Search This Blog

Tuesday, September 4, 2018

Frame of reference (with examples)

From Wikipedia, the free encyclopedia

In physics, a frame of reference (or reference frame) consists of an abstract coordinate system and the set of physical reference points that uniquely fix (locate and orient) the coordinate system and standardize measurements.

In n dimensions, n+1 reference points are sufficient to fully define a reference frame. Using rectangular (Cartesian) coordinates, a reference frame may be defined with a reference point at the origin and a reference point at one unit distance along each of the n coordinate axes.

In Einsteinian relativity, reference frames are used to specify the relationship between a moving observer and the phenomenon or phenomena under observation. In this context, the phrase often becomes "observational frame of reference" (or "observational reference frame"), which implies that the observer is at rest in the frame, although not necessarily located at its origin. A relativistic reference frame includes (or implies) the coordinate time, which does not correspond across different frames moving relatively to each other. The situation thus differs from Galilean relativity, where all possible coordinate times are essentially equivalent.

Different aspects of "frame of reference"

The need to distinguish between the various meanings of "frame of reference" has led to a variety of terms. For example, sometimes the type of coordinate system is attached as a modifier, as in Cartesian frame of reference. Sometimes the state of motion is emphasized, as in rotating frame of reference. Sometimes the way it transforms to frames considered as related is emphasized as in Galilean frame of reference. Sometimes frames are distinguished by the scale of their observations, as in macroscopic and microscopic frames of reference.

In this article, the term observational frame of reference is used when emphasis is upon the state of motion rather than upon the coordinate choice or the character of the observations or observational apparatus. In this sense, an observational frame of reference allows study of the effect of motion upon an entire family of coordinate systems that could be attached to this frame. On the other hand, a coordinate system may be employed for many purposes where the state of motion is not the primary concern. For example, a coordinate system may be adopted to take advantage of the symmetry of a system. In a still broader perspective, the formulation of many problems in physics employs generalized coordinates, normal modes or eigenvectors, which are only indirectly related to space and time. It seems useful to divorce the various aspects of a reference frame for the discussion below. We therefore take observational frames of reference, coordinate systems, and observational equipment as independent concepts, separated as below:
  • An observational frame (such as an inertial frame or non-inertial frame of reference) is a physical concept related to state of motion.
  • A coordinate system is a mathematical concept, amounting to a choice of language used to describe observations. Consequently, an observer in an observational frame of reference can choose to employ any coordinate system (Cartesian, polar, curvilinear, generalized, …) to describe observations made from that frame of reference. A change in the choice of this coordinate system does not change an observer's state of motion, and so does not entail a change in the observer's observational frame of reference. This viewpoint can be found elsewhere as well.[3] Which is not to dispute that some coordinate systems may be a better choice for some observations than are others.
  • Choice of what to measure and with what observational apparatus is a matter separate from the observer's state of motion and choice of coordinate system.
Here is a quotation applicable to moving observational frames {\mathfrak {R}} and various associated Euclidean three-space coordinate systems [R, R′, etc.]:


and this on the utility of separating the notions of {\mathfrak {R}} and [R, R′, etc.]:


and this, also on the distinction between {\mathfrak {R}} and [R, R′, etc.]:


and from J. D. Norton:


The discussion is taken beyond simple space-time coordinate systems by Brading and Castellani. Extension to coordinate systems using generalized coordinates underlies the Hamiltonian and Lagrangian formulations of quantum field theory, classical relativistic mechanics, and quantum gravity.

Coordinate systems

An observer O, situated at the origin of a local set of coordinates – a frame of reference F. The observer in this frame uses the coordinates (x, y, z, t) to describe a spacetime event, shown as a star.

