Search This Blog

Monday, September 3, 2018

Overexploitation

From Wikipedia, the free encyclopedia
 
Atlantic cod stocks were severely overexploited in the 1970s and 1980s, leading to their abrupt collapse in 1992.
 
Overexploitation, also called overharvesting, refers to harvesting a renewable resource to the point of diminishing returns. Continued overexploitation can lead to the destruction of the resource. The term applies to natural resources such as: wild medicinal plants, grazing pastures, game animals, fish stocks, forests, and water aquifers.

In ecology, overexploitation describes one of the five main activities threatening global biodiversity. Ecologists use the term to describe populations that are harvested at a rate that is unsustainable, given their natural rates of mortality and capacities for reproduction. This can result in extinction at the population level and even extinction of whole species. In conservation biology the term is usually used in the context of human economic activity that involves the taking of biological resources, or organisms, in larger numbers than their populations can withstand. The term is also used and defined somewhat differently in fisheries, hydrology and natural resource management.

Overexploitation can lead to resource destruction, including extinctions. However it is also possible for overexploitation to be sustainable, as discussed below in the section on fisheries. In the context of fishing, the term overfishing can be used instead of overexploitation, as can overgrazing in stock management, overlogging in forest management, overdrafting in aquifer management, and endangered species in species monitoring. Overexploitation is not an activity limited to humans. Introduced predators and herbivores, for example, can overexploit native flora and fauna.

History

When the giant flightless birds called moa were overexploited to the point of extinction, the giant Haast's eagle that preyed on them also became extinct.

Concern about overexploitation is relatively recent, though overexploitation itself is not a new phenomenon. It has been observed for millennia. For example, ceremonial cloaks worn by the Hawaiian kings were made from the mamo bird; a single cloak used the feathers of 70,000 birds of this now-extinct species. The dodo, a flightless bird from Mauritius, is another well-known example of overexploitation. As with many island species, it was naive about certain predators, allowing humans to approach and kill it with ease.

From the earliest of times, hunting has been an important human activity as a means of survival. There is a whole history of overexploitation in the form of overhunting. The overkill hypothesis (Quaternary extinction events) explains why the megafaunal extinctions occurred within a relatively short period of time. This can be traced with human migration. The most convincing evidence of this theory is that 80% of the North American large mammal species disappeared within 1000 years of the arrival of humans on the western hemisphere continents. The fastest ever recorded extinction of megafauna occurred in New Zealand, where by 1500 AD, just 200 years after settling the islands, ten species of the giant moa birds were hunted to extinction by the Māori. A second wave of extinctions occurred later with European settlement.

In more recent times, overexploitation has resulted in the gradual emergence of the concepts of sustainability and sustainable development, which has built on other concepts, such as sustainable yield, eco-development and deep ecology.

Overview

Overexploitation doesn't necessarily lead to the destruction of the resource, nor is it necessarily unsustainable. However, depleting the numbers or amount of the resource can change its quality. For example, footstool palm is a wild palm tree found in Southeast Asia. Its leaves are used for thatching and food wrapping, and overharvesting has resulted in its leaf size becoming smaller.

Tragedy of the commons

Cows on Selsley Common. The tragedy of the commons is a useful parable for understanding how overexploitation can occur.

The tragedy of the commons refers to a dilemma described in an article by that name written by Garrett Hardin and first published in the journal Science in 1968.

Central to Hardin's essay is an example which is a useful parable for understanding how overexploitation can occur. This example was first sketched in an 1833 pamphlet by William Forster Lloyd, as a hypothetical and simplified situation based on medieval land tenure in Europe, of herders sharing a common on which they are each entitled to let their cows graze. In Hardin's example, it is in each herder's interest to put each succeeding cow he acquires onto the land, even if the carrying capacity of the common is exceeded and it is temporarily or permanently damaged for all as a result. The herder receives all of the benefits from an additional cow, while the damage to the common is shared by the entire group. If all herders make this individually rational economic decision, the common will be overexploited or even destroyed to the detriment of all. However, since all herders reach the same rational conclusion, overexploitation in the form of overgrazing occurs, with immediate losses, and the pasture may be degraded to the point where it gives very little return.
"Therein is the tragedy. Each man is locked into a system that compels him to increase his herd without limit—in a world that is limited. Ruin is the destination toward which all men rush, each pursuing his own interest in a society that believes in the freedom of the commons." (Hardin, 1968)
In the course of his essay, Hardin develops the theme, drawing in many examples of latter day commons, such as national parks, the atmosphere, oceans, rivers and fish stocks. The example of fish stocks had led some to call this the "tragedy of the fishers". A major theme running through the essay is the growth of human populations, with the Earth's finite resources being the general common.
The tragedy of the commons has intellectual roots tracing back to Aristotle, who noted that "what is common to the greatest number has the least care bestowed upon it", as well as to Hobbes and his Leviathan. The opposite situation to a tragedy of the commons is sometimes referred to as a tragedy of the anticommons: a situation in which rational individuals, acting separately, collectively waste a given resource by underutilizing it.

