Search This Blog

Friday, September 28, 2018

Knowledge

From Wikipedia, the free encyclopedia

Knowledge is a familiarity, awareness, or understanding of someone or something, such as facts, information, descriptions, or skills, which is acquired through experience or education by perceiving, discovering, or learning.

Knowledge can refer to a theoretical or practical understanding of a subject. It can be implicit (as with practical skill or expertise) or explicit (as with the theoretical understanding of a subject); it can be more or less formal or systematic. In philosophy, the study of knowledge is called epistemology; the philosopher Plato famously defined knowledge as "justified true belief", though this definition is now thought by some analytic philosophers to be problematic because of the Gettier problems while others defend the platonic definition. However, several definitions of knowledge and theories to explain it exist.

Knowledge acquisition involves complex cognitive processes: perception, communication, and reasoning; while knowledge is also said to be related to the capacity of acknowledgement in human beings.

Theories of knowledge

Robert Reid, Knowledge (1896). Thomas Jefferson Building, Washington, D.C.
The eventual demarcation of philosophy from science was made possible by the notion that philosophy's core was "theory of knowledge," a theory distinct from the sciences because it was their foundation... Without this idea of a "theory of knowledge," it is hard to imagine what "philosophy" could have been in the age of modern science.
The definition of knowledge is a matter of ongoing debate among philosophers in the field of epistemology. The classical definition, described but not ultimately endorsed by Plato, specifies that a statement must meet three criteria in order to be considered knowledge: it must be justified, true, and believed. Some claim that these conditions are not sufficient, as Gettier case examples allegedly demonstrate. There are a number of alternatives proposed, including Robert Nozick's arguments for a requirement that knowledge 'tracks the truth' and Simon Blackburn's additional requirement that we do not want to say that those who meet any of these conditions 'through a defect, flaw, or failure' have knowledge. Richard Kirkham suggests that our definition of knowledge requires that the evidence for the belief necessitates its truth.

In contrast to this approach, Ludwig Wittgenstein observed, following Moore's paradox, that one can say "He believes it, but it isn't so," but not "He knows it, but it isn't so." He goes on to argue that these do not correspond to distinct mental states, but rather to distinct ways of talking about conviction. What is different here is not the mental state of the speaker, but the activity in which they are engaged. For example, on this account, to know that the kettle is boiling is not to be in a particular state of mind, but to perform a particular task with the statement that the kettle is boiling. Wittgenstein sought to bypass the difficulty of definition by looking to the way "knowledge" is used in natural languages. He saw knowledge as a case of a family resemblance. Following this idea, "knowledge" has been reconstructed as a cluster concept that points out relevant features but that is not adequately captured by any definition.

Communicating knowledge

Los portadores de la antorcha (The Torch-Bearers) – Sculpture by Anna Hyatt Huntington symbolizing the transmission of knowledge from one generation to the next (Ciudad Universitaria, Madrid, Spain)

Symbolic representations can be used to indicate meaning and can be thought of as a dynamic process. Hence the transfer of the symbolic representation can be viewed as one ascription process whereby knowledge can be transferred. Other forms of communication include observation and imitation, verbal exchange, and audio and video recordings. Philosophers of language and semioticians construct and analyze theories of knowledge transfer or communication.
While many would agree that one of the most universal and significant tools for the transfer of knowledge is writing and reading (of many kinds), argument over the usefulness of the written word exists nonetheless, with some scholars skeptical of its impact on societies. In his collection of essays Technopoly, Neil Postman demonstrates the argument against the use of writing through an excerpt from Plato's work Phaedrus (Postman, Neil (1992) Technopoly, Vintage, New York, pp 73). In this excerpt, the scholar Socrates recounts the story of Thamus, the Egyptian king and Theuth the inventor of the written word. In this story, Theuth presents his new invention "writing" to King Thamus, telling Thamus that his new invention "will improve both the wisdom and memory of the Egyptians" (Postman, Neil (1992) Technopoly, Vintage, New York, p. 74). King Thamus is skeptical of this new invention and rejects it as a tool of recollection rather than retained knowledge. He argues that the written word will infect the Egyptian people with fake knowledge as they will be able to attain facts and stories from an external source and will no longer be forced to mentally retain large quantities of knowledge themselves (Postman, Neil (1992) Technopoly, Vintage, New York, p. 74).

