs for 1996 of £2,343 million, or £208 per hectare.[125] A 2005 analysis of these costs in the USA concluded that cropland imposes approximately $5 to 16 billion ($30 to $96 per hectare), while livestock production imposes $714 million.[126] Both studies, which focused solely on the fiscal impacts, concluded that more should be done to internalize external costs. Neither included subsidies in their analysis, but they noted that subsidies also influence the cost of agriculture to society.[125][126] In 2010, the International Resource Panel of the United Nations Environment Programme published a report assessing the environmental impacts of consumption and production. The study found that agriculture and food consumption are two of the most important drivers of environmental pressures, particularly habitat change, climate change, water use and toxic emissions.[127] The 2011 UNEP Green Economy report states that "[a]gricultural operations, excluding land use changes, produce approximately 13 per cent of anthropogenic global GHG emissions. This includes GHGs emitted by the use of inorganic fertilisers agro-chemical pesticides and herbicides; (GHG emissions resulting from production of these inputs are included in industrial emissions); and fossil fuel-energy inputs.[109] "On average we find that the total amount of fresh residues from agricultural and forestry production for second- generation biofuel production amounts to 3.8 billion tonnes per year between 2011 and 2050 (with an average annual growth rate of 11 per cent throughout the period analysed, accounting for higher growth during early years, 48 per cent for 2011-2020 and an average 2 per cent annual expansion after 2020)." [109]

Livestock issues

A senior UN official and co-author of a UN report detailing this problem, Henning Steinfeld, said "Livestock are one of the most significant contributors to today's most serious environmental problems".[128] Livestock production occupies 70% of all land used for agriculture, or 30% of the land surface of the planet. It is one of the largest sources of greenhouse gases, responsible for 18% of the world's greenhouse gas emissions as measured in CO2 equivalents. By comparison, all transportation emits 13.5% of the CO2. It produces 65% of human-related nitrous oxide (which has 296 times the global warming potential of CO2,) and 37% of all human-induced methane (which is 23 times as warming as CO2.) It also generates 64% of the ammonia emission. Livestock expansion is cited as a key factor driving deforestation; in the Amazon basin 70% of previously forested area is now occupied by pastures and the remainder used for feedcrops.[129] Through deforestation and land degradation, livestock is also driving reductions in biodiversity. Furthermore, the UNEP states that "methane emissions from global livestock are projected to increase by 60 per cent by 2030 under current practices and consumption patterns." [109]

Land and water issues

Land transformation, the use of land to yield goods and services, is the most substantial way humans alter the Earth's ecosystems, and is considered the driving force in the loss of biodiversity. Estimates of the amount of land transformed by humans vary from 39 to 50%.[130] Land degradation, the long-term decline in ecosystem function and productivity, is estimated to be occurring on 24% of land worldwide, with cropland overrepresented.[131] The UN-FAO report cites land management as the driving factor behind degradation and reports that 1.5 billion people rely upon the degrading land. Degradation can be deforestation, desertification, soil erosion, mineral depletion, or chemical degradation (acidification and salinization).[93]
Eutrophication, excessive nutrients in aquatic ecosystems resulting in algal blooms and anoxia, leads to fish kills, loss of biodiversity, and renders water unfit for drinking and other industrial uses. Excessive fertilization and manure application to cropland, as well as high livestock stocking densities cause nutrient (mainly nitrogen and phosphorus) runoff and leaching from agricultural land. These nutrients are major nonpoint pollutants contributing to eutrophication of aquatic ecosystems.[132]

Agriculture accounts for 70% of withdrawals of freshwater resources.[133] Agriculture is a major draw on water from aquifers, and currently draws from those underground water sources at an unsustainable rate. It is long known that aquifers in areas as diverse as northern China, the Upper Ganges and the western US are being depleted, and new research extends these problems to aquifers in Iran, Mexico and Saudi Arabia.[134] Increasing pressure is being placed on water resources by industry and urban areas, meaning that water scarcity is increasing and agriculture is facing the challenge of producing more food for the world's growing population with reduced water resources.[135] Agricultural water usage can also cause major environmental problems, including the destruction of natural wetlands, the spread of water-borne diseases, and land degradation through salinization and waterlogging, when irrigation is performed incorrectly.[136]

Pesticides

Pesticide use has increased since 1950 to 2.5 million tons annually worldwide, yet crop loss from pests has remained relatively constant.[137] The World Health Organization estimated in 1992 that 3 million pesticide poisonings occur annually, causing 220,000 deaths.[138] Pesticides select for pesticide resistance in the pest population, leading to a condition termed the 'pesticide treadmill' in which pest resistance warrants the development of a new pesticide.[139]
An alternative argument is that the way to 'save the environment' and prevent famine is by using pesticides and intensive high yield farming, a view exemplified by a quote heading the Center for Global Food Issues website: 'Growing more per acre leaves more land for nature'.[140][141] However, critics argue that a trade-off between the environment and a need for food is not inevitable,[142] and that pesticides simply replace good agronomic practices such as crop rotation.[139] The UNEP introduces the Push–pull agricultural pest management technique which involves intercropping that uses plant aromas to repel or push away pests while pulling in or attracting the right insects. "The implementation of push-pull in eastern Africa has significantly increased maize yields and the combined cultivation of N-fixing forage crops has enriched the soil and has also provided farmers with feed for livestock. With increased livestock operations, the farmers are able to produce meat, milk and other dairy products and they use the manure as organic fertiliser that returns nutrients to the fields." [109]