The tragedy of the commons can be avoided if it is appropriately regulated. Hardin's use of "commons" has frequently been misunderstood, leading Hardin to later remark that he should have titled his work "The tragedy of the unregulated commons".

Fisheries

The Atlantic bluefin tuna is currently seriously overexploited. Scientists say 7,500 tons annually is the sustainable limit, yet the fishing industry continue to harvest 60,000 tons.

In wild fisheries, overexploitation or overfishing occurs when a fish stock has been fished down "below the size that, on average, would support the long-term maximum sustainable yield of the fishery". However, overexploitation can be sustainable.

When a fishery starts harvesting fish from a previously unexploited stock, the biomass of the fish stock will decrease, since harvesting means fish are being removed. For sustainability, the rate at which the fish replenish biomass through reproduction must balance the rate at which the fish are being harvested. If the harvest rate is increased, then the stock biomass will further decrease. At a certain point, the maximum harvest yield that can be sustained will be reached, and further attempts to increase the harvest rate will result in the collapse of the fishery. This point is called the maximum sustainable yield, and in practice, usually occurs when the fishery has been fished down to about 30% of the biomass it had before harvesting started.

It is possible to fish the stock down further to, say, 15% of the pre-harvest biomass, and then adjust the harvest rate so the biomass remains at that level. In this case, the fishery is sustainable, but is now overexploited, because the stock has been run down to the point where the sustainable yield is less than it could be.

Fish stocks are said to "collapse" if their biomass declines by more than 95 percent of their maximum historical biomass. Atlantic cod stocks were severely overexploited in the 1970s and 1980s, leading to their abrupt collapse in 1992. Even though fishing has ceased, the cod stocks have failed to recover. The absence of cod as the apex predator in many areas has led to trophic cascades.

About 25% of world fisheries are now overexploited to the point where their current biomass is less than the level that maximizes their sustainable yield. These depleted fisheries can often recover if fishing pressure is reduced until the stock biomass returns to the optimal biomass. At this point, harvesting can be resumed near the maximum sustainable yield.

The tragedy of the commons can be avoided within the context of fisheries if fishing effort and practices are regulated appropriately by fisheries management. One effective approach may be assigning some measure of ownership in the form of individual transferable quotas (ITQs) to fishermen. In 2008, a large scale study of fisheries that used ITQs, and ones that didn't, provided strong evidence that ITQs help prevent collapses and restore fisheries that appear to be in decline.

Water resources

Overexploitation of groundwater from an aquifer can result in a peak water curve.
 
Water resources, such as lakes and aquifers, are usually renewable resources which naturally recharge (the term fossil water is sometimes used to describe aquifers which don't recharge). Overexploitation occurs if a water resource, such as the Ogallala Aquifer, is mined or extracted at a rate that exceeds the recharge rate, that is, at a rate that exceeds the practical sustained yield. Recharge usually comes from area streams, rivers and lakes. An aquifer which has been overexploited is said to be overdrafted or depleted. Forests enhance the recharge of aquifers in some locales, although generally forests are a major source of aquifer depletion. Depleted aquifers can become polluted with contaminants such as nitrates, or permanently damaged through subsidence or through saline intrusion from the ocean.

This turns much of the world's underground water and lakes into finite resources with peak usage debates similar to oil. These debates usually centre around agriculture and suburban water usage but generation of electricity from nuclear energy or coal and tar sands mining is also water resource intensive. A modified Hubbert curve applies to any resource that can be harvested faster than it can be replaced. Though Hubbert's original analysis did not apply to renewable resources, their overexploitation can result in a Hubbert-like peak. This has led to the concept of peak water.