Classical early modern theories of knowledge, especially those advancing the influential empiricism of the philosopher John Locke, were based implicitly or explicitly on a model of the mind which likened ideas to words. This analogy between language and thought laid the foundation for a graphic conception of knowledge in which the mind was treated as a table, a container of content, that had to be stocked with facts reduced to letters, numbers or symbols. This created a situation in which the spatial alignment of words on the page carried great cognitive weight, so much so that educators paid very close attention to the visual structure of information on the page and in notebooks.

Major libraries today can have millions of books of knowledge (in addition to works of fiction). It is only recently that audio and video technology for recording knowledge have become available and the use of these still requires replay equipment and electricity. Verbal teaching and handing down of knowledge is limited to those who would have contact with the transmitter or someone who could interpret written work. Writing is still the most available and most universal of all forms of recording and transmitting knowledge. It stands unchallenged as mankind's primary technology of knowledge transfer down through the ages and to all cultures and languages of the world.

Situated knowledge

Situated knowledge is knowledge specific to a particular situation. It is a term coined by Donna Haraway as an extension of the feminist approaches of "successor science" suggested by Sandra Harding, one which "offers a more adequate, richer, better account of a world, in order to live in it well and in critical, reflexive relation to our own as well as others' practices of domination and the unequal parts of privilege and oppression that makes up all positions." This situation partially transforms science into a narrative, which Arturo Escobar explains as, "neither fictions nor supposed facts." This narrative of situation is historical textures woven of fact and fiction, and as Escobar explains further, "even the most neutral scientific domains are narratives in this sense," insisting that rather than a purpose dismissing science as a trivial matter of contingency, "it is to treat (this narrative) in the most serious way, without succumbing to its mystification as 'the truth' or to the ironic skepticism common to many critiques."

Haraway's argument stems from the limitations of the human perception, as well as the overemphasis of the sense of vision in science. According to Haraway, vision in science has been, "used to signify a leap out of the marked body and into a conquering gaze from nowhere." This is the "gaze that mythically inscribes all the marked bodies, that makes the unmarked category claim the power to see and not be seen, to represent while escaping representation." This causes a limitation of views in the position of science itself as a potential player in the creation of knowledge, resulting in a position of "modest witness". This is what Haraway terms a "god trick", or the aforementioned representation while escaping representation. In order to avoid this, "Haraway perpetuates a tradition of thought which emphasizes the importance of the subject in terms of both ethical and political accountability".

Some methods of generating knowledge, such as trial and error, or learning from experience, tend to create highly situational knowledge. One of the main attributes of the scientific method is that the theories it generates are much less situational than knowledge gained by other methods. Situational knowledge is often embedded in language, culture, or traditions. This integration of situational knowledge is an allusion to the community, and its attempts at collecting subjective perspectives into an embodiment "of views from somewhere."

Knowledge generated through experience is called knowledge "a posteriori", meaning afterwards. The pure existence of a term like "a posteriori" means this also has a counterpart. In this case, that is knowledge "a priori", meaning before. The knowledge prior to any experience means that there are certain "assumptions" that one takes for granted. For example, if you are being told about a chair, it is clear to you that the chair is in space, that it is 3D. This knowledge is not knowledge that one can "forget", even someone suffering from amnesia experiences the world in 3D.

Even though Haraway's arguments are largely based on feminist studies, this idea of different worlds, as well as the skeptic stance of situated knowledge is present in the main arguments of post-structuralism. Fundamentally, both argue the contingency of knowledge on the presence of history; power, and geography, as well as the rejection of universal rules or laws or elementary structures; and the idea of power as an inherited trait of objectification.

Partial knowledge

The parable of Blind men and an elephant suggests that people tend to project their partial experiences as the whole truth

One discipline of epistemology focuses on partial knowledge. In most cases, it is not possible to understand an information domain exhaustively; our knowledge is always incomplete or partial. Most real problems have to be solved by taking advantage of a partial understanding of the problem context and problem data, unlike the typical math problems one might solve at school, where all data is given and one is given a complete understanding of formulas necessary to solve them.