Climate change

Climate change has the potential to affect agriculture through changes in temperature, rainfall (timing and quantity), CO2, solar radiation and the interaction of these elements.[93] Extreme events, such as droughts and floods, are forecast to increase as climate change takes hold.[143] Agriculture is among sectors most vulnerable to the impacts of climate change; water supply for example, will be critical to sustain agricultural production and provide the increase in food output required to sustain the world's growing population. Fluctuations in the flow of rivers are likely to increase in the twenty-first century. Based on the experience of countries in the Nile river basin (Ethiopia, Kenya and Sudan) and other developing countries, depletion of water resources during seasons crucial for agriculture can lead to a decline in yield by up to 50%.[144] Transformational approaches will be needed to manage natural resources in the future.[145] For example, policies, practices and tools promoting climate-smart agriculture will be important, as will better use of scientific information on climate for assessing risks and vulnerability. 
Planners and policy-makers will need to help create suitable policies that encourage funding for such agricultural transformation.[146]
Agriculture can both mitigate or worsen global warming. Some of the increase in CO2 in the atmosphere comes from the decomposition of organic matter in the soil, and much of the methane emitted into the atmosphere is caused by the decomposition of organic matter in wet soils such as rice paddies,[147] as well as the normal digestive activities of farm animals. Further, wet or anaerobic soils also lose nitrogen through denitrification, releasing the greenhouse gases nitric oxide and nitrous oxide.[148] Changes in management can reduce the release of these greenhouse gases, and soil can further be used to sequester some of the CO2 in the atmosphere.[147] Informed by the UNEP, "[a]griculture also produces about 58 per cent of global nitrous oxide emissions and about 47 per cent of global methane emissions. Both of these gases have a far greater global warming potential per tonne than CO2 (298 times and 25 times respectively)." [109]

There are several factors within the field of agriculture that contribute to the large amount of CO2 emissions. The diversity of the sources ranges from the production of farming tools to the transport of harvested produce. Approximately 8% of the national carbon footprint is due to agricultural sources. Of that, 75% is of the carbon emissions released from the production of crop assisting chemicals.[149] Factories producing insecticides, herbicides, fungicides, and fertilizers are a major culprit of the greenhouse gas. Productivity on the farm itself and the use of machinery is another source of the carbon emission. Almost all the industrial machines used in modern farming are powered by fossil fuels. These instruments are burning fossil fuels from the beginning of the process to the end. Tractors are the root of this source. The tractor is going to burn fuel and release CO2 just to run. The amount of emissions from the machinery increase with the attachment of different units and need for more power.
During the soil preparation stage tillers and plows will be used to disrupt the soil. During growth watering pumps and sprayers are used to keep the crops hydrated. And when the crops are ready for picking a forage or combine harvester is used. These types of machinery all require additional energy which leads to increased carbon dioxide emissions from the basic tractors.[150] The final major contribution to CO2 emissions in agriculture is in the final transport of produce. Local farming suffered a decline over the past century due to large amounts of farm subsidies. The majority of crops are shipped hundreds of miles to various processing plants before ending up in the grocery store. These shipments are made using fossil fuel burning modes of transportation. Inevitably these transport adds to carbon dioxide emissions.[151]

Sustainability

Some major organizations are hailing farming within agroecosystems as the way forward for mainstream agriculture. Current farming methods have resulted in over-stretched water resources, high levels of erosion and reduced soil fertility. According to a report by the International Water Management Institute and UNEP,[152] there is not enough water to continue farming using current practices; therefore how critical water, land, and ecosystem resources are used to boost crop yields must be reconsidered. The report suggested assigning value to ecosystems, recognizing environmental and livelihood tradeoffs, and balancing the rights of a variety of users and interests. Inequities that result when such measures are adopted would need to be addressed, such as the reallocation of water from poor to rich, the clearing of land to make way for more productive farmland, or the preservation of a wetland system that limits fishing rights.[153]
Technological advancements help provide farmers with tools and resources to make farming more sustainable.[154] New technologies have given rise to innovations like conservation tillage, a farming process which helps prevent land loss to erosion, water pollution and enhances carbon sequestration.[155]

According to a report by the International Food Policy Research Institute (IFPRI),[108] agricultural technologies will have the greatest impact on food production if adopted in combination with each other; using a model that assessed how eleven technologies could impact agricultural productivity, food security and trade by 2050, IFPRI found that the number of people at risk from hunger could be reduced by as much as 40% and food prices could be reduced by almost half.

Agricultural economics

Agricultural economics refers to economics as it relates to the "production, distribution and consumption of [agricultural] goods and services".[156] Combining agricultural production with general theories of marketing and business as a discipline of study began in the late 1800s, and grew significantly through the 20th century.[157] Although the study of agricultural economics is relatively recent, major trends in agriculture have significantly affected national and international economies throughout history, ranging from tenant farmers and sharecropping in the post-American Civil War Southern United States[158] to the European feudal system of manorialism.[159] In the United States, and elsewhere, food costs attributed to food processing, distribution, and agricultural marketing, sometimes referred to as the value chain, have risen while the costs attributed to farming have declined. This is related to the greater efficiency of farming, combined with the increased level of value addition (e.g. more highly processed products) provided by the supply chain. Market concentration has increased in the sector as well, and although the total effect of the increased market concentration is likely increased efficiency, the changes redistribute economic surplus from producers (farmers) and consumers, and may have negative implications for rural communities.[160]
National government policies can significantly change the economic marketplace for agricultural products, in the form of taxation, subsidies, tariffs and other measures.[161] Since at least the 1960s, a combination of import/export restrictions, exchange rate policies and subsidies have affected farmers in both the developing and developed world. In the 1980s, it was clear that non-subsidized farmers in developing countries were experiencing adverse affects from national policies that created artificially low global prices for farm products. Between the mid-1980s and the early 2000s, several international agreements were put into place that limited agricultural tariffs, subsidies and other trade restrictions.[162]

