Search This Blog

Sunday, December 9, 2018

Mars 2020 and Sample Return Mission

From Wikipedia, the free encyclopedia

Mars 2020
Computer-Design Drawing for NASA's 2020 Mars Rover.jpg
Computer-design drawing for NASA's 2020 Mars Rover

Mission typeRover
OperatorNASA / JPL
Websitehttp://mars.jpl.nasa.gov/mars2020/
Mission durationPlanned: 1 Mars year

Spacecraft properties
ManufacturerJet Propulsion Laboratory
Launch massRover: 1,050 kg (2,315 lb)
DimensionsRover: 3 × 2.7 × 2.2 m (9.8 × 8.9 × 7.2 ft)
Power110 watts

Start of mission
Launch dateNET July 2020
RocketAtlas V 541
Launch siteCape Canaveral SLC-41

Mars rover
Spacecraft componentRover

Mars 2020 is a Mars rover mission by NASA's Mars Exploration Program with a planned launch in July or August 2020. It will investigate an astrobiologically relevant ancient environment on Mars, investigate its surface geological processes and history, including the assessment of its past habitability, the possibility of past life on Mars, and the potential for preservation of biosignatures within accessible geological materials. It will cache sample containers along its route for a potential future Mars sample-return mission.

The as-yet unnamed Mars 2020 mission was announced by NASA on 4 December 2012 at the fall meeting of the American Geophysical Union in San Francisco. The rover's design is derived from the Curiosity rover, and will use many components already fabricated and tested, but it will carry different scientific instruments and a core drill.

In November 2018, NASA announced that Jezero crater on Mars will be the landing site for the Mars 2020 rover, which is to launch on 17 July 2020, and touch down on Mars on 18 February 2021.

Mission overview

Artist concept of the Mars 2020 rover

The mission will seek signs of habitable conditions on Mars in the ancient past, and will also search for evidence —or biosignatures— of past microbial life. The rover is planned for launch in 2020 on an Atlas V-541, and the Jet Propulsion Laboratory will manage the mission. The mission is part of NASA's Mars Exploration Program.

The Science Definition Team proposed that the rover collect and package as many as 31 samples of rock cores and surface soil for a later mission to bring back for definitive analysis on Earth. In 2015, however, they expanded the concept, planning to collect even more samples and distribute the tubes in small piles or caches across the surface of Mars.

In September 2013 NASA launched an Announcement of Opportunity for researchers to propose and develop the instruments needed, including the Sample Caching System. The science instruments for the mission were selected in July 2014 after an open competition based on the scientific objectives set one year earlier. The science conducted by the rover's instruments will provide the context needed for detailed analyses of the returned samples. The chairman of the Science Definition Team stated that NASA does not presume that life ever existed on Mars, but given the recent Curiosity rover findings, past Martian life seems possible.

Objectives

The Mars 2020 rover will explore a site likely to have been habitable. It will seek signs of past life, set aside a returnable cache with the most compelling rock core and soil samples, and demonstrate technology needed for the future human and robotic exploration of Mars. 

A key mission requirement is that it must help prepare NASA for its long-term Mars sample-return mission and crewed mission efforts. The rover will make measurements and technology demonstrations to help designers of a future human expedition understand any hazards posed by Martian dust, and will test technology to produce a small amount of pure oxygen (O
2
) from Martian atmospheric carbon dioxide (CO
2
). Improved precision landing technology that enhances the scientific value of robotic missions also will be critical for eventual human exploration on the surface. Based on input from the Science Definition Team, NASA defined the final objectives for the 2020 rover. Those become the basis for soliciting proposals to provide instruments for the rover's science payload in the spring 2014.

The mission will also attempt to identify subsurface water, improve landing techniques, and characterize weather, dust, and other potential environmental conditions that could affect future astronauts living and working on Mars.