Although the term "coordinate system" is often used (particularly by physicists) in a nontechnical sense, the term "coordinate system" does have a precise meaning in mathematics, and sometimes that is what the physicist means as well.
A coordinate system in mathematics is a facet of geometry or of algebra, in particular, a property of manifolds (for example, in physics, configuration spaces or phase spaces). The coordinates of a point r in an n-dimensional space are simply an ordered set of n numbers:
{\mathbf  {r}}=[x^{1},\ x^{2},\ \dots \ ,x^{n}]\ .
In a general Banach space, these numbers could be (for example) coefficients in a functional expansion like a Fourier series. In a physical problem, they could be spacetime coordinates or normal mode amplitudes. In a robot design, they could be angles of relative rotations, linear displacements, or deformations of joints. Here we will suppose these coordinates can be related to a Cartesian coordinate system by a set of functions:
x^{j}=x^{j}(x,\ y,\ z,\ \dots )\ ,    j=1,\ \dots \ ,\ n\
where x, y, z, etc. are the n Cartesian coordinates of the point. Given these functions, coordinate surfaces are defined by the relations:
x^{j}(x,y,z,\dots )={\mathrm  {constant}}\ ,    j=1,\ \dots \ ,\ n\ .
The intersection of these surfaces define coordinate lines. At any selected point, tangents to the intersecting coordinate lines at that point define a set of basis vectors {e1, e2, …, en} at that point. That is:[22]
{\mathbf  {e}}_{i}({\mathbf  {r}})=\lim _{{\epsilon \rightarrow 0}}{\frac  {{\mathbf  {r}}\left(x^{1},\ \dots ,\ x^{i}+\epsilon ,\ \dots ,\ x^{n}\right)-{\mathbf  {r}}\left(x^{1},\ \dots ,\ x^{i},\ \dots ,\ x^{n}\right)}{\epsilon }}\ ,
i=1,\ \dots \ ,\ n\
which can be normalized to be of unit length. For more detail see curvilinear coordinates.
Coordinate surfaces, coordinate lines, and basis vectors are components of a coordinate system. If the basis vectors are orthogonal at every point, the coordinate system is an orthogonal coordinate system.

An important aspect of a coordinate system is its metric tensor gik, which determines the arc length ds in the coordinate system in terms of its coordinates:
(ds)^{2}=g_{{ik}}\ dx^{i}\ dx^{k}\ ,
where repeated indices are summed over.

As is apparent from these remarks, a coordinate system is a mathematical construct, part of an axiomatic system. There is no necessary connection between coordinate systems and physical motion (or any other aspect of reality). However, coordinate systems can include time as a coordinate, and can be used to describe motion. Thus, Lorentz transformations and Galilean transformations may be viewed as coordinate transformations.

General and specific topics of coordinate systems can be pursued following the See also links below.

Observational frames of reference

Three frames of reference in special relativity. The black frame is at rest. The primed frame moves at 40% of light speed, and the double primed frame at 80%. Note the scissors-like change as speed increases.

An observational frame of reference, often referred to as a physical frame of reference, a frame of reference, or simply a frame, is a physical concept related to an observer and the observer's state of motion. Here we adopt the view expressed by Kumar and Barve: an observational frame of reference is characterized only by its state of motion. However, there is lack of unanimity on this point. In special relativity, the distinction is sometimes made between an observer and a frame. According to this view, a frame is an observer plus a coordinate lattice constructed to be an orthonormal right-handed set of spacelike vectors perpendicular to a timelike vector. See Doran. This restricted view is not used here, and is not universally adopted even in discussions of relativity. In general relativity the use of general coordinate systems is common (see, for example, the Schwarzschild solution for the gravitational field outside an isolated sphere).

There are two types of observational reference frame: inertial and non-inertial. An inertial frame of reference is defined as one in which all laws of physics take on their simplest form. In special relativity these frames are related by Lorentz transformations, which are parametrized by rapidity. In Newtonian mechanics, a more restricted definition requires only that Newton's first law holds true; that is, a Newtonian inertial frame is one in which a free particle travels in a straight line at constant speed, or is at rest. These frames are related by Galilean transformations. These relativistic and Newtonian transformations are expressed in spaces of general dimension in terms of representations of the Poincaré group and of the Galilean group.

In contrast to the inertial frame, a non-inertial frame of reference is one in which fictitious forces must be invoked to explain observations. An example is an observational frame of reference centered at a point on the Earth's surface. This frame of reference orbits around the center of the Earth, which introduces the fictitious forces known as the Coriolis force, centrifugal force, and gravitational force. (All of these forces including gravity disappear in a truly inertial reference frame, which is one of free-fall.)

Measurement apparatus

A further aspect of a frame of reference is the role of the measurement apparatus (for example, clocks and rods) attached to the frame (see Norton quote above). This question is not addressed in this article, and is of particular interest in quantum mechanics, where the relation between observer and measurement is still under discussion (see measurement problem).

In physics experiments, the frame of reference in which the laboratory measurement devices are at rest is usually referred to as the laboratory frame or simply "lab frame." An example would be the frame in which the detectors for a particle accelerator are at rest. The lab frame in some experiments is an inertial frame, but it is not required to be (for example the laboratory on the surface of the Earth in many physics experiments is not inertial). In particle physics experiments, it is often useful to transform energies and momenta of particles from the lab frame where they are measured, to the center of momentum frame "COM frame" in which calculations are sometimes simplified, since potentially all kinetic energy still present in the COM frame may be used for making new particles.
In this connection it may be noted that the clocks and rods often used to describe observers' measurement equipment in thought, in practice are replaced by a much more complicated and indirect metrology that is connected to the nature of the vacuum, and uses atomic clocks that operate according to the standard model and that must be corrected for gravitational time dilation.