However, as of 2009, there was still a significant amount of policy-driven distortion in global agricultural product prices. The three agricultural products with the greatest amount of trade distortion were sugar, milk and rice, mainly due to taxation. Among the oilseeds, sesame had the greatest amount of taxation, but overall, feed grains and oilseeds had much lower levels of taxation than livestock products. Since the 1980s, policy-driven distortions have seen a greater decrease among livestock products than crops during the worldwide reforms in agricultural policy.[163] Despite this progress, certain crops, such as cotton, still see subsidies in developed countries artificially deflating global prices, causing hardship in developing countries with non-subsidized farmers.[164] Unprocessed commodities (i.e. corn, soybeans, cows) are generally graded to indicate quality. The quality affects the price the producer receives. Commodities are generally reported by production quantities, such as volume, number or weight.[165]

List of countries by agricultural output

Largest countries by agricultural output according to IMF and CIA World Factbook, 2014
Economy
Countries by agricultural output in 2014 (billions in USD)
(01)  China
1,036
(02)  India
356
(—)  European Union
331
(03)  United States
192
(04)  Nigeria
184
(05)  Brazil
123
(06)  Indonesia
122
(07)  Russia
86
(08)  Turkey
72
(09)  Pakistan
61
(10)  Australia
56
(11)  France
55
(12)  Japan
52
(13)  Argentina
50
(14)  Mexico
47
(15)  Thailand
46
(16)  Spain
43
(17)  Iran
43
(18)  Italy
43
(19)  Egypt
41
(20)  Malaysia
38
The twenty largest countries by agricultural output in 2014, according to the IMF and CIA World Factbook.

Energy and agriculture

Since the 1940s, agricultural productivity has increased dramatically, due largely to the increased use of energy-intensive mechanization, fertilizers and pesticides. The vast majority of this energy input comes from fossil fuel sources.[166] Between the 1960–65 measuring cycle and the cycle from 1986 to 1990, the Green Revolution transformed agriculture around the globe, with world grain production increasing significantly (between 70% and 390% for wheat and 60% to 150% for rice, depending on geographic area)[167] as world population doubled. Modern agriculture's heavy reliance on petrochemicals and mechanization has raised concerns that oil shortages could increase costs and reduce agricultural output, causing food shortages.[168]
Agriculture and food system share (%) of total energy
consumption by three industrialized nations
Country Year Agriculture
(direct & indirect)
Food
system
United Kingdom[169] 2005 1.9 11
United States[170] 1996 2.1 10
United States[171] 2002 2.0 14
Sweden[172] 2000 2.5 13

Modern or industrialized agriculture is dependent on fossil fuels in two fundamental ways: 1. direct consumption on the farm and 2. indirect consumption to manufacture inputs used on the farm. Direct consumption includes the use of lubricants and fuels to operate farm vehicles and machinery; and use of gasoline, liquid propane, and electricity to power dryers, pumps, lights, heaters, and coolers. American farms directly consumed about 1.2 exajoules (1.1 quadrillion BTU) in 2002, or just over 1% of the nation's total energy.[168]

Indirect consumption is mainly oil and natural gas used to manufacture fertilizers and pesticides, which accounted for 0.6 exajoules (0.6 quadrillion BTU) in 2002.[168] The natural gas and coal consumed by the production of nitrogen fertilizer can account for over half of the agricultural energy usage. China utilizes mostly coal in the production of nitrogen fertilizer, while most of Europe uses large amounts of natural gas and small amounts of coal. According to a 2010 report published by The Royal Society, agriculture is increasingly dependent on the direct and indirect input of fossil fuels. Overall, the fuels used in agriculture vary based on several factors, including crop, production system and location.[173] The energy used to manufacture farm machinery is also a form of indirect agricultural energy consumption. Together, direct and indirect consumption by US farms accounts for about 2% of the nation's energy use. Direct and indirect energy consumption by U.S. farms peaked in 1979, and has gradually declined over the past 30 years.[168] Food systems encompass not just agricultural production, but also off-farm processing, packaging, transporting, marketing, consumption, and disposal of food and food-related items. Agriculture accounts for less than one-fifth of food system energy use in the US.[170][171]

Mitigation of effects of petroleum shortages


M. King Hubbert's prediction of world petroleum production rates. Modern agriculture is totally reliant on petroleum energy.[174]

In the event of a petroleum shortage (see peak oil for global concerns), organic agriculture can be more attractive than conventional practices that use petroleum-based pesticides, herbicides, or fertilizers. Some studies using modern organic-farming methods have reported yields as high as those available from conventional farming.[175] In the aftermath of the fall of the Soviet Union, with shortages of conventional petroleum-based inputs, Cuba made use of mostly organic practices, including biopesticides, plant-based pesticides and sustainable cropping practices, to feed its populace.[176] However, organic farming may be more labor-intensive and would require a shift of the workforce from urban to rural areas.[177] The reconditioning of soil to restore nutrients lost during the use of monoculture agriculture techniques also takes time.[175]