Design

Powered Descent Vehicle, part of the sky crane landing system
 
Full-size model of the rover wheels

The three major components of the Mars 2020 spacecraft are the cruise stage for travel between Earth and Mars; the Entry, Descent, and Landing System (EDLS) that includes the aeroshell, parachute, descent vehicle, and sky crane; and the rover. 

The rover is based on the design of Curiosity. While there are differences in scientific instruments and the engineering required to support them, the entire landing system (including the sky crane and heat shield) and rover chassis can essentially be recreated without any additional engineering or research. This reduces overall technical risk for the mission, while saving funds and time on development. One of the upgrades is a guidance and control technique called "Terrain Relative Navigation" to fine-tune steering in the final moments of landing. In October 2016, NASA reported using the Xombie rocket to test the Lander Vision System (LVS), as part of the Autonomous Descent and Ascent Powered-flight Testbed (ADAPT) experimental technologies, for the Mars 2020 mission landing.

A Multi-Mission Radioisotope Thermoelectric Generator (MMRTG), left over as a backup part for Curiosity during its construction, will power the rover. The generator has a mass of 45 kilograms (99 lb) and uses 4.8 kilograms (11 lb) of plutonium dioxide as the source of steady supply of heat that is converted to electricity; the electrical power generated is approximately 110 watts at launch with little decrease over the mission time. Two lithium-ion rechargeable batteries are included to meet peak demands of rover activities when the demand temporarily exceeds the MMRTG's steady electrical output levels. The MMRTG offers a 14-year operational lifetime, and it was provided to NASA by the US Department of Energy. Unlike solar panels, the MMRTG provides engineers with significant flexibility in operating the rover's instruments even at night and during dust storms, and through the winter season.

Engineers redesigned the Mars 2020 rover wheels to be more robust than Curiosity's wheels, which have sustained some damage. The rover will have thicker, more durable aluminium wheels, with reduced width and a greater diameter (52.5 cm, 20.7 in) than Curiosity's 50 cm (20 in) wheels. The aluminium wheels are covered with cleats for traction and curved titanium spokes for springy support. The combination of the larger instrument suite, new Sampling and Caching System, and modified wheels makes Mars 2020 heavier than its predecessor, Curiosity.

The rover mission and launch are estimated to cost about US$2.1 billion. The mission's predecessor, the Mars Science Laboratory, cost US$2.5 billion in total. The availability of spare parts make the new rover somewhat more affordable. Curiosity's engineering team are also involved in the rover's design.

Scientific instruments

Proposed Mars 2020 rover payload

Based on the scientific objectives, nearly 60 proposals for rover instrumentation were evaluated and, on 31 July 2014, NASA announced the payload for the rover:
  • Planetary Instrument for X-Ray Lithochemistry (PIXL), an X-ray fluorescence spectrometer to determine the fine scale elemental composition of Martian surface materials.
  • Radar Imager for Mars' subsurface experiment (RIMFAX), a ground-penetrating radar to image different ground densities, structural layers, buried rocks, meteorites, and detect underground water ice and salty brine at 10 m (33 ft) depth.
  • Mars Environmental Dynamics Analyzer (MEDA), a set of sensors that measure temperature, wind speed and direction, pressure, relative humidity, radiation, and dust size and shape. It will be provided by Spain's Centro de Astrobiología.
  • Mars Oxygen ISRU Experiment (MOXIE), an exploration technology investigation that will produce a small amount of oxygen (O
    2
    ) from Martian atmospheric carbon dioxide (CO
    2
    ). This technology could be scaled up in the future for human life support or to make the rocket fuel for return missions.
  • SuperCam, an instrument suite that can provide imaging, chemical composition analysis and mineralogy in rocks and regolith from a distance. It is an upgraded version of the ChemCam on the Curiosity rover but with two lasers and four spectrometers that will allow it to remotely identify biosignatures and assess the past habitability.
  • Mastcam-Z, a stereoscopic imaging system with the ability to zoom.
  • Scanning Habitable Environments with Raman and Luminescence for Organics and Chemicals (SHERLOC), an ultraviolet Raman spectrometer that uses fine-scale imaging and an ultraviolet (UV) laser to determine fine-scale mineralogy and detect organic compounds.
  • Mars Helicopter Scout (MHS) is a planned solar powered helicopter drone with a mass of 1.8 kg (4.0 lb) that is expected to help pinpoint interesting targets for study and plan the best driving route for the rover. The small helicopter is expected to fly up to five times during its 30-day testing, and will fly no more than 3 minutes per day. It is a technology demonstrator that will form the foundation on which more capable helicopters can be developed for aerial exploration of Mars and other planetary targets with an atmosphere.
  • Microphones will be used during the landing event, while driving, and when collecting samples.
  • 23 cameras in total are included in the Mars 2020 rover.
Mars 2020 rover instruments
 