This idea is also present in the concept of bounded rationality which assumes that in real life situations people often have a limited amount of information and make decisions accordingly.
Intuition is the ability to acquire partial knowledge without inference or the use of reason. An individual may "know" about a situation and be unable to explain the process that led to their knowledge.

Scientific knowledge


The development of the scientific method has made a significant contribution to how knowledge of the physical world and its phenomena is acquired. To be termed scientific, a method of inquiry must be based on gathering observable and measurable evidence subject to specific principles of reasoning and experimentation. The scientific method consists of the collection of data through observation and experimentation, and the formulation and testing of hypotheses. Science, and the nature of scientific knowledge have also become the subject of Philosophy. As science itself has developed, scientific knowledge now includes a broader usage in the soft sciences such as biology and the social sciences – discussed elsewhere as meta-epistemology, or genetic epistemology, and to some extent related to "theory of cognitive development". Note that "epistemology" is the study of knowledge and how it is acquired. Science is "the process used everyday to logically complete thoughts through inference of facts determined by calculated experiments." Sir Francis Bacon was critical in the historical development of the scientific method; his works established and popularized an inductive methodology for scientific inquiry. His famous aphorism, "knowledge is power", is found in the Meditations Sacrae (1597).

Until recent times, at least in the Western tradition, it was simply taken for granted that knowledge was something possessed only by humans – and probably adult humans at that. Sometimes the notion might stretch to Society-as-such, as in (e. g.) "the knowledge possessed by the Coptic culture" (as opposed to its individual members), but that was not assured either. Nor was it usual to consider unconscious knowledge in any systematic way until this approach was popularized by Freud.

Other biological domains where "knowledge" might be said to reside, include: (iii) the immune system, and (iv) in the DNA of the genetic code. See the list of four "epistemological domains": Popper, (1975); and Traill (2008: Table S, p. 31) – also references by both to Niels Jerne.

Such considerations seem to call for a separate definition of "knowledge" to cover the biological systems. For biologists, knowledge must be usefully available to the system, though that system need not be conscious. Thus the criteria seem to be:
  • The system should apparently be dynamic and self-organizing (unlike a mere book on its own).
  • The knowledge must constitute some sort of representation of "the outside world", or ways of dealing with it (directly or indirectly).
  • Some way must exist for the system to access this information quickly enough for it to be useful.
Scientific knowledge may not involve a claim to certainty, maintaining skepticism means that a scientist will never be absolutely certain when they are correct and when they are not. It is thus an irony of proper scientific method that one must doubt even when correct, in the hopes that this practice will lead to greater convergence on the truth in general.

Religious meaning of knowledge

In many expressions of Christianity, such as Catholicism and Anglicanism, knowledge is one of the seven gifts of the Holy Spirit.

The Old Testament's tree of the knowledge of good and evil contained the knowledge that separated Man from God: "And the LORD God said, Behold, the man is become as one of us, to know good and evil..." (Genesis 3:22)

In Gnosticism, divine knowledge or gnosis is hoped to be attained.

विद्या दान (Vidya Daan) i.e. knowledge sharing is a major part of Daan, a tenet of all Dharmic Religions. Hindu Scriptures present two kinds of knowledge, Paroksh Gyan and Prataksh Gyan. Paroksh Gyan (also spelled Paroksha-Jnana) is secondhand knowledge: knowledge obtained from books, hearsay, etc. Prataksh Gyan (also spelled Prataksha-Jnana) is the knowledge borne of direct experience, i.e., knowledge that one discovers for oneself. Jnana yoga ("path of knowledge") is one of three main types of yoga expounded by Krishna in the Bhagavad Gita. (It is compared and contrasted with Bhakti Yoga and Karma yoga.)

In Islam, knowledge (Arabic: علم, ʿilm) is given great significance. "The Knowing" (al-ʿAlīm) is one of the 99 names reflecting distinct attributes of God. The Qur'an asserts that knowledge comes from God (2:239) and various hadith encourage the acquisition of knowledge. Muhammad is reported to have said "Seek knowledge from the cradle to the grave" and "Verily the men of knowledge are the inheritors of the prophets". Islamic scholars, theologians and jurists are often given the title alim, meaning "knowledgeble".