It has been suggested that rural communities might obtain fuel from the biochar and synfuel process, which uses agricultural waste to provide charcoal fertilizer, some fuel and food, instead of the normal food vs. fuel debate. As the synfuel would be used on-site, the process would be more efficient and might just provide enough fuel for a new organic-agriculture fusion.[178][179]

It has been suggested that some transgenic plants may some day be developed which would allow for maintaining or increasing yields while requiring fewer fossil-fuel-derived inputs than conventional crops.[180] The possibility of success of these programs is questioned by ecologists and economists concerned with unsustainable GMO practices such as terminator seeds.[181][182] While there has been some research on sustainability using GMO crops, at least one prominent multi-year attempt by Monsanto Company has been unsuccessful, though during the same period traditional breeding techniques yielded a more sustainable variety of the same crop.[183]

Policy


Agricultural policy is the set of government decisions and actions relating to domestic agriculture and imports of foreign agricultural products. Governments usually implement agricultural policies with the goal of achieving a specific outcome in the domestic agricultural product markets. Some overarching themes include risk management and adjustment (including policies related to climate change, food safety and natural disasters), economic stability (including policies related to taxes), natural resources and environmental sustainability (especially water policy), research and development, and market access for domestic commodities (including relations with global organizations and agreements with other countries).[184] Agricultural policy can also touch on food quality, ensuring that the food supply is of a consistent and known quality, food security, ensuring that the food supply meets the population's needs, and conservation. Policy programs can range from financial programs, such as subsidies, to encouraging producers to enroll in voluntary quality assurance programs.[185]

There are many influences on the creation of agricultural policy, including consumers, agribusiness, trade lobbies and other groups. Agribusiness interests hold a large amount of influence over policy making, in the form of lobbying and campaign contributions. Political action groups, including those interested in environmental issues and labor unions, also provide influence, as do lobbying organizations representing individual agricultural commodities.[186] The Food and Agriculture Organization of the United Nations (FAO) leads international efforts to defeat hunger and provides a forum for the negotiation of global agricultural regulations and agreements. Dr. Samuel Jutzi, director of FAO's animal production and health division, states that lobbying by large corporations has stopped reforms that would improve human health and the environment. For example, proposals in 2010 for a voluntary code of conduct for the livestock industry that would have provided incentives for improving standards for health, and environmental regulations, such as the number of animals an area of land can support without long-term damage, were successfully defeated due to large food company pressure.[187]

Vertical farming


From Wikipedia, the free encyclopedia


Dickson Despommier shares his ideas about how "vertical farming" can help reduce hunger by changing the way we use land for agriculture. photography by kris krüg

Vertical farming is the practice of cultivating plant life within a skyscraper greenhouse or on vertically inclined surfaces. The modern idea of vertical farming uses techniques similar to glass houses, where natural sunlight can be augmented with artificial lighting.[1]

Types

The term "Vertical farming" was coined by Gilbert Ellis Bailey in 1915 in his book Vertical Farming. His use of the term differs from the current meaning - he wrote about farming with a special interest in soil origin, its nutrient content and the view of plant life as "vertical" life forms, specifically relating to root structures underground. [2] Modern usage refers to skyscrapers using some degree of natural light.

Mixed-use skyscrapers

Mixed-use skyscrapers were proposed and built by architect Ken Yeang. Yeang proposes that instead of hermetically sealed mass-produced agriculture that plant life should be cultivated within open air, mixed-use skyscrapers for climate control and consumption (i.e. a personal or communal planting space as per the needs of the individual). This version of vertical farming is based upon personal or community use rather than the wholesale production and distribution plant life that aspires to feed an entire city. It thus requires less of an initial investment than Despommier's "The Vertical Farm". However, neither Despommier nor Yeang are the conceptual "originators", nor is Yeang the inventor of vertical farming in skyscrapers.

Despommier's skyscrapers

Ecologist Dickson Despommier argues that vertical farming is legitimate for environmental reasons. He claims that the cultivation of plant life within skyscrapers will produce less embedded energy and toxicity than plant life produced on natural landscapes. He moreover claims that natural landscapes are too toxic for natural, agricultural production, despite the ecological and environmental costs of extracting materials to build skyscrapers for the simple purpose of agricultural production.

Vertical farming according to Despommier thus discounts the value of natural landscape in exchange for the idea of "skyscraper as spaceship". Plant life is mass-produced within hermetically sealed, artificial environments that have little to do with the outside world. In this sense, they could be built anywhere regardless of the context. This is unlikely to be advantageous with regards to energy consumption as the internal environment must be maintained to sustain life within the skyscraper. However, this is not necessarily the case, as one of the most important features of a vertical farm is that it would contain some form of renewable energy technology, be it solar panels, wind turbines, or a water capture system, and could contain all three. The vertical farm is designed to be sustainable, and to enable nearby inhabitants to work at the farm.