Forest resources

Clear cutting of old growth forests in Canada.

Forests are overexploited when they are logged at a rate faster than reforestation takes place. Reforestation competes with other land uses such as food production, livestock grazing, and living space for further economic growth. Historically utilization of forest products, including timber and fuel wood, have played a key role in human societies, comparable to the roles of water and cultivable land. Today, developed countries continue to utilize timber for building houses, and wood pulp for paper. In developing countries almost three billion people rely on wood for heating and cooking. Short-term economic gains made by conversion of forest to agriculture, or overexploitation of wood products, typically leads to loss of long-term income and long term biological productivity. West Africa, Madagascar, Southeast Asia and many other regions have experienced lower revenue because of overexploitation and the consequent declining timber harvests.

Biodiversity

The rich diversity of marine life inhabiting coral reefs attracts bioprospectors. Many coral reefs are overexploited; threats include coral mining, cyanide and blast fishing, and overfishing in general.

Overexploitation is one of the main threats to global biodiversity. Other threats include pollution, introduced and invasive species, habitat fragmentation, habitat destruction, uncontrolled hybridization, global warming, ocean acidification and the driver behind many of these, human overpopulation.

One of the key health issues associated with biodiversity is drug discovery and the availability of medicinal resources. A significant proportion of drugs are natural products derived, directly or indirectly, from biological sources. Marine ecosystems are of particular interest in this regard. However unregulated and inappropriate bioprospecting could potentially lead to overexploitation, ecosystem degradation and loss of biodiversity.

Endangered species

It is not just humans that overexploit resources. Overgrazing can be caused by native fauna, as shown in the upper right. However, past human overexploitation (leading to elimination of some predators) may be behind the situation.

Overexploitation threatens one-third of endangered vertebrates, as well as other groups. Excluding edible fish, the illegal trade in wildlife is valued at $10 billion per year. Industries responsible for this include the trade in bushmeat, the trade in Chinese medicine, and the fur trade. The Convention for International Trade in Endangered Species of Wild Fauna and Flora, or CITES was set up in order to control and regulate the trade in endangered animals. It currently protects, to a varying degree, some 33,000 species of animals and plants. It is estimated that a quarter of the endangered vertebrates in the United States of America and half of the endangered mammals is attributed to overexploitation.

All living organisms require resources to survive. Overexploitation of these resources for protracted periods can deplete natural stocks to the point where they are unable to recover within a short time frame. Humans have always harvested food and other resources they have needed to survive. Human populations, historically, were small, and methods of collection limited to small quantities. With an exponential increase in human population, expanding markets and increasing demand, combined with improved access and techniques for capture, are causing the exploitation of many species beyond sustainable levels. In practical terms, if continued, it reduces valuable resources to such low levels that their exploitation is no longer sustainable and can lead to the extinction of a species, in addition to having dramatic, unforeseen effects, on the ecosystem. Overexploitation often occurs rapidly as markets open, utilising previously untapped resources, or locally used species.

The Carolina parakeet was hunted to extinction.

Today, overexploitation and misuse of natural resources is an ever-present threat for species richness. This is more prevalent when looking at island ecology and the species that inhabit them, as islands can be viewed as the world in miniature. Island endemic populations are more prone to extinction from overexploitation, as they often exist at low densities with reduced reproductive rates. A good example of this are island snails, such as the Hawaiian Achatinella and the French Polynesian Partula. Achatinelline snails have 15 species listed as extinct and 24 critically endangered while 60 species of partulidae are considered extinct with 14 listed as critically endangered. The WCMC have attributed over-collecting and very low lifetime fecundity for the extreme vulnerability exhibited among these species.

As another example, when the humble hedgehog was introduced to the Scottish island of Uist, the population greatly expanded and took to consuming and overexploiting shorebird eggs, with drastic consequences for their breeding success. Twelve species of avifauna are affected, with some species numbers being reduced by 39%.