In Jewish tradition, knowledge (Hebrew: דעת da'ath) is considered one of the most valuable traits a person can acquire. Observant Jews recite three times a day in the Amidah "Favor us with knowledge, understanding and discretion that come from you. Exalted are you, Existent-One, the gracious giver of knowledge." The Tanakh states, "A wise man gains power, and a man of knowledge maintains power", and "knowledge is chosen above gold".

As a measure of religiosity in sociology of religion

According to the sociologist Mervin F. Verbit, knowledge may be understood as one of the key components of religiosity. Religious knowledge itself may be broken down into four dimensions:
  • content
  • frequency
  • intensity
  • centrality
The content of one's religious knowledge may vary from person to person, as will the degree to which it may occupy the person's mind (frequency), the intensity of the knowledge, and the centrality of the information (in that religious tradition, or to that individual).

Biosphere

From Wikipedia, the free encyclopedia

A false-color composite of global oceanic and terrestrial photoautotroph abundance, from September 2001 to August 2017. Provided by the SeaWiFS Project, NASA/Goddard Space Flight Center and ORBIMAGE.
 
The biosphere (from Greek βίος bíos "life" and σφαῖρα sphaira "sphere") also known as the ecosphere (from Greek οἶκος oîkos "environment" and σφαῖρα), is the worldwide sum of all ecosystems. It can also be termed the zone of life on Earth, a closed system (apart from solar and cosmic radiation and heat from the interior of the Earth), and largely self-regulating. By the most general biophysiological definition, the biosphere is the global ecological system integrating all living beings and their relationships, including their interaction with the elements of the lithosphere, geosphere, hydrosphere, and atmosphere. The biosphere is postulated to have evolved, beginning with a process of biopoiesis (life created naturally from non-living matter, such as simple organic compounds) or biogenesis (life created from living matter), at least some 3.5 billion years ago.

In a general sense, biospheres are any closed, self-regulating systems containing ecosystems. This includes artificial biospheres such as Biosphere 2 and BIOS-3, and potentially ones on other planets or moons.

Origin and use of the term

A beach scene on Earth, simultaneously showing the lithosphere (ground), hydrosphere (ocean) and atmosphere (air)

The term "biosphere" was coined by geologist Eduard Suess in 1875, which he defined as the place on Earth's surface where life dwells.

While the concept has a geological origin, it is an indication of the effect of both Charles Darwin and Matthew F. Maury on the Earth sciences. The biosphere's ecological context comes from the 1920s (see Vladimir I. Vernadsky), preceding the 1935 introduction of the term "ecosystem" by Sir Arthur Tansley (see ecology history). Vernadsky defined ecology as the science of the biosphere. It is an interdisciplinary concept for integrating astronomy, geophysics, meteorology, biogeography, evolution, geology, geochemistry, hydrology and, generally speaking, all life and Earth sciences.

Narrow definition

Geochemists define the biosphere as being the total sum of living organisms (the "biomass" or "biota" as referred to by biologists and ecologists). In this sense, the biosphere is but one of four separate components of the geochemical model, the other three being geosphere, hydrosphere, and atmosphere. When these four component spheres are combined into one system, it is known as the Ecosphere. This term was coined during the 1960s and encompasses both biological and physical components of the planet.

The Second International Conference on Closed Life Systems defined biospherics as the science and technology of analogs and models of Earth's biosphere; i.e., artificial Earth-like biospheres. Others may include the creation of artificial non-Earth biospheres—for example, human-centered biospheres or a native Martian biosphere—as part of the topic of biospherics.

Earth's biosphere

Age

Stromatolite fossil estimated at 3.2–3.6 billion years old

The earliest evidence for life on Earth includes biogenic graphite found in 3.7 billion-year-old metasedimentary rocks from Western Greenland and microbial mat fossils found in 3.48 billion-year-old sandstone from Western Australia. More recently, in 2015, "remains of biotic life" were found in 4.1 billion-year-old rocks in Western Australia. In 2017, putative fossilized microorganisms (or microfossils) were announced to have been discovered in hydrothermal vent precipitates in the Nuvvuagittuq Belt of Quebec, Canada that were as old as 4.28 billion years, the oldest record of life on earth, suggesting "an almost instantaneous emergence of life" after ocean formation 4.4 billion years ago, and not long after the formation of the Earth 4.54 billion years ago. According to biologist Stephen Blair Hedges, "If life arose relatively quickly on Earth ... then it could be common in the universe."