Despommier's concept of "The Vertical Farm" emerged in 1999 at Columbia University. It promotes the mass cultivation of plant life for commercial purposes in skyscrapers.[3]

History

A commercial high-rise farm such as 'The Vertical Farm' has never been built, yet extensive photographic documentation and several historical books on the subject suggest that research on the subject was not diligently pursued.[4] New sources indicate that a tower hydroponicum existed in Armenia prior to 1951.[5]

Proponents argue that, by allowing traditional outdoor farms to revert to a natural state and reducing the energy costs needed to transport foods to consumers, vertical farms could significantly alleviate climate change produced by excess atmospheric carbon. Critics have noted that the costs of the additional energy needed for artificial lighting, heating and other vertical farming operations would outweigh the benefit of the building’s close proximity to the areas of consumption.[6][7]

One of the earliest drawings of a tall building that cultivates food for the purposes of consumption was published as early as Life Magazine 1909.[8] The reproduced drawings feature vertically stacked homesteads set amidst a farming landscape. This proposal can be seen in Rem Koolhaas's Delirious New York. Koolhaas wrote that this 1909 theorem is


Other architectural proposals that provide the seeds for the Vertical Farm project include Le Corbusier’s Immeubles-Villas (1922) and SITE’s Highrise of homes (1972).[9] SITE’s Highrise of homes, is a near revival of the 1909 Life Magazine Theorem.[10] In fact, built examples of tower hydroponicums are quite well documented in the canonical text of "The Glass House" by John Hix. Images of the vertical farms at the School of Gardeners in Langenlois, Austria, and the glass tower at the Vienna International Horticulture Exhibition (1964) clearly show that vertical farms existed more than 40 years prior to contemporary discourse on the subject.[1] Although architectural precedents remain valuable, the technological precedents that make vertical farming possible can be traced back to horticultural history through the development of greenhouse and hydroponic technology. Early building types or Hydroponicums were developed, integrating hydroponic technology into building systems. These horticultural building systems evolved from greenhouse technology, and paved the way for the modern concept of the vertical farm. The British Interplanetary Society developed a hydroponicum for lunar conditions and other building prototypes were developed during the early days of space exploration. During this era of expansion and experimentation, the first Tower Hydroponic Units were developed in Armenia.[11]

The Armenian tower hydroponicums are the first built examples of a vertical farm, and is documented in Sholto Douglas' seminal text "Hydroponics: The Bengal System" first published in 1951 with data from the then-East Pakistan, today's Bangladesh, and the Indian state of West Bengal.[5] Contemporary notions of vertical farming are predated by this early technology by more than 50 years.[12] Contemporary precursors that have been published, or built, are Ken Yeang’s Bioclimatic Skyscraper (Menara Mesiniaga, built 1992); MVRDV’s PigCity, 2000; MVRDV's Meta City/ Datatown (1998–2000); Pich-Aguilera’s Garden Towers (2001).[9]

Ken Yeang is perhaps the most widely known architects that has promoted the idea of the 'mixed-use' Bioclimatic Skyscraper which combines living units and opportunities for food production.[13]

Early prototypes of vertical farms, or "Tower Hydroponicums" existed in Armenia prior to 1951[14] during an era of hydroponic and horticultural building system research fueled by space exploration and a transatlantic technology race.

The latest version of these very idea is Dickson Despommier's "The Vertical Farm".

Dickson Despommier, a professor of environmental health sciences and microbiology at Columbia University in New York City, modernized the idea of vertical farming in 1999 with graduate students in a medical ecology class. Although much of Despommier's suggestions have been challenged and strongly criticized from an environmental science and engineering point of view, the idea's popularization in recent years has been largely the result of Despommier's assertion that food production can be transformed.

Despommier had originally challenged his class to feed the population of Manhattan (About 2,000,000 people) using 13 acres (5.3 ha) of usable rooftop gardens. The class calculated that, by using rooftop gardening methods, only 2 percent would be fed. Unsatisfied with the results, Despommier made an off-the-cuff suggestion of growing plants indoors, vertically. The idea sparked the students' interests and gained major momentum. By 2001 the first outline of a vertical farm was introduced and today scientists, architects, and investors worldwide are working together to make the concept of vertical farming a reality. In an interview with Miller-McCune.com, Despommier described how vertical farms would function:


Architectural designs have been produced by Chris Jacobs and Andrew Kranis from Columbia University and Gordon Graff[16][17] from the University of Waterloo's School of Architecture in Cambridge, ON. Together with Graff, and after disagreeing with Despommier's technical assumptions regarding energy and water balances in 2011, Tahbit Chowdhury and a multidisciplinary team from Waterloo's Dept. of Environmental Engineering and Dept. of Systems Design Engineering augmented the concepts with a focus on low-energy economically-intensive protein-production. Along with Chowdhury, others who have disagreed with Despommier's approach include Pierre Desrochers of the University of Toronto and Dennis T. Avery of the Center for Global Food Issues, affiliated with the Hudson Institute.

Chowdhury and Graff applied advanced industrial engineering design philosophies to modernize current greenhouse technology as it pertains to hydroponics and aeroponics. The results of the Waterloo team's work showed that there is sufficient technical grounds to begin implementing Despommier's ideas for skyscrapers. However, Chowdhury and Graff showed that the designs will be dramatically different from what Despommier envisioned at Columbia.

Mass media attention began with an article written in New York magazine. Since 2007, articles have appeared in The New York Times,[18] U.S. News & World Report,[19] Popular Science,[20] Scientific American[21] and Maxim, among others, as well as radio and television features.

As of 2012, Vertical Harvest is working on raising funds for an urban, small-scale vertical farm in Jackson Hole, Wyoming.[22]

Advantages

Several potential advantages of vertical farming have been discussed by Despommier.[23] Many of these benefits are obtained from scaling up hydroponic or aeroponic growing methods.