 
 
 
23 cameras
 
Solar powered helicopter drone as navigation aid
 
Proposed adaptive caching for sample return

Proposed landing sites

In May 2017, evidence of the earliest known life on land may have been found in 3.48-billion-year-old geyserite, a mineral deposit often found around hot springs and geysers, uncovered in the Pilbara Craton of Western Australia. These findings may be helpful in deciding where best to search for early signs of life on the planet Mars. The following locations are the eight landing sites that were under consideration for Mars 2020:
A workshop was held on 8–10 February 2017 in Pasadena, California, to discuss these sites, with the goal of narrowing down the list to three sites for further consideration. The selected sites are:
Proposed landing site – Jezero crater (18.855°N 77.519°E)
 
Jezero and surrounding region
 
Jezero crater on Mars - ancient rivers (on the left) fed the crater; overflow flooding carved the outlet canyon (on the right).
 
Jezero delta – chemical alteration by water

In November 2018, it was announced that Jezero crater was chosen as the planned landing site for Mars 2020 rover.

Mars sample-return mission

From Wikipedia, the free encyclopedia
 
Sample-return concept

A Mars sample-return mission (MSR) would be a spaceflight mission to collect rock and dust samples on Mars and then return them to Earth. Sample-return would be a very powerful type of exploration, because analysis is freed from the time, budget, and space constraints of spacecraft sensors.

According to Louis Friedman, Executive Director of The Planetary Society, a Mars sample-return mission is often described by the planetary science community as one of the most important robotic space missions, due to its high expected scientific return on investment.

Over time, several concept missions has been studied, but none of them got beyond the study phase. The three latest concepts for a MSR mission are a NASA-ESA proposal, a Russian proposal (Mars-Grunt), and a Chinese proposal.

Scientific value

Mars meteorites in a Museum

The return of Mars samples would be beneficial to science by allowing more extensive analysis to be undertaken of the samples than could be done by instruments painstakingly transferred to Mars. Also, the presence of the samples on Earth would allow scientific equipment to be used on stored samples, even years and decades after the sample-return mission.

In 2006, MEPAG identified 55 important future science investigations related to the exploration of Mars. In 2008, they concluded that about half of the investigations "could be addressed to one degree or another by MSR", making MSR "the single mission that would make the most progress towards the entire list" of investigations. Moreover, it was found that a significant fraction of the investigations cannot be meaningfully advanced without returned samples.

One source of Mars samples is what are thought to be Martian meteorites, which are rocks ejected from Mars that made their way to Earth. Of over 61,000 meteorites that have been found on Earth, 132 were identified as Martian as of 3 March 2014.[5] These meteorites are thought to be from Mars because they have elemental and isotopic compositions that are similar to rocks and atmosphere gases analyzed by spacecraft on Mars.

In 1996 the possibility of life on Mars was questioned again when apparent microfossils might have been found in a Mars meteorite (see ALH84001). This led to a renewed interest in a Mars sample-return, and several different architectures were considered. NASA administrator Goldin laid out three options for MSR: "paced", "accelerated", and "aggressive". It was thought that MSR could be done for less than 100 million USD per year, with something similar to then-current Mars exploration budgets.