Extent

Rüppell's vulture
 
Xenophyophore, a barophilic organism, from the Galapagos Rift.

Every part of the planet, from the polar ice caps to the equator, features life of some kind. Recent advances in microbiology have demonstrated that microbes live deep beneath the Earth's terrestrial surface, and that the total mass of microbial life in so-called "uninhabitable zones" may, in biomass, exceed all animal and plant life on the surface. The actual thickness of the biosphere on earth is difficult to measure. Birds typically fly at altitudes as high as 1,800 m (5,900 ft; 1.1 mi) and fish live as much as 8,372 m (27,467 ft; 5.202 mi) underwater in the Puerto Rico Trench.

There are more extreme examples for life on the planet: Rüppell's vulture has been found at altitudes of 11,300 m (37,100 ft; 7.0 mi); bar-headed geese migrate at altitudes of at least 8,300 m (27,200 ft; 5.2 mi); yaks live at elevations as high as 5,400 m (17,700 ft; 3.4 mi) above sea level; mountain goats live up to 3,050 m (10,010 ft; 1.90 mi). Herbivorous animals at these elevations depend on lichens, grasses, and herbs.

Life forms live in every part of the Earth's biosphere, including soil, hot springs, inside rocks at least 19 km (12 mi) deep underground, the deepest parts of the ocean, and at least 64 km (40 mi) high in the atmosphere. Microorganisms, under certain test conditions, have been observed to survive the vacuum of outer space. The total amount of soil and subsurface bacterial carbon is estimated as 5 × 1017 g, or the "weight of the United Kingdom". The mass of prokaryote microorganisms—which includes bacteria and archaea, but not the nucleated eukaryote microorganisms—may be as much as 0.8 trillion tons of carbon (of the total biosphere mass, estimated at between 1 and 4 trillion tons). Barophilic marine microbes have been found at more than a depth of 10,000 m (33,000 ft; 6.2 mi) in the Mariana Trench, the deepest spot in the Earth's oceans. In fact, single-celled life forms have been found in the deepest part of the Mariana Trench, by the Challenger Deep, at depths of 11,034 m (36,201 ft; 6.856 mi). Other researchers reported related studies that microorganisms thrive inside rocks up to 580 m (1,900 ft; 0.36 mi) below the sea floor under 2,590 m (8,500 ft; 1.61 mi) of ocean off the coast of the northwestern United States, as well as 2,400 m (7,900 ft; 1.5 mi) beneath the seabed off Japan. Culturable thermophilic microbes have been extracted from cores drilled more than 5,000 m (16,000 ft; 3.1 mi) into the Earth's crust in Sweden, from rocks between 65–75 °C (149–167 °F). Temperature increases with increasing depth into the Earth's crust. The rate at which the temperature increases depends on many factors, including type of crust (continental vs. oceanic), rock type, geographic location, etc. The greatest known temperature at which microbial life can exist is 122 °C (252 °F) (Methanopyrus kandleri Strain 116), and it is likely that the limit of life in the "deep biosphere" is defined by temperature rather than absolute depth. On 20 August 2014, scientists confirmed the existence of microorganisms living 800 m (2,600 ft; 0.50 mi) below the ice of Antarctica. According to one researcher, "You can find microbes everywhere — they're extremely adaptable to conditions, and survive wherever they are."

Our biosphere is divided into a number of biomes, inhabited by fairly similar flora and fauna. On land, biomes are separated primarily by latitude. Terrestrial biomes lying within the Arctic and Antarctic Circles are relatively barren of plant and animal life, while most of the more populous biomes lie near the equator.