Preparation for the future

It is estimated that by the year 2050, close to 80% of the world’s population will live in urban areas and the total population of the world will increase by 3 billion people. A very large amount of land may be required depending on the change in yield per hectare. Scientists are concerned that this large amount of required farmland will not be available and that severe damage to the earth will be caused by the added farmland. Vertical farms, if designed properly, may eliminate the need to create additional farmland and help create a cleaner environment.[24][25][26]

Increased crop production

Unlike traditional farming in non-tropical areas, indoor farming can produce crops year-round. All-season farming multiplies the productivity of the farmed surface by a factor of 4 to 6 depending on the crop. With some crops, such as strawberries, the factor may be as high as 30.[27][28]

Furthermore, as the crops would be sold in the same infrastructures in which they are grown, they will not need to be transported between production and sale, resulting in less spoilage, infestation, and energy required than conventional farming encounters. Research has shown that 30% of harvested crops are wasted due to spoilage and infestation, though this number is much lower in developed nations.[21]

Despommier suggests that, if dwarf versions of certain crops are used (e.g. dwarf wheat developed by NASA, which is smaller in size but richer in nutrients[29]), year-round crops, and "stacker" plant holders are accounted for, a 30-story building with a base of a building block (5 acres (20,000 m2)) would yield a yearly crop analogous to that of 2,400 acres (9,700,000 m2) of traditional farming.[21]

Protection from weather-related problems

Crops grown in traditional outdoor farming suffer from the often suboptimal, and sometimes extreme, nature of geological and meteorological events such as undesirable temperatures or rainfall amounts, monsoons, hailstorms, tornadoes, flooding, wildfires, and severe droughts.[23] The protection of crops from weather is increasingly important as global climate change occurs. “Three recent floods (in 1993, 2007 and 2008) cost the United States billions of dollars in lost crops, with even more devastating losses in topsoil. Changes in rain patterns and temperature could diminish India’s agricultural output by 30 percent by the end of the century.”[30]

Because vertical plant farming provides a controlled environment, the productivity of vertical farms would be mostly independent of weather and protected from extreme weather events. Although the controlled environment of vertical farming negates most of these factors, earthquakes and tornadoes still pose threats to the proposed infrastructure, although this again depends on the location of the vertical farms.

Conservation of resources

Each unit of area in a vertical farm could allow up to 20 units of area of outdoor farmland to return to its natural state,[31][32] and recover farmlands due to development from original flat farmlands.

Vertical farming would reduce the need for new farmland due to overpopulation, thus saving many natural resources,[21] currently threatened by deforestation or pollution. Deforestation and desertification caused by agricultural encroachment on natural biomes would be avoided. Because vertical farming lets crops be grown closer to consumers, it would substantially reduce the amount of fossil fuels currently used to transport and refrigerate farm produce. Producing food indoors reduces or eliminates conventional plowing, planting, and harvesting by farm machinery, also powered by fossil fuels. Burning less fossil fuel would reduce air pollution and the carbon dioxide emissions that cause climate change, as well as create healthier environments for humans and animals alike.

Organic crops

The controlled growing environment reduces the need for pesticides, namely herbicides and fungicides. Advocates claim that producing organic crops in vertical farms is practical and the most likely production

Halting mass extinction

Withdrawing human activity from large areas of the Earth's land surface may be necessary to slow and eventually halt the current anthropogenic mass extinction of land animals.

Traditional agriculture is highly disruptive to wild animal populations that live in and around farmland and some argue it becomes unethical when there is a viable alternative. One study showed that wood mouse populations dropped from 25 per hectare to 5 per hectare after harvest, estimating 10 animals killed per hectare each year with conventional farming.[33] In comparison, vertical farming would cause very little harm to wildlife.[33]

Impact on human health

Traditional farming is a hazardous occupation with particular risks that often take their toll on the health of human laborers. Such risks include: exposure to infectious diseases such as malaria and schistosomes, exposure to toxic chemicals commonly used as pesticides and fungicides, confrontations with dangerous wildlife such as venomous snakes, and the severe injuries that can occur when using large industrial farming equipment. Whereas the traditional farming environment inevitably contains these risks (particularly in the farming practice known as “slash and burn”), vertical farming – because the environment is strictly controlled and predictable – reduces some of these dangers.[23] Currently, the American food system makes fast, unhealthy food cheap while fresh produce is less available and more expensive, encouraging poor eating habits. These poor eating habits lead to health problems such as obesity, heart disease, and diabetes.

Urban growth

Vertical farming, used in conjunction with other technologies and socioeconomic practices, could allow cities to expand while remaining largely self-sufficient food wise. This would allow for large urban centers that could grow without destroying considerably larger areas of forest to provide food for their people. Moreover, the industry of vertical farming will provide employment to these expanding urban centers. This may help displace the unemployment created by the dismantling of traditional farms, as more farm laborers move to cities in search of work.[23] It is highly unlikely that traditional farms will become obsolete, as there are many crops that are not suited for vertical farming, and the production costs are currently much lower.[citation needed]

Energy production

Vertical farms could exploit methane digesters to generate a small portion of its own electrical needs. Methane digesters could be built on site to transform the organic waste generated at the farm into biogas which is generally composed of 65% methane along with other gases. This biogas could then be burned to generate electricity for the greenhouse.[34]

Technologies and devices

Vertical farming relies on the use of various physical methods to become effective. Combining these technologies and devices in an integrated whole is necessary to make Vertical Farming a reality. Various methods are proposed and under research. The most common technologies suggested are:

Plans

Despommier argues that the technology to construct vertical farms currently exists. He also states that the system can be profitable and effective, a claim evidenced by some preliminary research posted on the project's website.
Developers and local governments in the following cities have expressed serious interest in establishing a vertical farm: Incheon (South Korea), Abu Dhabi (United Arab Emirates), and Dongtan (China),[36] New York City, Portland, Ore., Los Angeles, Las Vegas,[37] Seattle, Surrey, B.C., Toronto, Paris, Bangalore, Dubai, Shanghai and Beijing. The Illinois Institute of Technology is now crafting a detailed plan for Chicago. It is suggested that prototype versions of vertical farms should be created first, possibly at large universities interested in the research of vertical farms, in order to prevent failures such as the Biosphere 2 project in Oracle, Arizona.[38]

In 2009, the world's first pilot production system was installed at Paignton Zoo Environmental Park in the United Kingdom. The project showcased a technological solution for vertical farming and provided a physical base to conduct research into sustainable urban food production. The produce is used to feed the zoos animals while the project enables evaluation of the systems and provides an educational resource to advocate for change in unsustainable land use practices that impact upon global biodiversity and ecosystem services,[39]

In 2010, the Green Zionist Alliance proposed a resolution at the 36th World Zionist Congress calling on Keren Kayemet L'Yisrael (Jewish National Fund in Israel) to develop vertical farms in Israel.[40]

In 2012, the world's first commercial vertical farm was opened in Singapore, developed by Sky Greens Farms, and is three stories high.[41][42] They currently have over 100 towers that stand at nine meters tall.[43]

Problems

Economics

Opponents question the potential profitability of vertical farming.[44] A detailed cost analysis of start-up costs, operation costs, and revenue has not been done. The extra cost of lighting, heating, and powering the vertical farm may negate any of the cost benefits received by the decrease in transportation expenses.[45] The economic and environmental benefits of vertical farming rest partly on the concept of minimizing food miles, the distance that food travels from farm to consumer.[original research?] However, a recent analysis suggests that transportation is only a minor contributor to the economic and environmental costs of supplying food to urban populations. The author of the report, University of Toronto professor Pierre Desrochers, concluded that "food miles are, at best, a marketing fad."[46]

Similarly, if the power needs of the vertical farm are met by fossil fuels, the environmental effect may be a net loss;[47] even building low-carbon capacity to power the farms may not make as much sense as simply leaving the traditional farms in place, and burning less coal.

The initial building costs will be easily over $100 million, for a 60 hectare vertical farm.[48] Office occupancy costs can be very high in major cities, with cities such as Tokyo, Moscow, Mumbai, Dubai, Milan, Zurich, and Sao Paulo ranging from $1850 to $880 per square meter, respectively.[49]

Energy use

During the growing season, the sun shines on a vertical surface at an extreme angle such that much less light is available to crops than when they are planted on flat land. Therefore, supplemental light, would be required in order to obtain economically viable yields. Bruce Bugbee, a crop physiologist at Utah State University, believes that the power demands of vertical farming will be too expensive and uncompetitive with traditional farms using only free natural light.[6][50] The environmental writer George Monbiot calculated that the cost of providing enough supplementary light to grow the grain for a single loaf would be about $15.[51] An article in the Economist argued that "even though crops growing in a glass skyscraper will get some natural sunlight during the day, it won't be enough" and "the cost of powering artificial lights will make indoor farming prohibitively expensive".[52]

As "The Vertical Farm" proposes a controlled environment, heating and cooling costs will be at least as costly as any other tower. But there also remains the issue of complicated, if not more expensive, plumbing and elevator systems to distribute food and water throughout. Even throughout the northern continental United States, while heating with relatively cheap fossil fuels, the heating cost can be over $200,000/hectare.[53]

To address this problem, The Plant in Chicago is building an anaerobic digester into the building. This will allow the farm to operate off the energy grid. Moreover, the anaerobic digester will be recycling waste from nearby businesses that would otherwise go into landfills.[54]

Pollution

Depending on the method of electricity generation used, regular greenhouse produce can create more greenhouse gases than field produce,[55] largely due to higher energy use per kilogram of produce. With vertical farms requiring much greater energy per kilogram of produce, mainly through increased lighting, than regular greenhouses, the amount of pollution created will be much higher than that from field produce. The amount of pollution produced is dependent on how the energy used in the process is generated.

As plants acquire nearly all their carbon from the atmosphere, greenhouse growers commonly supplement CO2 levels to 3–4 times the rate normally found in the atmosphere. This increase in CO2, which has been shown to increase photosynthesis rates by 50%, contributes to the higher yields expected in vertical farming.[56] It is not uncommon to find greenhouses burning fossil fuels purely for this purpose, as other CO2 sources, like from furnaces, contain pollutants such as sulphur dioxide and ethylene which significantly damage plants.[56] This means a vertical farm will require a CO2 source, most likely from combustion, even if the rest of the farm is powered by 'green' energy. Also, through necessary ventilation, much CO2 will be leaked into the city's atmosphere.