In fact, Einstein felt that clocks and rods were merely expedient measuring devices and they should be replaced by more fundamental entities based upon, for example, atoms and molecules.

Types

Examples of inertial frames of reference

Simple example

Figure 1: Two cars moving at different but constant velocities observed from stationary inertial frame S attached to the road and moving inertial frame S′ attached to the first car.

Consider a situation common in everyday life. Two cars travel along a road, both moving at constant velocities. See Figure 1. At some particular moment, they are separated by 200 metres. The car in front is travelling at 22 metres per second and the car behind is travelling at 30 metres per second. If we want to find out how long it will take the second car to catch up with the first, there are three obvious "frames of reference" that we could choose.

First, we could observe the two cars from the side of the road. We define our "frame of reference" S as follows. We stand on the side of the road and start a stop-clock at the exact moment that the second car passes us, which happens to be when they are a distance d = 200 m apart. Since neither of the cars is accelerating, we can determine their positions by the following formulas, where x_{1}(t) is the position in meters of car one after time t in seconds and x_{2}(t) is the position of car two after time t.
x_{1}(t)=d+v_{1}t=200\ +\ 22t\ ;\quad x_{2}(t)=v_{2}t=30t
Notice that these formulas predict at t = 0 s the first car is 200 m down the road and the second car is right beside us, as expected. We want to find the time at which x_{1}=x_{2}. Therefore, we set x_{1}=x_{2} and solve for t, that is:
200+22t=30t\quad
8t=200\quad
t=25\quad {\mathrm  {seconds}}
Alternatively, we could choose a frame of reference S′ situated in the first car. In this case, the first car is stationary and the second car is approaching from behind at a speed of v2v1 = 8 m / s. In order to catch up to the first car, it will take a time of d/v2v1 = 200/8 s, that is, 25 seconds, as before. Note how much easier the problem becomes by choosing a suitable frame of reference. The third possible frame of reference would be attached to the second car. That example resembles the case just discussed, except the second car is stationary and the first car moves backward towards it at 8 m / s.

It would have been possible to choose a rotating, accelerating frame of reference, moving in a complicated manner, but this would have served to complicate the problem unnecessarily. It is also necessary to note that one is able to convert measurements made in one coordinate system to another. For example, suppose that your watch is running five minutes fast compared to the local standard time. If you know that this is the case, when somebody asks you what time it is, you are able to deduct five minutes from the time displayed on your watch in order to obtain the correct time. The measurements that an observer makes about a system depend therefore on the observer's frame of reference (you might say that the bus arrived at 5 past three, when in fact it arrived at three).

Additional example

Figure 2: Simple-minded frame-of-reference example

For a simple example involving only the orientation of two observers, consider two people standing, facing each other on either side of a north-south street. See Figure 2. A car drives past them heading south. For the person facing east, the car was moving towards the right. However, for the person facing west, the car was moving toward the left. This discrepancy is because the two people used two different frames of reference from which to investigate this system.

For a more complex example involving observers in relative motion, consider Alfred, who is standing on the side of a road watching a car drive past him from left to right. In his frame of reference, Alfred defines the spot where he is standing as the origin, the road as the x-axis and the direction in front of him as the positive y-axis. To him, the car moves along the x axis with some velocity v in the positive x-direction. Alfred's frame of reference is considered an inertial frame of reference because he is not accelerating (ignoring effects such as Earth's rotation and gravity).

Now consider Betsy, the person driving the car. Betsy, in choosing her frame of reference, defines her location as the origin, the direction to her right as the positive x-axis, and the direction in front of her as the positive y-axis. In this frame of reference, it is Betsy who is stationary and the world around her that is moving – for instance, as she drives past Alfred, she observes him moving with velocity v in the negative y-direction. If she is driving north, then north is the positive y-direction; if she turns east, east becomes the positive y-direction.

Finally, as an example of non-inertial observers, assume Candace is accelerating her car. As she passes by him, Alfred measures her acceleration and finds it to be a in the negative x-direction. Assuming Candace's acceleration is constant, what acceleration does Betsy measure? If Betsy's velocity v is constant, she is in an inertial frame of reference, and she will find the acceleration to be the same as Alfred in her frame of reference, a in the negative y-direction. However, if she is accelerating at rate A in the negative y-direction (in other words, slowing down), she will find Candace's acceleration to be a′ = aA in the negative y-direction - a smaller value than Alfred has measured. Similarly, if she is accelerating at rate A in the positive y-direction (speeding up), she will observe Candace's acceleration as a′ = a + A in the negative y-direction – a larger value than Alfred's measurement.