History

Artist concept of a Mars sample-return mission, 1993

For at least three decades, Western scientists have advocated the return of geological samples from Mars. One concept was studied with the Sample Collection for Investigation of Mars (SCIM) proposal, which involved sending a spacecraft in a grazing pass through Mars upper atmosphere to collect dust and air samples without landing or orbiting.

The Soviet Union considered a Mars sample-return mission, Mars 5NM, in 1975 but it was cancelled due to the repeated failures of the N1 rocket that would have been used to launch it. A double sample-return mission, Mars 5M (Mars-79) planned for 1979, was cancelled due to complexity and technical problems.

One mission concept (provisionally named simply Mars Sample-Return) was originally considered by NASA's Mars Exploration Program to return samples by 2008, but was cancelled following a review of the program. A NASA-ESA concept mission was aborted in 2012.

The United States' Mars Exploration Program, formed after Mars Observer's failure in September 1992, supported a Mars sample-return. One example of a mission architecture was the Groundbreaking Mars Sample-Return by MacPhereson in the early 2000s.

In early 2011, the National Research Council's Planetary Science Decadal Survey, which laid out mission planning priorities for the period 2013–2022 at the request of NASA and the NSF, declared a MSR campaign its highest priority Flagship Mission for that period. In particular, it endorsed the proposed Mars Astrobiology Explorer-Cacher (MAX-C) mission in a "descoped" (less ambitious) form, although this mission plan was officially cancelled in April 2011.

In September 2012, the United States' Mars Program Planning Group endorsed a sample-return after evaluating long-term Mars' plans.

The key mission requirement for the planned Mars 2020 rover is that it must help prepare NASA for its MSR campaign,. which is needed before any crewed mission takes place. Such effort would require three additional vehicles: an orbiter, a fetch rover, and a Mars ascent vehicle (MAV).

NASA–ESA concept

Ascent vehicle in its protective shroud, 2009 ESA-NASA design.

In mid-2006, the international Mars Architecture for the Return of Samples (iMARS) Working Group was chartered by the International Mars Exploration Working Group (IMEWG) to outline the scientific and engineering requirements of an internationally sponsored and executed Mars sample-return mission in the 2018–2023 time frame.

In October 2009, NASA and ESA established the Mars Exploration Joint Initiative to proceed with the ExoMars mission, whose ultimate aim is "the return of samples from Mars in the 2020s". A first step in this was one particular proposal, a joint project between NASA and ESA called ExoMars, would launch in 2018 with unspecified missions to return the sample itself expected in the 2020–2022 time frame. The cancellation of the caching rover MAX-C and later NASA withdrawal from ExoMars, pushed back a sample-return mission to an undetermined date. 

Due to budget limitations the MAX-C mission, which was the first NASA-ESA mission leading to a MSR, was canceled in 2011 and the overall plan in 2012. The pull-out was described as "traumatic" for the science community. However, in April 2018, a letter of intent was signed by NASA and ESA that may provide a basis for a Mars sample-return mission.

NASA proposals

In September 2012, NASA announced its intention to further study several strategies of bringing a sample of Mars to Earth – including a multiple launch scenario, a single-launch scenario and a multiple-rover scenario – for a mission beginning as early as 2018. Dozens of samples would be collected and cached by the Mars 2020 rover, and would be left on the surface of Mars for possible later retrieval. A "fetch rover" would retrieve the sample caches and deliver them to a Mars ascent vehicle (MAV). In July 2018 NASA contracted Airbus to produce a "fetch rover" concept. The MAV would launch from Mars and enter a 500 km orbit and rendezvous with a new Mars orbiter. The sample container would be transferred to an Earth entry vehicle (EEV) which would bring it to Earth, enter the atmosphere under a parachute and hard-land for retrieval and analyses in specially designed safe laboratories.