Greenhouse growers commonly exploit photoperiodism in plants to control whether the plants are in a vegetative or reproductive stage. As part of this control, growers will have the lights on past sunset and before sunrise or periodically throughout the night. Single story greenhouses are already a nuisance to neighbours because of light pollution, a 30 story vertical farm in a densely populated area will surely face problems because of its light pollution.[57]

Hydroponics greenhouses regularly change the water, meaning there is a large quantity of water containing fertilizers and pesticides that must be disposed of. While solutions are currently being worked on, the most common method of simply spreading the mixture over a sufficient area of neighbouring farmland or wetlands would be more difficult for an urban vertical farm.[58]

Myth busting: Are synthetic pesticides, used with some GMOs, more dangerous than natural ones?

| March 20, 2015 |
 
Original link:  http://geneticliteracyproject.org/2015/03/20/myth-busting-are-synthetic-pesticides-used-with-some-gmos-more-dangerous-than-natural-ones/
 
3-pesticides-010714

Plants and animals have evolved mechanisms to fight against their predators. Some of them are mechanical, like thorns or spines on a puffer fish, but some are chemical in nature. As a result, our food is full of natural pesticides and toxins.

It’s important not to let the term “pesticide” confuse you. We’re used to thinking of pesticides as the stuff we spray on plants or around our house to get rid of bugs. But the term “pesticide” is much broader than that: it’s any substance that gets rid of or repels a pest. The term encompasses many different -cides: herbicides (to get rid of plants), fungicide (to get rid of fungi), insecticides (to get rid of insects), etc. A natural pesticide can be toxic to the pest that its evolved to target, so I use the term “toxin” in this piece as well.

One of the more common natural pesticides that we ingest is solanine. This compound is present in different parts of the potato plant, which is a member of the nightshade family of plants. This paper from Lancet published in 1979 states that potatoes have small amounts of solanine in the peel and none in the flesh, but when the potato starts to green or sprout (i.e. the ‘eyes’ start growing), then the amount increases significantly. Solanine levels also increase in potatoes when they’re diseased, such as with the blight, and is probably part of the plant’s defense system.

The Lancet paper documents several cases of solanine poisoning from eating potatoes, but they were not typical cases (for example, individuals may have been malnourished). Current guidelines from the NIH state that eating solanine in very small amounts can be toxic and recommends throwing out spoiled potatoes or those that are green below the skin.

But solanine is just the tip of the iceberg when it comes to natural pesticides. Here are a few others:
The list is very long. In 1990, Bruce Ames published a paper entitled “Dietary pesticides (99.99 percent all natural)”. In it, he and his coauthors outline that we eat an estimated 1.5 grams of natural pesticides a day, which is about 10,000 times more” than the amount of synthetic pesticide residues we consume. This amount would be significantly higher in vegetarians and vegans. As an example, the authors provide a list of 49 different pesticides found in cabbage alone. The concentrations of these pesticides are in parts per thousand or parts per million, whereas the amount of synthetic pesticides we find on our food are in the parts per billion range.

Despite the vast amount of toxins in our diet, only a handful of these have ever been tested (note that the paper was written in 1990, but the point still stands). Of all the chemicals tested for chronic cancer tests in animals, only 5 percent have been natural pesticides and half of these were carcinogenic.

Think about that for a moment. While there’s an uproar about parts per billion amounts of synthetic pesticide residues on our food, there are more concentrated compounds in fruits and veggies actually known to cause cancer. In addition, some of the more commonly used pesticides in agriculture have mechanisms of action that are specific to the pests their targeting, making them far safer than many natural pesticides, which is on reason why they’ve gained popularity in the past half century.

For example, glyphosate, which is often paired with herbicide resistant GMO crops, shuts down a biochemical pathway in plants that simply doesn’t exist in mammals. In contrast many of the natural toxins found in plants can be harmful to mammals. Yet we’re far more concerned about glyphosate residues than we are about natural formaldehyde in pears. Check out the graphic at the end of this article that highlights this point: we fear anything that’s synthetic because we assume that it’s “bad for us”, but there’s plenty of stuff that’s “natural” that can be harmful at a certain dose.

I’ve read a lot of arguments from anti-GMO groups about how transgenic crops that have the Bt-toxin will kill us all, because it’s a registered pesticide with the EPA. “Do you want to eat something that’s a pesticide?” is what I’ve read time and time again. But as I’ve noted above there are plenty of “natural chemicals” that are registered pesticides, but no one seems to be freaking out about basil and mustard seeds.

The final point that I want to highlight is that the cross-breeding and “natural” hybridizations we’ve been doing for centuries has undoubtedly impacted the levels of some of these natural pesticides by unknown amounts because no one examines them. Going back to solanine, in the ’60s a new strain of potato known as the “Lenape” potato was developed through “natural” methods, but was found to be toxic due to increased levels of solanine: it had ~2-4x the amount of solanine found in other potato varieties and it had to be pulled off the shelves. But no one seems to be making noise about “unintended consequences” of traditional crossbreeding.

This should be a nuanced discussion. Just because an agricultural pesticide has a benign toxic profile does not mean that we shouldn’t try to minimize its use when possible. Just because a transgene for a natural pesticide added to a crop has no impact on mammals does not mean that we should not study its impact on the environment. Yet we shouldn’t consider our food to be “unsafe” or shun traditional farming practices because of the use of synthetic pesticides.  Remember: it’s all in the dose.

7x6q5yr9-1400349145

























Layla Katiraee, contributor to the Genetic Literacy Project, holds a PhD in molecular genetics from the University of Toronto and is a senior scientist in product development at a genetic biotech company in California. All opinions and views expressed are her own. Her twitter handle is: @BioChicaGMO

Montessori education

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Montessori_education Traditional Mon...