Frames of reference are especially important in special relativity, because when a frame of reference is moving at some significant fraction of the speed of light, then the flow of time in that frame does not necessarily apply in another frame. The speed of light is considered to be the only true constant between moving frames of reference.

Remarks

It is important to note some assumptions made above about the various inertial frames of reference. Newton, for instance, employed universal time, as explained by the following example. Suppose that you own two clocks, which both tick at exactly the same rate. You synchronize them so that they both display exactly the same time. The two clocks are now separated and one clock is on a fast moving train, traveling at constant velocity towards the other. According to Newton, these two clocks will still tick at the same rate and will both show the same time. Newton says that the rate of time as measured in one frame of reference should be the same as the rate of time in another. That is, there exists a "universal" time and all other times in all other frames of reference will run at the same rate as this universal time irrespective of their position and velocity. This concept of time and simultaneity was later generalized by Einstein in his special theory of relativity (1905) where he developed transformations between inertial frames of reference based upon the universal nature of physical laws and their economy of expression (Lorentz transformations).

It is also important to note that the definition of inertial reference frame can be extended beyond three-dimensional Euclidean space. Newton's assumed a Euclidean space, but general relativity uses a more general geometry. As an example of why this is important, let us consider the geometry of an ellipsoid. In this geometry, a "free" particle is defined as one at rest or traveling at constant speed on a geodesic path. Two free particles may begin at the same point on the surface, traveling with the same constant speed in different directions. After a length of time, the two particles collide at the opposite side of the ellipsoid. Both "free" particles traveled with a constant speed, satisfying the definition that no forces were acting. No acceleration occurred and so Newton's first law held true. This means that the particles were in inertial frames of reference. Since no forces were acting, it was the geometry of the situation which caused the two particles to meet each other again. In a similar way, it is now common to describe[32] that we exist in a four-dimensional geometry known as spacetime. In this picture, the curvature of this 4D space is responsible for the way in which two bodies with mass are drawn together even if no forces are acting. This curvature of spacetime replaces the force known as gravity in Newtonian mechanics and special relativity.

Non-inertial frames

Here the relation between inertial and non-inertial observational frames of reference is considered. The basic difference between these frames is the need in non-inertial frames for fictitious forces, as described below.

An accelerated frame of reference is often delineated as being the "primed" frame, and all variables that are dependent on that frame are notated with primes, e.g. x′, y′, a′.

The vector from the origin of an inertial reference frame to the origin of an accelerated reference frame is commonly notated as R. Given a point of interest that exists in both frames, the vector from the inertial origin to the point is called r, and the vector from the accelerated origin to the point is called r′. From the geometry of the situation, we get
{\mathbf  r}={\mathbf  R}+{\mathbf  r}'
Taking the first and second derivatives of this with respect to time, we obtain
{\mathbf  v}={\mathbf  V}+{\mathbf  v}'
{\mathbf  a}={\mathbf  A}+{\mathbf  a}'
where V and A are the velocity and acceleration of the accelerated system with respect to the inertial system and v and a are the velocity and acceleration of the point of interest with respect to the inertial frame.

These equations allow transformations between the two coordinate systems; for example, we can now write Newton's second law as
{\mathbf  F}=m{\mathbf  a}=m{\mathbf  A}+m{\mathbf  a}'
When there is accelerated motion due to a force being exerted there is manifestation of inertia. If an electric car designed to recharge its battery system when decelerating is switched to braking, the batteries are recharged, illustrating the physical strength of manifestation of inertia. However, the manifestation of inertia does not prevent acceleration (or deceleration), for manifestation of inertia occurs in response to change in velocity due to a force. Seen from the perspective of a rotating frame of reference the manifestation of inertia appears to exert a force (either in centrifugal direction, or in a direction orthogonal to an object's motion, the Coriolis effect).