Annual variation

 
On land, vegetation appears on a scale from brown (low vegetation) to dark green (lots of vegetation); at the ocean surface, phytoplankton are indicated on a scale from purple (low) to yellow (high). This visualization was created with data from satellites including SeaWiFS, and instruments including the NASA/NOAA Visible Infrared Imaging Radiometer Suite and the Moderate Resolution Imaging Spectroradiometer.

Artificial biospheres

Biosphere 2 in Arizona.

Experimental biospheres, also called closed ecological systems, have been created to study ecosystems and the potential for supporting life outside the earth. These include spacecraft and the following terrestrial laboratories:

Extraterrestrial biospheres

No biospheres have been detected beyond the Earth; therefore, the existence of extraterrestrial biospheres remains hypothetical. The rare Earth hypothesis suggests they should be very rare, save ones composed of microbial life only. On the other hand, Earth analogs may be quite numerous, at least in the Milky Way galaxy, given the large number of planets. Three of the planets discovered orbiting TRAPPIST-1 could possibly contain biospheres. Given limited understanding of abiogenesis, it is currently unknown what percentage of these planets actually develop biospheres.

Based on observations by the Kepler Space Telescope team, it has been calculated that provided the probability of abiogenesis is higher than 1 to 1000, the closest alien biosphere should be within 100 light-years from the Earth.

It is also possible that artificial biospheres will be created during the future, for example on Mars. The process of creating an uncontained system that mimics the function of Earth's biosphere is called terraforming.

Thursday, September 27, 2018

Biosignature

From Wikipedia, the free encyclopedia

A biosignature (sometimes called chemical fossil or molecular fossil) is any substance – such as an element, isotope, molecule, or phenomenon – that provides scientific evidence of past or present life. Measurable attributes of life include its complex physical and chemical structures and also its utilization of free energy and the production of biomass and wastes. Due to its unique characteristics, a biosignature can be interpreted as having been produced by living organisms; however, it is important that they not be considered definitive because there is no way of knowing in advance which ones are universal to life and which ones are unique to the peculiar circumstances of life on Earth. Nonetheless, life forms are known to shed unique chemicals, including DNA, into the environment as evidence of their presence in a particular location.

In geomicrobiology

Electron micrograph of microfossils from a sediment core obtained by the Deep Sea Drilling Program

The ancient record on Earth provides an opportunity to see what geochemical signatures are produced by microbial life and how these signatures are preserved over geologic time. Some related disciplines such as geochemistry, geobiology, and geomicrobiology often use biosignatures to determine if living organisms are or were present in a sample. These possible biosignatures include: (a) microfossils and stromatolites; (b) molecular structures (biomarkers) and isotopic compositions of carbon, nitrogen and hydrogen in organic matter; (c) multiple sulfur and oxygen isotope ratios of minerals; and (d) abundance relationships and isotopic compositions of redox sensitive metals (e.g., Fe, Mo, Cr, and rare earth elements).

For example, the particular fatty acids measured in a sample can indicate which types of bacteria and archaea live in that environment. Another example are the long-chain fatty alcohols with more than 23 atoms that are produced by planktonic bacteria. When used in this sense, geochemists often prefer the term biomarker. Another example is the presence of straight-chain lipids in the form of alkanes, alcohols an fatty acids with 20-36 carbon atoms in soils or sediments. Peat deposits are an indication of originating from the epicuticular wax of higher plants.

Life processes may produce a range of biosignatures such as nucleic acids, lipids, proteins, amino acids, kerogen-like material and various morphological features that are detectable in rocks and sediments. Microbes often interact with geochemical processes, leaving features in the rock record indicative of biosignatures. For example, bacterial micrometer-sized pores in carbonate rocks resemble inclusions under transmitted light, but have distinct size, shapes and patterns (swirling or dendritic) and are distributed differently from common fluid inclusions. A potential biosignature is a phenomenon that may have been produced by life, but for which alternate abiotic origins may also be possible.

In astrobiology

Astrobiological exploration is founded upon the premise that biosignatures encountered in space will be recognizable as extraterrestrial life. The usefulness of a biosignature is determined, not only by the probability of life creating it, but also by the improbability of nonbiological (abiotic) processes producing it. Concluding that evidence of an extraterrestrial life form (past or present) has been discovered, requires proving that a possible biosignature was produced by the activities or remains of life. As with most scientific discoveries, discovery of a biosignature will require of evidence building up until no other explanation exists.