Prototype – Returnable Cache of Martian Samples (Mars 2020 Rover, NASA, 9 July 2013)

Two-launches architecture

In this scenario, the sample-return mission would span two launches at an interval of about four years. The first launch would be for the orbiter, the second for the lander. The lander would include the Mars Ascent Vehicle (MAV).

Three-launches architecture

This concept is to have the sample-return mission split into a total of three launches. In this scenario, the sample-collection rover (e.g. Mars 2020 rover) would be launched separately to land on Mars first, and carry out analyses and sample collection over a lifetime of at least 500 Sols (Martian days).

Some years later, a Mars orbiter would be launched, followed by the lander including the Mars Ascent Vehicle (MAV). The lander would bring a small and simple "fetch rover", whose sole function would be to retrieve the sample containers from the caches left on the surface or directly from the Mars 2020 rover, and return them to the lander where it would be loaded onto the MAV for delivery to the orbiter and then be sent to Earth.

This design would ease the schedule of the whole mission, giving controllers time and flexibility to carry out the required operations. Furthermore, the program could rely on the successful landing system developed for the Mars Science Laboratory, avoiding the costs and risks associated with developing and testing yet another landing system from scratch.

SCIM

Artist concept of SCIM passing through the Martian atmosphere

SCIM (Sample Collection for Investigation of Mars) was a low-cost low-risk Mars sample-return mission design, proposed in the Mars Scout Program. SCIM would return dust and air samples without landing or orbiting, by dipping through the atmosphere as it collects Mars material. It uses heritage from the successful Stardust and Genesis sample-return missions.

Additional plans

Russia

A Russian Mars sample-return mission concept is Mars-Grunt. It is meant to use Fobos-Grunt design heritage. Plans as of 2011 envisioned a two-stage architecture with an orbiter and a lander (but no roving capability), with samples gathered from the immediate surroundings of the lander by a robotic arm.

China

China has plans for a Mars sample-return mission by 2030. The mission plan combines elements of remote sensing of the surface, soft landing, using a rover to gather samples, then sample-return.

France

France has worked towards a sample-return for many years. This included the preparation of laboratories for returned samples, and numerous proposals. They worked on the development of a Mars sample-return orbiter, which would capture and return the samples as part of a joint mission with either the United States, or other European countries.

Japan

On 9 June 2015, the Japanese Aerospace Exploration Agency (JAXA) unveiled a plan named Martian Moons Exploration (MMX) to retrieve samples from one of the moons of Mars. This mission will build on the expertise to be gained from the Hayabusa 2 and SLIM missions. Of the two moons, Phobos's orbit is closer to Mars and its surface may have adhered particles blasted from the red planet; thus the Phobos samples collected by MMX may contain material originating from Mars itself. Japan has also shown interest in participating in an international Mars sample-return mission.

Potential for back contamination

the landing capsule as seen on the ground at the Utah Test and Training range
Stardust's returned landing capsule

Since it is currently unknown whether life forms exist on Mars, the mission could potentially transfer viable organisms resulting in back contamination—the introduction of extraterrestrial organisms into Earth's biosphere. The scientific consensus is that the potential for large-scale effects, either through pathogenesis or ecological disruption, is extremely small. Nevertheless, returned samples from Mars will be treated as potentially biohazardous until scientists can determine that the returned samples are safe. The goal is to reduce the probability of release of a Mars particle to less than one in a million. In addition, the proposed NASA Mars Sample-return mission will not be approved by NASA until the National Environmental Policy Act (NEPA) process has been completed. The NEPA process would require a public review of all potential impacts that could result from MSR, including worst case back contamination scenarios. It is likely that a formal Environmental Impact Statement (EIS) would have to be prepared. Furthermore, under the terms of Article VII of the Outer Space Treaty and probably various other legal frameworks, were a release of organisms to occur, the releasing nation or nations would be liable for any resultant damages.