A common sort of accelerated reference frame is a frame that is both rotating and translating (an example is a frame of reference attached to a CD which is playing while the player is carried). This arrangement leads to the equation (see Fictitious force for a derivation):
{\mathbf  a}={\mathbf  a}'+{\dot  {{\boldsymbol  \omega }}}\times {\mathbf  r}'+2{\boldsymbol  \omega }\times {\mathbf  v}'+{\boldsymbol  \omega }\times ({\boldsymbol  \omega }\times {\mathbf  r}')+{\mathbf  A}_{0}
or, to solve for the acceleration in the accelerated frame,
{\mathbf  a}'={\mathbf  a}-{\dot  {{\boldsymbol  \omega }}}\times {\mathbf  r}'-2{\boldsymbol  \omega }\times {\mathbf  v}'-{\boldsymbol  \omega }\times ({\boldsymbol  \omega }\times {\mathbf  r}')-{\mathbf  A}_{0}
Multiplying through by the mass m gives
{\mathbf  F}'={\mathbf  F}_{{\mathrm  {physical}}}+{\mathbf  F}'_{{\mathrm  {Euler}}}+{\mathbf  F}'_{{\mathrm  {Coriolis}}}+{\mathbf  F}'_{{\mathrm  {centripetal}}}-m{\mathbf  A}_{0}
where
{\mathbf  F}'_{{\mathrm  {Euler}}}=-m{\dot  {{\boldsymbol  \omega }}}\times {\mathbf  r}' (Euler force)
{\mathbf  F}'_{{\mathrm  {Coriolis}}}=-2m{\boldsymbol  \omega }\times {\mathbf  v}' (Coriolis force)
{\mathbf  F}'_{{\mathrm  {centrifugal}}}=-m{\boldsymbol  \omega }\times ({\boldsymbol  \omega }\times {\mathbf  r}')=m(\omega ^{2}{\mathbf  r}'-({\boldsymbol  \omega }\cdot {\mathbf  r}'){\boldsymbol  \omega })

Particular frames of reference in common use

Other frames

Monday, September 3, 2018

Newton's laws of motion

From Wikipedia, the free encyclopedia

Newton's laws of motion are three physical laws that, together, laid the foundation for classical mechanics. They describe the relationship between a body and the forces acting upon it, and its motion in response to those forces. More precisely, the first law defines the force qualitatively, the second law offers a quantitative measure of the force, and the third asserts that a single isolated force doesn't exist. These three laws have been expressed in several ways, over nearly three centuries, and can be summarised as follows:


First law: In an inertial frame of reference, an object either remains at rest or continues to move at a constant velocity, unless acted upon by a force.
Second law: In an inertial reference frame, the vector sum of the forces F on an object is equal to the mass m of that object multiplied by the acceleration a of the object: F = ma. (It is assumed here that the mass m is constant – see below.)
Third law: When one body exerts a force on a second body, the second body simultaneously exerts a force equal in magnitude and opposite in direction on the first body.


The three laws of motion were first compiled by Isaac Newton in his Philosophiæ Naturalis Principia Mathematica (Mathematical Principles of Natural Philosophy), first published in 1687. Newton used them to explain and investigate the motion of many physical objects and systems. For example, in the third volume of the text, Newton showed that these laws of motion, combined with his law of universal gravitation, explained Kepler's laws of planetary motion.

A fourth law is often also described in the bibliography, which states that forces add up like vectors, that is, that forces obey the principle of superposition.

Overview

Isaac Newton (1643–1727), the physicist who formulated the laws

Newton's laws are applied to objects which are idealised as single point masses, in the sense that the size and shape of the object's body are neglected to focus on its motion more easily. This can be done when the object is small compared to the distances involved in its analysis, or the deformation and rotation of the body are of no importance. In this way, even a planet can be idealised as a particle for analysis of its orbital motion around a star.

In their original form, Newton's laws of motion are not adequate to characterise the motion of rigid bodies and deformable bodies. Leonhard Euler in 1750 introduced a generalisation of Newton's laws of motion for rigid bodies called Euler's laws of motion, later applied as well for deformable bodies assumed as a continuum. If a body is represented as an assemblage of discrete particles, each governed by Newton's laws of motion, then Euler's laws can be derived from Newton's laws. Euler's laws can, however, be taken as axioms describing the laws of motion for extended bodies, independently of any particle structure.

Newton's laws hold only with respect to a certain set of frames of reference called Newtonian or inertial reference frames. Some authors interpret the first law as defining what an inertial reference frame is; from this point of view, the second law holds only when the observation is made from an inertial reference frame, and therefore the first law cannot be proved as a special case of the second. Other authors do treat the first law as a corollary of the second. The explicit concept of an inertial frame of reference was not developed until long after Newton's death.

In the given interpretation mass, acceleration, momentum, and (most importantly) force are assumed to be externally defined quantities. This is the most common, but not the only interpretation of the way one can consider the laws to be a definition of these quantities.

Newtonian mechanics has been superseded by special relativity, but it is still useful as an approximation when the speeds involved are much slower than the speed of light.

Laws

Newton's first law

The first law states that if the net force (the vector sum of all forces acting on an object) is zero, then the velocity of the object is constant. Velocity is a vector quantity which expresses both the object's speed and the direction of its motion; therefore, the statement that the object's velocity is constant is a statement that both its speed and the direction of its motion are constant.