Possible examples of a biosignature might be complex organic molecules and/or structures whose formation is virtually unachievable in the absence of life. For example, cellular and extracellular morphologies, biomolecules in rocks, bio-organic molecular structures, chirality, biogenic minerals, biogenic stable isotope patterns in minerals and organic compounds, atmospheric gases, and remotely detectable features on planetary surfaces, such as photosynthetic pigments, etc.
Categories
In general, biosignatures and habitable environment signatures can be grouped into ten broad categories:
  1. Stable isotope patterns: Isotopic evidence or patterns that require biological processes.
  2. Chemistry: Chemical features that require biological activity.
  3. Organic matter: Organics formed by biological processes.
  4. Minerals: Minerals or biomineral-phases whose composition and/or morphology indicate biological activity (e.g., biomagnetite).
  5. Microscopic structures and textures: Biologically formed cements, microtextures, microfossils, and films.
  6. Macroscopic physical structures and textures: Structures that indicate microbial ecosystems, biofilms (e.g., stromatolites), or fossils of larger organisms.
  7. Temporal variability: Variations in time of atmospheric gases, reflectivity, or macroscopic appearance that indicate the presence of life.
  8. Surface reflectance features: Large-scale reflectance features due to biological pigments, which could be detected remotely.
  9. Atmospheric gases: Gases formed by metabolic and/or aqueous processes, which may be present on a planet-wide scale.
  10. Technosignatures: Signatures that indicate a technologically advanced civilization.

Chemical

No single compound will prove life once existed. Rather, it will be distinctive patterns present in any organic compounds showing a process of selection. For example, membrane lipids left behind by degraded cells will be concentrated, have a limited size range, and comprise an even number of carbons. Similarly, life only uses left-handed amino acids. Biosignatures need not be chemical, however, and can also be suggested by a distinctive magnetic biosignature.

On Mars, surface oxidants and UV radiation will have altered or destroyed organic molecules at or near the surface. One issue that may add ambiguity in such a search is the fact that, throughout Martian history, abiogenic organic-rich chondritic meteorites have undoubtedly rained upon the Martian surface. At the same time, strong oxidants in Martian soil along with exposure to ionizing radiation might alter or destroy molecular signatures from meteorites or organisms. An alternative approach would be to seek concentrations of buried crystalline minerals, such as clays and evaporites, which may protect organic matter from the destructive effects of ionizing radiation and strong oxidants. The search for Martian biosignatures has become more promising due to the discovery that surface and near-surface aqueous environments existed on Mars at the same time when biological organic matter was being preserved in ancient aqueous sediments on Earth.

Morphology

Some researchers suggested that these microscopic structures on the Martian ALH84001 meteorite could be fossilized bacteria.
 
Another possible biosignature might be morphology since the shape and size of certain objects may potentially indicate the presence of past or present life. For example, microscopic magnetite crystals in the Martian meteorite ALH84001 were the longest-debated of several potential biosignatures in that specimen because it was believed until recently that only bacteria could create crystals of their specific shape. For example, the possible biomineral studied in the Martian ALH84001 meteorite includes putative microbial fossils, tiny rock-like structures whose shape was a potential biosignature because it resembled known bacteria. Most scientists ultimately concluded that these were far too small to be fossilized cells. A consensus that has emerged from these discussions, and is now seen as a critical requirement, is the demand for further lines of evidence in addition to any morphological data that supports such extraordinary claims. Currently, the scientific consensus is that "morphology alone cannot be used unambiguously as a tool for primitive life detection." Interpretation of morphology is notoriously subjective, and its use alone has led to numerous errors of interpretation.

Atmospheric properties and composition

Methane (CH4) on Mars - potential sources and sinks.

The atmospheric properties of exoplanets are of particular importance, as atmospheres provide the most likely observables for the near future, including habitability indicators and biosignatures. Over billions of years, the processes of life on a planet would result in a mixture of chemicals unlike anything that could form in an ordinary chemical equilibrium. For example, large amounts of oxygen and small amounts of methane are generated by life on Earth.