Where there is substantial human migration, civil unrest, or war, controls may no longer exist. With civil unrest, for example in the Congo and Rwanda, firearms have become common and the breakdown of food distribution networks in such countries leaves the resources of the natural environment vulnerable. Animals are even killed as target practice, or simply to spite the government. Populations of large primates, such as gorillas and chimpanzees, ungulates and other mammals, may be reduced by 80% or more by hunting, and certain species may be eliminated altogether. This decline has been called the bushmeat crisis.

Overall, 50 bird species that have become extinct since 1500 (approximately 40% of the total) have been subject to overexploitation, including:
  • Great Auk – the penguin-like bird of the north, was hunted for its feathers, meat, fat and oil.
  • Carolina parakeet – The only parrot species native to the eastern United States, was hunted for crop protection and its feathers.
Other species affected by overexploitation include:
  • The international trade in fur: chinchilla, vicuña, giant otter and numerous cat species
  • Insect collectors: butterflies
  • Horticulturists: New Zealand mistletoe (Trilepidia adamsii), orchids, cacti and many other plant species
  • Shell collectors: Marine molluscs
  • Aquarium hobbyists: tropical fish
  • Chinese medicine: bears, tigers, rhinos, seahorses, Asian black bear and saiga antelope
  • Novelty pets: snakes, parrots, primates and big cats

Cascade effects

Overexploiting sea otters resulted in cascade effects which destroyed kelp forest ecosystems.

Overexploitation of species can result in knock-on or cascade effects. This can particularly apply if, through overexploitation, a habitat loses its apex predator. Because of the loss of the top predator, a dramatic increase in their prey species can occur. In turn, the unchecked prey can then overexploit their own food resources until population numbers dwindle, possibly to the point of extinction.
A classic example of cascade effects occurred with sea otters. Starting before the 17th century and not phased out until 1911, sea otters were hunted aggressively for their exceptionally warm and valuable pelts, which could fetch up to $2500 US. This caused cascade effects through the kelp forest ecosystems along the Pacific Coast of North America.

One of the sea otters’ primary food sources is the sea urchin. When hunters caused sea otter populations to decline, an ecological release of sea urchin populations occurred. The sea urchins then overexploited their main food source, kelp, creating urchin barrens, areas of seabed denuded of kelp, but carpeted with urchins. No longer having food to eat, the sea urchin became locally extinct as well. Also, since kelp forest ecosystems are homes to many other species, the loss of the kelp caused other cascade effects of secondary extinctions.

In 1911, when only one small group of 32 sea otters survived in a remote cove, an international treaty was signed to prevent further exploitation of the sea otters. Under heavy protection, the otters multiplied and repopulated the depleted areas, which slowly recovered. More recently, with declining numbers of fish stocks, again due to overexploitation, killer whales have experienced a food shortage and have been observed feeding on sea otters, again reducing their numbers.

Renewable resource

From Wikipedia, the free encyclopedia
A renewable resource is a natural resource which replenishes to overcome resource depletion caused by usage and consumption, either through biological reproduction or other naturally recurring processes in a finite amount of time in a human time scale. Renewable resources are a part of Earth's natural environment and the largest components of its ecosphere. A positive life cycle assessment is a key indicator of a resource's sustainability.

Definitions of renewable resources may also include agricultural production, as in sustainable agriculture and to an extent water resources. In 1962, Paul Alfred Weiss defined Renewable Resources as: "The total range of living organisms providing man with food, fibres, etc...". Another type of renewable resources is renewable energy resources. Common sources of renewable energy include solar, geothermal and wind power, which are all categorised as renewable resources.

Global vegetation
 
oceans and seas often act as renewable resources
 
Sawmill near Fügen, Zillertal, Austria

Air, food and water

Water resources

Water can be considered a renewable material when carefully controlled usage, treatment, and release are followed. If not, it would become a non-renewable resource at that location. For example, groundwater is usually removed from an aquifer at a rate much greater than its very slow natural recharge, and so groundwater is considered non-renewable. Removal of water from the pore spaces may cause permanent compaction (subsidence) that cannot be renewed. 97.5% of the water on the Earth is salt water, and 3% is fresh water; slightly over two thirds of this is frozen in glaciers and polar ice caps. The remaining unfrozen freshwater is found mainly as groundwater, with only a small fraction (0.008%) present above ground or in the air.