The first law can be stated mathematically when the mass is a non-zero constant, as,
\sum \mathbf {F} =0\;\Leftrightarrow \;{\frac {\mathrm {d} \mathbf {v} }{\mathrm {d} t}}=0.
Consequently,
  • An object that is at rest will stay at rest unless a force acts upon it.
  • An object that is in motion will not change its velocity unless a force acts upon it.
This is known as uniform motion. An object continues to do whatever it happens to be doing unless a force is exerted upon it. If it is at rest, it continues in a state of rest (demonstrated when a tablecloth is skilfully whipped from under dishes on a tabletop and the dishes remain in their initial state of rest). If an object is moving, it continues to move without turning or changing its speed. This is evident in space probes that continuously move in outer space. Changes in motion must be imposed against the tendency of an object to retain its state of motion. In the absence of net forces, a moving object tends to move along a straight line path indefinitely.

Newton placed the first law of motion to establish frames of reference for which the other laws are applicable. The first law of motion postulates the existence of at least one frame of reference called a Newtonian or inertial reference frame, relative to which the motion of a particle not subject to forces is a straight line at a constant speed. Newton's first law is often referred to as the law of inertia. Thus, a condition necessary for the uniform motion of a particle relative to an inertial reference frame is that the total net force acting on it is zero. In this sense, the first law can be restated as:
In every material universe, the motion of a particle in a preferential reference frame Φ is determined by the action of forces whose total vanished for all times when and only when the velocity of the particle is constant in Φ. That is, a particle initially at rest or in uniform motion in the preferential frame Φ continues in that state unless compelled by forces to change it.
Newton's first and second laws are valid only in an inertial reference frame. Any reference frame that is in uniform motion with respect to an inertial frame is also an inertial frame, i.e. Galilean invariance or the principle of Newtonian relativity.

Newton's second law

The second law states that the rate of change of momentum of a body is directly proportional to the force applied, and this change in momentum takes place in the direction of the applied force.
\mathbf {F} ={\frac {\mathrm {d} \mathbf {p} }{\mathrm {d} t}}={\frac {\mathrm {d} (m\mathbf {v} )}{\mathrm {d} t}}.
The second law can also be stated in terms of an object's acceleration. Since Newton's second law is valid only for constant-mass systems, m can be taken outside the differentiation operator by the constant factor rule in differentiation. Thus,
\mathbf {F} =m\,{\frac {\mathrm {d} \mathbf {v} }{\mathrm {d} t}}=m\mathbf {a} ,
where F is the net force applied, m is the mass of the body, and a is the body's acceleration. Thus, the net force applied to a body produces a proportional acceleration. In other words, if a body is accelerating, then there is a force on it. An application of this notation is the derivation of G Subscript C.

Consistent with the first law, the time derivative of the momentum is non-zero when the momentum changes direction, even if there is no change in its magnitude; such is the case with uniform circular motion. The relationship also implies the conservation of momentum: when the net force on the body is zero, the momentum of the body is constant. Any net force is equal to the rate of change of the momentum.

Any mass that is gained or lost by the system will cause a change in momentum that is not the result of an external force. A different equation is necessary for variable-mass systems (see below).
Newton's second law is an approximation that is increasingly worse at high speeds because of relativistic effects.

Impulse

An impulse J occurs when a force F acts over an interval of time Δt, and it is given by
\mathbf {J} =\int _{\Delta t}\mathbf {F} \,\mathrm {d} t.
Since force is the time derivative of momentum, it follows that
\mathbf {J} =\Delta \mathbf {p} =m\Delta \mathbf {v} .
This relation between impulse and momentum is closer to Newton's wording of the second law.

Impulse is a concept frequently used in the analysis of collisions and impacts.

Variable-mass systems

Variable-mass systems, like a rocket burning fuel and ejecting spent gases, are not closed and cannot be directly treated by making mass a function of time in the second law;[18] that is, the following formula is wrong:
\mathbf {F} _{\mathrm {net} }={\frac {\mathrm {d} }{\mathrm {d} t}}{\big [}m(t)\mathbf {v} (t){\big ]}=m(t){\frac {\mathrm {d} \mathbf {v} }{\mathrm {d} t}}+\mathbf {v} (t){\frac {\mathrm {d} m}{\mathrm {d} t}}.\qquad \mathrm {(wrong)}
The falsehood of this formula can be seen by noting that it does not respect Galilean invariance: a variable-mass object with F = 0 in one frame will be seen to have F ≠ 0 in another frame. The correct equation of motion for a body whose mass m varies with time by either ejecting or accreting mass is obtained by applying the second law to the entire, constant-mass system consisting of the body and its ejected/accreted mass; the result is
\mathbf {F} +\mathbf {u} {\frac {\mathrm {d} m}{\mathrm {d} t}}=m{\mathrm {d} \mathbf {v}  \over \mathrm {d} t}
where u is the velocity of the escaping or incoming mass relative to the body. From this equation one can derive the equation of motion for a varying mass system, for example, the Tsiolkovsky rocket equation. Under some conventions, the quantity u dm/dt on the left-hand side, which represents the advection of momentum, is defined as a force (the force exerted on the body by the changing mass, such as rocket exhaust) and is included in the quantity F. Then, by substituting the definition of acceleration, the equation becomes F = ma.