Also, an exoplanet's color —or reflectance spectrum— might give away the presence of vast colonies of life forms at its surface.

The presence of methane in the atmosphere of Mars indicates that there must be an active source on the planet, as it is an unstable gas. Furthermore, current photochemical models cannot explain the presence of methane in the atmosphere of Mars and its reported rapid variations in space and time. Neither its fast appearance nor disappearance can be explained yet.[26] To rule out a biogenic origin for the methane, a future probe or lander hosting a mass spectrometer will be needed, as the isotopic proportions of carbon-12 to carbon-14 in methane could distinguish between a biogenic and non-biogenic origin, similarly to the use of the δ13C standard for recognizing biogenic methane on Earth. In June, 2012, scientists reported that measuring the ratio of hydrogen and methane levels on Mars may help determine the likelihood of life on Mars. According to the scientists, "...low H2/CH4 ratios (less than approximately 40) indicate that life is likely present and active." The planned ExoMars Trace Gas Orbiter, launched in March 2016 to Mars, will study atmospheric trace gases and will attempt to characterize potential biochemical and geochemical processes at work.

Other scientists have recently reported methods of detecting hydrogen and methane in extraterrestrial atmospheres. Habitability indicators and biosignatures must be interpreted within a planetary and environmental context. For example, the presence of oxygen and methane together could indicate the kind of extreme thermochemical disequilibrium generated by life. Two of the top 14,000 proposed atmospheric biosignatures are dimethyl sulfide and chloromethane (CH
3
Cl
). An alternative biosignature is the combination of methane and carbon dioxide.

Indirect evidence

Scientific observations include the possible identification of biosignatures through indirect observation. For example, electromagnetic information through infrared radiation telescopes, radio-telescopes, space telescopes, etc. From this discipline, the hypothetical electromagnetic radio signatures that SETI scans for would be a biosignature, since a message from intelligent aliens would certainly demonstrate the existence of extraterrestrial life.

Robotic surface missions

The Viking missions to Mars
Carl Sagan with a model of the Viking lander

The Viking missions to Mars in the 1970s conducted the first experiments which were explicitly designed to look for biosignatures on another planet. Each of the two Viking landers carried three life-detection experiments which looked for signs of metabolism; however, the results were declared inconclusive.
Mars Science Laboratory
The Curiosity rover from the Mars Science Laboratory mission, with its Curiosity rover is currently assessing the potential past and present habitability of the Martian environment and is attempting to detect biosignatures on the surface of Mars. Considering the MSL instrument payload package, the following classes of biosignatures are within the MSL detection window: organism morphologies (cells, body fossils, casts), biofabrics (including microbial mats), diagnostic organic molecules, isotopic signatures, evidence of biomineralization and bioalteration, spatial patterns in chemistry, and biogenic gases. The Curiosity rover targets outcrops to maximize the probability of detecting 'fossilized' organic matter preserved in sedimentary deposits.
ExoMars rover
The 2016 ExoMars Trace Gas Orbiter (TGO) is a Mars telecommunications orbiter and atmospheric gas analyzer mission. It delivered the Schiaparelli EDM lander and then began to settle into its science orbit to map the sources of methane on Mars and other gases, and in doing so, will help select the landing site for the ExoMars rover to be launched in 2020. The primary objective of the ExoMars rover mission is the search for biosignatures on the surface and subsurface by using a drill able to collect samples down to a depth of 2 metres (6.6 ft), away from the destructive radiation that bathes the surface.
Mars 2020 Rover
The Mars 2020 rover, planned to launch in 2020, is intended to investigate an astrobiologically relevant ancient environment on Mars, investigate its surface geological processes and history, including the assessment of its past habitability, the possibility of past life on Mars, and potential for preservation of biosignatures within accessible geological materials. In addition, it will cache the most interesting samples for possible future transport to Earth.
Titan Dragonfly
The planned Dragonfly lander/aircraft to launch in 2025, would seek evidence of biosignatures on the organic-rich surface and atmosphere of Titan, as well as study its possible prebiotic primordial soup.

Anti-environmentalism

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Anti-environmentalism Anti-environmentalism is a set of ideas and actio...