Water pollution is one of the main concerns regarding water resources. It is estimated that 22% of worldwide water is used in industry. Major industrial users include hydroelectric dams, thermoelectric power plants (which use water for cooling), ore and oil refineries (which use water in chemical processes) and manufacturing plants (which use water as a solvent).

Desalination of seawater is considered a renewable source of water, although reducing its dependence on fossil fuel energy is needed for it to be fully renewable.

Non agricultural food

Alaska wild "berries" from the Innoko National Wildlife Refuge - Renewable Resources
 
Food is any substance consumed to provide nutritional support for the body. Most food has its origin in renewable resources. Food is obtained directly from plants and animals.

Hunting may not be the first source of meat in the modernised world, but it is still an important and essential source for many rural and remote groups. It is also the sole source of feeding for wild carnivores.

Sustainable agriculture

The phrase sustainable agriculture was coined by Australian agricultural scientist Gordon McClymont. It has been defined as "an integrated system of plant and animal production practices having a site-specific application that will last over the long term". Expansion of agricultural land reduces biodiversity and contributes to deforestation. The Food and Agriculture Organisation of the United Nations estimates that in coming decades, cropland will continue to be lost to industrial and urban development, along with reclamation of wetlands, and conversion of forest to cultivation, resulting in the loss of biodiversity and increased soil erosion.

Polyculture practices in Andhra Pradesh

Although air and sunlight are available everywhere on Earth, crops also depend on soil nutrients and the availability of water. Monoculture is a method of growing only one crop at a time in a given field, which can damage land and cause it to become either unusable or suffer from reduced yields. Monoculture can also cause the build-up of pathogens and pests that target one specific species. The Great Irish Famine (1845–1849) is a well-known example of the dangers of monoculture.

Crop rotation and long-term crop rotations confer the replenishment of nitrogen through the use of green manure in sequence with cereals and other crops, and can improve soil structure and fertility by alternating deep-rooted and shallow-rooted plants. Other methods to combat lost soil nutrients are returning to natural cycles that annually flood cultivated lands (returning lost nutrients indefinitely) such as the Flooding of the Nile, the long-term use of biochar, and use of crop and livestock landraces that are adapted to less than ideal conditions such as pests, drought, or lack of nutrients.

Agricultural practices are the single greatest contributor to the global increase in soil erosion rates. It is estimated that "more than a thousand million tonnes of southern Africa's soil are eroded every year. Experts predict that crop yields will be halved within thirty to fifty years if erosion continues at present rates." The Dust Bowl phenomenon in the 1930s was caused by severe drought combined with farming methods that did not include crop rotation, fallow fields, cover crops, soil terracing and wind-breaking trees to prevent wind erosion.

The tillage of agricultural lands is one of the primary contributing factors to erosion, due to mechanised agricultural equipment that allows for deep plowing, which severely increases the amount of soil that is available for transport by water erosion. The phenomenon called peak soil describes how large-scale factory farming techniques are affecting humanity's ability to grow food in the future. Without efforts to improve soil management practices, the availability of arable soil may become increasingly problematic.

Methods to combat erosion include no-till farming, using a keyline design, growing wind breaks to hold the soil, and widespread use of compost. Fertilizers and pesticides can also have an effect of soil erosion, which can contribute to soil salinity and prevent other species from growing. Phosphate is a primary component in the chemical fertiliser applied most commonly in modern agricultural production. However, scientists estimate that rock phosphate reserves will be depleted in 50–100 years and that Peak Phosphate will occur in about 2030.

Industrial processing and logistics also have an effect on agriculture's sustainability. The way and locations crops are sold requires energy for transportation, as well as the energy cost for materials, labour, and transport. Food sold at a local location, such a farmers' market, have reduced energy overheads.

Illegal slash and burn practice in Madagascar, 2010

Air

Air is a renewable resource. All living organisms need oxygen, nitrogen (directly or indirectly), carbon (directly or indirectly) and many other gases in small quantities for their survival.