Newton's third law

An illustration of Newton's third law in which two skaters push against each other. The first skater on the left exerts a normal force N12 on the second skater directed towards the right, and the second skater exerts a normal force N21 on the first skater directed towards the left.

The magnitudes of both forces are equal, but they have opposite directions, as dictated by Newton's third law.

The third law states that all forces between two objects exist in equal magnitude and opposite direction: if one object A exerts a force FA on a second object B, then B simultaneously exerts a force FB on A, and the two forces are equal in magnitude and opposite in direction: FA = −FB. The third law means that all forces are interactions between different bodies, or different regions within one body, and thus that there is no such thing as a force that is not accompanied by an equal and opposite force. In some situations, the magnitude and direction of the forces are determined entirely by one of the two bodies, say Body A; the force exerted by Body A on Body B is called the "action", and the force exerted by Body B on Body A is called the "reaction". This law is sometimes referred to as the action-reaction law, with FA called the "action" and FB the "reaction". In other situations the magnitude and directions of the forces are determined jointly by both bodies and it isn't necessary to identify one force as the "action" and the other as the "reaction". The action and the reaction are simultaneous, and it does not matter which is called the action and which is called reaction; both forces are part of a single interaction, and neither force exists without the other.

The two forces in Newton's third law are of the same type (e.g., if the road exerts a forward frictional force on an accelerating car's tires, then it is also a frictional force that Newton's third law predicts for the tires pushing backward on the road).

From a conceptual standpoint, Newton's third law is seen when a person walks: they push against the floor, and the floor pushes against the person. Similarly, the tires of a car push against the road while the road pushes back on the tires—the tires and road simultaneously push against each other. In swimming, a person interacts with the water, pushing the water backward, while the water simultaneously pushes the person forward—both the person and the water push against each other. The reaction forces account for the motion in these examples. These forces depend on friction; a person or car on ice, for example, may be unable to exert the action force to produce the needed reaction force.

History

Newton's First and Second laws, in Latin, from the original 1687 Principia Mathematica

Newton's 1st Law

From the original Latin of Newton's Principia:


Translated to English, this reads:


The ancient Greek philosopher Aristotle had the view that all objects have a natural place in the universe: that heavy objects (such as rocks) wanted to be at rest on the Earth and that light objects like smoke wanted to be at rest in the sky and the stars wanted to remain in the heavens. He thought that a body was in its natural state when it was at rest, and for the body to move in a straight line at a constant speed an external agent was needed continually to propel it, otherwise it would stop moving. Galileo Galilei, however, realised that a force is necessary to change the velocity of a body, i.e., acceleration, but no force is needed to maintain its velocity. In other words, Galileo stated that, in the absence of a force, a moving object will continue moving. (The tendency of objects to resist changes in motion was what Johannes Kepler had called inertia.) This insight was refined by Newton, who made it into his first law, also known as the "law of inertia"—no force means no acceleration, and hence the body will maintain its velocity. As Newton's first law is a restatement of the law of inertia which Galileo had already described, Newton appropriately gave credit to Galileo.

The law of inertia apparently occurred to several different natural philosophers and scientists independently, including Thomas Hobbes in his Leviathan. The 17th-century philosopher and mathematician René Descartes also formulated the law, although he did not perform any experiments to confirm it.

Newton's 2nd Law

Newton's original Latin reads:


This was translated quite closely in Motte's 1729 translation as:


According to modern ideas of how Newton was using his terminology, this is understood, in modern terms, as an equivalent of:
The change of momentum of a body is proportional to the impulse impressed on the body, and happens along the straight line on which that impulse is impressed.
This may be expressed by the formula F = p', where p' is the time derivative of the momentum p. This equation can be seen clearly in the Wren Library of Trinity College, Cambridge, in a glass case in which Newton's manuscript is open to the relevant page.

Motte's 1729 translation of Newton's Latin continued with Newton's commentary on the second law of motion, reading:
If a force generates a motion, a double force will generate double the motion, a triple force triple the motion, whether that force be impressed altogether and at once, or gradually and successively. And this motion (being always directed the same way with the generating force), if the body moved before, is added to or subtracted from the former motion, according as they directly conspire with or are directly contrary to each other; or obliquely joined, when they are oblique, so as to produce a new motion compounded from the determination of both.
The sense or senses in which Newton used his terminology, and how he understood the second law and intended it to be understood, have been extensively discussed by historians of science, along with the relations between Newton's formulation and modern formulations.