Part of the sample-return mission would be to prevent contact between the Martian environment and the exterior of the sample container. In order to eliminate the risk of parachute failure, the current plan is to use the thermal protection system to cushion the capsule upon impact (at terminal velocity). The sample container will be designed to withstand the force of the impact. To receive the returned samples, NASA proposed a specially designed Biosafety Level 4 containment facility, the Mars Sample-Return Receiving facility (MSRRF). Not knowing what properties (e.g., size) any Martian organisms might exhibit is a complication in design of such a facility.

Other scientists and engineers—notably Robert Zubrin of the Mars Society—argue that contamination risk is functionally zero and there is little need to worry. They cite, among other things, lack of any verifiable incident although trillions of kilograms of material have been exchanged between Mars and Earth due to meteorite impacts.

The International Committee Against Mars Sample Return (ICAMSR) is a small advocacy group led by Barry DiGregorio, who campaigns against a Mars sample-return mission. While ICAMSR acknowledges a low probability for biohazards, it considers the proposed containment measures insufficient, and unsafe at this stage. ICAMSR is demanding more in situ studies on Mars first, and preliminary biohazard testing at the International Space Station before the samples are brought to Earth. DiGregorio also supports the conspiracy theory of a NASA coverup regarding the discovery of microbial life by the 1976 Viking landers. ICAMSR also supports a fringe view that several pathogens -such as common viruses- originate in space and probably caused some of the mass extinctions, and deadly pandemics. Claims connecting terrestrial disease and extraterrestrial pathogens have been rejected by the scientific community.

NASA Sample-Return Robot Challenge

The Sample-Return Robot Challenge, as part of NASA's Centennial Challenges program, offered a total $1.5 million to teams that can build fully autonomous robots that can find, retrieve, and return up to 10 different sample types within a large outdoor environment (80,000 m2). The challenge started in 2012 and ended in 2016. Over 50 teams competed during the 5-year history of the NASA Challenge. A robot named Cataglyphis, developed by Team Mountaineers from West Virginia University completed the final challenge in 2016.

In popular culture

Mars 2020 Mission timeline


Mars 2020 mission timeline (as of July 2013).

Saturday, December 8, 2018

SpaceX Mars transportation infrastructure

From Wikipedia, the free encyclopedia

Elon Musk and SpaceX have proposed the development of Mars transportation infrastructure in order to facilitate the eventual colonization of Mars. The design includes fully reusable launch vehicles, human-rated spacecraft, on-orbit propellant tankers, rapid-turnaround launch/landing mounts, and local production of rocket fuel on Mars via in situ resource utilization (ISRU). SpaceX's aspirational goal is to land the first humans on Mars by 2024.
The key element of the infrastructure is the BFR, a two-stage rocket where the upper stage is also used as spacecraft to reach Mars and to return to Earth. To achieve a large payload, the spacecraft first enters Earth orbit, where it is refuelled before it departs to Mars. After landing on Mars, the spacecraft is loaded with locally produced fuel to return to Earth. The expected payload of BFR is 150 tonnes (330,000 lb) to Mars.

SpaceX intends to concentrate its resources on the transportation part of the Mars colonization project, including the design of a Sabatier propellant plant that will be deployed on Mars to synthesize methane and liquid oxygen as rocket propellants from the local supply of atmospheric carbon dioxide and ground-accessible water ice. However, Musk advocates a larger set of long-term Mars settlement objectives, going far beyond what SpaceX projects to build; a successful colonization would ultimately involve many more economic actors—whether individuals, companies, or governments—to facilitate the growth of the human presence on Mars over many decades.

History

As early as 2007, Elon Musk stated a personal goal of eventually enabling human exploration and settlement of Mars, although his personal public interest in Mars goes back at least to 2001. Bits of additional information about the mission architecture were released in 2011–2015, including a 2014 statement that initial colonists would arrive at Mars no earlier than the middle of the 2020s. Company plans in mid-2016 continued to call for the arrival of the first humans on Mars no earlier than 2025.