Non-food resources

Douglas fir forest created in 1850, Meymac (Corrèze), France

An important renewable resource is wood provided by means of forestry, which has been used for construction, housing and firewood since ancient times. Plants provide the main sources for renewable resources, the main distinction is made between energy crops and non-food crops. A large variety of lubricants, industrially used vegetable oils, textiles and fibre made e.g. of cotton, copra or hemp, paper derived from wood, rags or grasses, bioplastic are based on plant renewable resources. A large variety of chemical based products like latex, ethanol, resin, sugar and starch can be provided with plant renewables. Animal based renewables include fur, leather, technical fat and lubricants and further derived products, as e.g. animal glue, tendons, casings or in historical times ambra and baleen provided by whaling.

With regard to pharmacy ingredients and legal and illegal drugs, plants are important sources, however e.g. venom of snakes, frogs and insects has been a valuable renewable source of pharmacological ingredients. Before GMO production set in, insulin and important hormones were based on animal sources. Feathers, an important byproduct of poultry farming for food, is still being used as filler and as base for keratin in general. Same applies for the chitin produced in farming Crustaceans which may be used as base of chitosan. The most important part of the human body used for non-medical purposes is human hair as for artificial hair integrations, which is being traded worldwide.

Historical role

An adult and sub-adult Minke whale are dragged aboard the Nisshin Maru, a Japanese whaling vessel
 
Hemp insulation, a renewable resource used as building material

Historically, renewable resources like firewood, latex, guano, charcoal, wood ash, plant colors as indigo, and whale products have been crucial for human needs but failed to supply demand in the beginning of the industrial era. Early modern times faced large problems with overuse of renewable resources as in deforestation, overgrazing or overfishing.

Besides fresh meat and milk, which is as a food item not topic of this section, livestock farmers and artisans used further animal ingredients as tendons, horn, bones, bladders. Complex technical constructions as the composite bow were based on combination of animal and plant based materials. The current distribution conflict between biofuel and food production is being described as Food vs. fuel. Conflicts between food needs and usage, as supposed by fief obligations were in so far common in historical times as well. However, a significant percentage of (middle European) farmers yields went into livestock, which provides as well organic fertiliser. Oxen and horses were important for transportation purposes, drove engines as e.g. in treadmills.

Other regions solved the transportation problem with terracing, urban and garden agriculture. Further conflicts as between forestry and herding, or (sheep) herders and cattle farmers led to various solutions. Some confined wool production and sheep to large state and nobility domains or outsourced to professional shepherds with larger wandering herds.

The British Agricultural Revolution was mainly based on a new system of crop rotation, the four-field rotation. British agriculturist Charles Townshend recognised the invention in Dutch Waasland and popularised it in the 18th century UK, George Washington Carver in the USA. The system used wheat, turnips and barley and introduced as well clover. Clover is able to fix nitrogen from air, a practically non exhaustive renewable resource, into fertilizing compounds to the soil and allowed to increase yields by large. Farmers opened up a fodder crop and grazing crop. Thus livestock could to be bred year-round and winter culling was avoided. The amount of manure rose and allowed more crops but to refrain from wood pasture.

Early modern times and the 19th century saw the previous resource base partially replaced respectively supplemented by large scale chemical synthesis and by the use of fossil and mineral resources respectively. Besides the still central role of wood, there is a sort of renaissance of renewable products based on modern agriculture, genetic research and extraction technology. Besides fears about an upcoming global shortage of fossil fuels, local shortages due to boycotts, war and blockades or just transportation problems in remote regions have contributed to different methods of replacing or substituting fossil resources based on renewables.

Challenges

The use of certain basically renewable products as in TCM endangers various species. Just the black market in rhinoceros horn reduced the world's rhino population by more than 90 percent over the past 40 years.

Renewables used for self sufficiency

In vitro-culture of Vitis (grapevine), Geisenheim Grape Breeding Institute

The success of the German chemical industry till World War I was based on the replacement of colonial products. The predecessors of IG Farben dominated the world market for synthetic dyes at the beginning of the 20th century and had an important role in artificial pharmaceuticals, photographic film, agricultural chemicals and electrochemicals.

However the former Plant breeding research institutes took a different approach. After the loss of the German colonial empire, important players in the field as Erwin Baur and Konrad Meyer switched to using local crops as base for economic autarky. Meyer as a key agricultural scientist and spatial planner of the Nazi era managed and lead Deutsche Forschungsgemeinschaft resources and focused about a third of the complete research grants in Nazi Germany on agricultural and genetic research and especially on resources needed in case of a further German war effort. A wide array of agrarian research institutes still existing today and having importance in the field was founded or enlarged in the time.