Newton's 3rd Law


Translated to English, this reads:


Newton's Scholium (explanatory comment) to this law:
Whatever draws or presses another is as much drawn or pressed by that other. If you press a stone with your finger, the finger is also pressed by the stone. If a horse draws a stone tied to a rope, the horse (if I may so say) will be equally drawn back towards the stone: for the distended rope, by the same endeavour to relax or unbend itself, will draw the horse as much towards the stone, as it does the stone towards the horse, and will obstruct the progress of the one as much as it advances that of the other. If a body impinges upon another, and by its force changes the motion of the other, that body also (because of the equality of the mutual pressure) will undergo an equal change, in its own motion, toward the contrary part. The changes made by these actions are equal, not in the velocities but in the motions of the bodies; that is to say, if the bodies are not hindered by any other impediments. For, as the motions are equally changed, the changes of the velocities made toward contrary parts are reciprocally proportional to the bodies. This law takes place also in attractions, as will be proved in the next scholium.
In the above, as usual, motion is Newton's name for momentum, hence his careful distinction between motion and velocity.

Newton used the third law to derive the law of conservation of momentum; from a deeper perspective, however, conservation of momentum is the more fundamental idea (derived via Noether's theorem from Galilean invariance), and holds in cases where Newton's third law appears to fail, for instance when force fields as well as particles carry momentum, and in quantum mechanics.

Importance and range of validity

Newton's laws were verified by experiment and observation for over 200 years, and they are excellent approximations at the scales and speeds of everyday life. Newton's laws of motion, together with his law of universal gravitation and the mathematical techniques of calculus, provided for the first time a unified quantitative explanation for a wide range of physical phenomena.

These three laws hold to a good approximation for macroscopic objects under everyday conditions. However, Newton's laws (combined with universal gravitation and classical electrodynamics) are inappropriate for use in certain circumstances, most notably at very small scales, very high speeds (in special relativity, the Lorentz factor must be included in the expression for momentum along with the rest mass and velocity) or very strong gravitational fields. Therefore, the laws cannot be used to explain phenomena such as conduction of electricity in a semiconductor, optical properties of substances, errors in non-relativistically corrected GPS systems and superconductivity. Explanation of these phenomena requires more sophisticated physical theories, including general relativity and quantum field theory.

In quantum mechanics, concepts such as force, momentum, and position are defined by linear operators that operate on the quantum state; at speeds that are much lower than the speed of light, Newton's laws are just as exact for these operators as they are for classical objects. At speeds comparable to the speed of light, the second law holds in the original form F = dp/dt, where F and p are four-vectors.

Relationship to the conservation laws

In modern physics, the laws of conservation of momentum, energy, and angular momentum are of more general validity than Newton's laws, since they apply to both light and matter, and to both classical and non-classical physics.

This can be stated simply, "Momentum, energy and angular momentum cannot be created or destroyed."

Because force is the time derivative of momentum, the concept of force is redundant and subordinate to the conservation of momentum, and is not used in fundamental theories (e.g., quantum mechanics, quantum electrodynamics, general relativity, etc.). The standard model explains in detail how the three fundamental forces known as gauge forces originate out of exchange by virtual particles. Other forces, such as gravity and fermionic degeneracy pressure, also arise from the momentum conservation. Indeed, the conservation of 4-momentum in inertial motion via curved space-time results in what we call gravitational force in general relativity theory. The application of the space derivative (which is a momentum operator in quantum mechanics) to the overlapping wave functions of a pair of fermions (particles with half-integer spin) results in shifts of maxima of compound wavefunction away from each other, which is observable as the "repulsion" of the fermions.

Newton stated the third law within a world-view that assumed instantaneous action at a distance between material particles. However, he was prepared for philosophical criticism of this action at a distance, and it was in this context that he stated the famous phrase "I feign no hypotheses". In modern physics, action at a distance has been completely eliminated, except for subtle effects involving quantum entanglement. (In particular, this refers to Bell's theorem – that no local model can reproduce the predictions of quantum theory.) Despite only being an approximation, in modern engineering and all practical applications involving the motion of vehicles and satellites, the concept of action at a distance is used extensively.

The discovery of the second law of thermodynamics by Carnot in the 19th century showed that not every physical quantity is conserved over time, thus disproving the validity of inducing the opposite metaphysical view from Newton's laws. Hence, a "steady-state" worldview based solely on Newton's laws and the conservation laws does not take entropy into account.

Algorithmic information theory

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Algorithmic_information_theory ...