Musk stated in a 2011 interview that he hoped to send humans to Mars's surface within 10–20 years, and in late 2012 he stated that he envisioned a Mars colony of tens of thousands with the first colonists arriving no earlier than the middle of the 2020s.

Development work began in earnest before 2012 when SpaceX started to design the Raptor rocket engine which will propel all versions of the BFR launch vehicle and spacecraft. Rocket engine development is one of the longest subprocesses in the design of new rockets. 

In October 2012, Musk articulated a high-level plan to build a second reusable rocket system with capabilities substantially beyond the Falcon 9/Falcon Heavy launch vehicles on which SpaceX had by then spent several billion US dollars. This new vehicle was to be "an evolution of SpaceX's Falcon 9 booster ... much bigger [than Falcon 9]." But Musk indicated that SpaceX would not be speaking publicly about it until 2013. In June 2013, Musk stated that he intended to hold off any potential IPO of SpaceX shares on the stock market until after the "Mars Colonial Transporter is flying regularly."

In August 2014, media sources speculated that the initial flight test of the Raptor-driven super-heavy launch vehicle could occur as early as 2020, in order to fully test the engines under orbital spaceflight conditions; however, any colonization effort was reported to continue to be "deep into the future".

In January 2015, Musk said that he hoped to release details in late 2015 of the "completely new architecture" for the system that would enable the colonization of Mars. But those plans changed and, by December 2015, the plan to publicly release additional specifics had moved to 2016. In January 2016, Musk indicated that he hoped to describe the architecture for the Mars missions with the next generation SpaceX rocket and spacecraft later in 2016, at the 67th International Astronautical Congress conference, in September 2016. Musk stated in June 2016 that the first unmanned MCT Mars flight was planned for departure in 2022, to be followed by the first manned MCT Mars flight departing in 2024. By mid-September 2016, Musk noted that the MCT name would not continue, as the system would be able to "go well beyond Mars", and that a new name would be needed. This became the Interplanetary Transport System (ITS), a name that would, in the event, last for just one year. 

On 27 September 2016, at the 67th annual meeting of the International Astronautical Congress, Musk unveiled substantial details of the design for the transport vehicles—including size, construction material, number and type of engines, thrust, cargo and passenger payload capabilities, on-orbit propellant-tanker refills, representative transit times, etc.—as well as a few details of portions of the Mars-side and Earth-side infrastructure that SpaceX intends to build to support the flight vehicles. In addition, Musk championed a larger systemic vision, a vision for a bottom-up emergent order of other interested parties—whether companies, individuals, or governments—to utilize the new and radically lower-cost transport infrastructure to build up a sustainable human civilization on Mars, potentially, on numerous other locations around the Solar System, by innovating and meeting the demand that such a growing venture would occasion. In the 2016 iteration, the system technology was specifically envisioned to eventually support exploration missions to other locations in the Solar System including the moons of Jupiter and Saturn.

In July 2017, SpaceX made public plans for ITS based on a smaller launch vehicle and spacecraft. The new system architecture has "evolved quite a bit" since the November 2016 articulation of the very large Interplanetary Transport System. A key driver of the new architecture is to make the new system useful for substantial Earth-orbit and cislunar launches so that the new system might pay for itself, in part, through economic spaceflight activities in the near-Earth space zone. The BFR is designed to fulfill the Mars transportation goals while also launching satellites, servicing the ISS, flying humans and cargo to the Moon, and enabling ballistic transport of passengers on Earth as a substitute to long-haul airline flights.

Musk indicated in November 2018 that "We've recently made a number of breakthroughs [that I am] just really fired up about." and that, as a result, he foresees a 70 percent probability that he personally would go to Mars. He answered an interviewer's question that included a presumption that "a Mars voyage could be an escape hatch for the rich" by saying:
No. Your probability of dying on Mars is much higher than Earth. Really the ad for going to Mars would be like Shackleton’s ad for going to the Antarctic [in 1914]. It’s gonna be hard. There’s a good chance of death, going in a little can through deep space. You might land successfully. Once you land successfully, ... there's a good chance you'll die there. We think you can come back; but we're not sure.