There were some major failures as trying to e.g. grow frost resistant olive species, but some success in the case of hemp, flax, rapeseed, which are still of current importance. During World War 2, German scientists tried to use Russian Taraxacum (dandelion) species to manufacture natural rubber. Rubber dandelions are still of interest, as scientists in the Fraunhofer Institute for Molecular Biology and Applied Ecology (IME) announced 2013 to have developed a cultivar that is suitable for commercial production of natural rubber.

Legal situation and subsidies

Several legal and economic means have been used to enhance the market share of renewables. The UK uses Non-Fossil Fuel Obligations (NFFO), a collection of orders requiring the electricity Distribution Network Operators in England and Wales to purchase electricity from the nuclear power and renewable energy sectors. Similar mechanisms operate in Scotland (the Scottish Renewable Orders under the Scottish Renewables Obligation) and Northern Ireland (the Northern Ireland Non-Fossil Fuel Obligation). In the USA, Renewable Energy Certificates (RECs), use a similar approach. German Energiewende is using fed-in tariffs. An unexpected outcome of the subsidies was the quick increase of pellet byfiring in conventional fossil fuel plants (compare Tilbury power stations) and cement works, making wood respectively biomass accounting for about half of Europe’s renewable-energy consumption.

Examples of industrial use

Biorenewable chemicals

Biorenewable chemicals are chemicals created by biological organisms that provide feedstocks for the chemical industry. Biorenewable chemicals can provide solar-energy-powered substitutes for the petroleum-based carbon feedstocks that currently supply the chemical industry. The tremendous diversity of enzymes in biological organisms, and the potential for synthetic biology to alter these enzymes to create yet new chemical functionalities, can drive the chemical industry. A major platform for creation of new chemicals is the polyketide biosynthetic pathway, which generates chemicals containing repeated alkyl chain units with potential for a wide variety of functional groups at the different carbon atoms.

Bioplastics

A packaging blister made from cellulose acetate, a bioplastic

Bioplastics are a form of plastics derived from renewable biomass sources, such as vegetable fats and oils, lignin, corn starch, pea starch or microbiota. The most common form of bioplastic is thermoplastic starch. Other forms include Cellulose bioplastics, biopolyester, Polylactic acid, and bio-derived polyethylene.

The production and use of bioplastics is generally regarded as a more sustainable activity when compared to plastic production from petroleum (petroplastic); however, manufacturing of bioplastic materials is often still reliant upon petroleum as an energy and materials source. Because of the fragmentation in the market and ambiguous definitions it is difficult to describe the total market size for bioplastics, but the global production capacity is estimated at 327,000 tonnes. In contrast, global consumption of all flexible packaging is estimated at around 12.3 million tonnes.

Bioasphalt

Bioasphalt is an asphalt alternative made from non-petroleum based renewable resources. Manufacturing sources of bioasphalt include sugar, molasses and rice, corn and potato starches, and vegetable oil based waste. Asphalt made with vegetable oil based binders was patented by Colas SA in France in 2004.

Renewable energy

Renewable energy refers to the provision of energy via renewable resources which are naturally replenished fast enough as being used. It includes e.g. sunlight, wind, biomass, rain, tides, waves and geothermal heat. Renewable energy may replace or enhance fossil energy supply various distinct areas: electricity generation, hot water/space heating, motor fuels, and rural (off-grid) energy services.

Biomass

A sugarcane plantation in Brazil (State of São Paulo). Cane is used for biomass energy.

Biomass is referring to biological material from living, or recently living organisms, most often referring to plants or plant-derived materials.

Sustainable harvesting and use of renewable resources (i.e., maintaining a positive renewal rate) can reduce air pollution, soil contamination, habitat destruction and land degradation. Biomass energy is derived from six distinct energy sources: garbage, wood, plants, waste, landfill gases, and alcohol fuels. Historically, humans have harnessed biomass-derived energy since the advent of burning wood to make fire, and wood remains the largest biomass energy source today.

However, low tech use of biomass, which still amounts for more than 10% of world energy needs may induce indoor air pollution in developing nations and results in between 1.5 million and 2 million deaths in 2000.

The biomass used for electricity generation varies by region. Forest by-products, such as wood residues, are common in the United States. Agricultural waste is common in Mauritius (sugar cane residue) and Southeast Asia (rice husks). Animal husbandry residues, such as poultry litter, are common in the UK. The biomass power generating industry in the United States, which consists of approximately 11,000 MW of summer operating capacity actively supplying power to the grid, produces about 1.4 percent of the U.S. electricity supply.

Biofuel

Brazil has bioethanol made from sugarcane available throughout the country. Shown a typical Petrobras gas station at São Paulo with dual fuel service, marked A for alcohol (ethanol) and G for gasoline.

A biofuel is a type of fuel whose energy is derived from biological carbon fixation. Biofuels include fuels derived from biomass conversion, as well as solid biomass, liquid fuels and various biogases.

Bioethanol is an alcohol made by fermentation, mostly from carbohydrates produced in sugar or starch crops such as corn, sugarcane or switchgrass.

Biodiesel is made from vegetable oils and animal fats. Biodiesel is produced from oils or fats using transesterification and is the most common biofuel in Europe.

Biogas is methane produced by the process of anaerobic digestion of organic material by anaerobes., etc. is also a renewable source of energy.

Biogas

Biogas typically refers to a mixture of gases produced by the breakdown of organic matter in the absence of oxygen. Biogas is produced by anaerobic digestion with anaerobic bacteria or fermentation of biodegradable materials such as manure, sewage, municipal waste, green waste, plant material, and crops. It is primarily methane (CH
4
) and carbon dioxide (CO2) and may have small amounts of hydrogen sulphide (H
2
S
), moisture and siloxanes.

Natural fibre

Natural fibres are a class of hair-like materials that are continuous filaments or are in discrete elongated pieces, similar to pieces of thread. They can be used as a component of composite materials. They can also be matted into sheets to make products such as paper or felt. Fibres are of two types: natural fibre which consists of animal and plant fibres, and man made fibre which consists of synthetic fibres and regenerated fibres.

Threats to renewable resources

Renewable resources are endangered by non-regulated industrial developments and growth. They must be carefully managed to avoid exceeding the natural world's capacity to replenish them. A life cycle assessment provides a systematic means of evaluating renewability. This is a matter of sustainability in the natural environment.

Overfishing

Atlantic cod stocks severely overfished leading to abrupt collapse

National Geographic has described ocean over fishing as "simply the taking of wildlife from the sea at rates too high for fished species to replace themselves."

Tuna meat is driving overfishing as to endanger some species like the bluefin tuna. The European Community and other organisations are trying to regulate fishery as to protect species and to prevent their extinctions. The United Nations Convention on the Law of the Sea treaty deals with aspects of overfishing in articles 61, 62, and 65.

Examples of overfishing exist in areas such as the North Sea of Europe, the Grand Banks of North America and the East China Sea of Asia.

The decline of penguin population is caused in part by overfishing, caused by human competition over the same renewable resources

Deforestation


Besides their role as a resource for fuel and building material, trees protect the environment by absorbing carbon dioxide and by creating oxygen. The destruction of rain forests is one of the critical causes of climate change. Deforestation causes carbon dioxide to linger in the atmosphere. As carbon dioxide accrues, it produces a layer in the atmosphere that traps radiation from the sun. The radiation converts to heat which causes global warming, which is better known as the greenhouse effect.

Deforestation also affects the water cycle. It reduces the content of water in the soil and groundwater as well as atmospheric moisture. Deforestation reduces soil cohesion, so that erosion, flooding and landslides ensue.

Rain forests house many species and organisms providing people with food and other commodities. In this way biofuels may well be unsustainable if their production contributes to deforestation.

Endangered species

Over-hunting of American Bison.

Some renewable resources, species and organisms are facing a very high risk of extinction caused by growing human population and over-consumption. It has been estimated that over 40% of all living species on Earth are at risk of going extinct. Many nations have laws to protect hunted species and to restrict the practice of hunting. Other conservation methods include restricting land development or creating preserves. The IUCN Red List of Threatened Species is the best-known worldwide conservation status listing and ranking system. Internationally, 199 countries have signed an accord agreeing to create Biodiversity Action Plans to protect endangered and other threatened species.

Inequality (mathematics)

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Inequality...