Description

Interplanetary Spaceship departing Earth, passing the Moon.

SpaceX's Mars objectives, and the specific mission architectures and launch vehicle designs that might be able to participate in parts of that architecture, have varied over the years, and only partial information has been publicly released. However, once the architecture was unveiled in late 2016, all launch vehicles, spacecraft, and ground infrastructure have shared several basic elements.

Overview and major elements

The SpaceX Mars architecture, first detailed publicly in 2016, consists of a combination of several elements that are key—according to Musk—to making long-duration beyond Earth orbit (BEO) spaceflights possible by reducing the cost per ton delivered to Mars.

Additional detail on the Mars transportation architecture was added by Musk in 2017:
  • a new fully reusable super heavy-lift launch vehicle that consists of a reusable booster stage and a reusable integrated second-stage-with-spacecraft that comes in at least two versions: a large, long-duration, beyond-Earth-orbit spacecraft capable of carrying passengers, bulk cargo, or propellant cargo, to other Solar System destinations. The combination of a second-stage of a launch vehicle with a long-duration spacecraft is unusual for any space mission architecture, and has not been seen in previous spaceflight technology.
  • refilling of propellants in orbit, specifically to enable the long-journey spacecraft to expend most all of its propellant load during the launch to low Earth orbit while it serves as the second stage of the launch vehicle, and then—after refilling on orbit—provide the significant amount of energy necessary to put the spacecraft onto an interplanetary trajectory.
  • propellant production on the surface of Mars: to enable the return trip back to Earth and support reuse of the spacecraft, enabling significantly lower cost to transport cargo and passengers to distant destinations. Once again, the large propellant tanks in the integrated space vehicle are filled remotely.
  • selection of the right propellant: Methane (CH4)/oxygen (O2)—also known as "deep cryo methalox"—was selected as it was considered better than other common space vehicle propellants like Kerolox or Hydrolox principally due to ease of production on Mars and the lower cost of the propellants on Earth when evaluated from an overall system optimization perspective. Methalox was considered equivalent to one of the other primary options in terms of vehicle reusability, on-orbit propellant transfer, and appropriateness for super-heavy vehicles.

Rocket technology development

SpaceX has articulated that a completely new, fully reusable, super heavy-lift launch vehicle is needed, and is developing designs that consist of a reusable booster stage and a reusable integrated second-stage/long-duration-spacecraft. They have developed more than one comprehensive set of booster and spacecraft designs that they believe would best achieve their Mars vision.

The current vehicle designs, unveiled in September 2017, include four vehicles that each use what Musk called the internal codename "BFR": the BFR booster, BFR spaceship, BFR tanker, and the BFR satellite delivery spacecraft.

Super-heavy lift launch vehicle

The 9 meters (30 ft)-diameter design released in September 2017 for the super-heavy lift launch vehicle BFR was sized to place up to 150 tonnes (330,000 lb) (reusable-mode) or 250 tonnes (550,000 lb) (expendable-mode)—or carry 150 tonnes (330,000 lb) of propellant on a tanker—to low Earth orbit (LEO). The 2016 design for the 12 meters (39 ft)-diameter ITS launch vehicle was sized to place up to 300 tonnes (660,000 lb) (reusable-mode) or 550 tonnes (1,210,000 lb) (expendable-mode)—or carry 150 tonnes (330,000 lb) of propellant on an ITS tanker—to LEO.

All parts of the SpaceX rocket architecture for Mars will be powered by the Raptor bipropellant liquid rocket engines on both stages, using exclusively densified liquid methane fuel and liquid oxygen oxidizer on both stages. The tanks will be autogenously pressurized, eliminating the need for the problematic helium gas pressurization.

All parts of the launch vehicle design are fully reusable, making use of the SpaceX reusable technology that was developed during 2011–2017 for Falcon 9 and Falcon Heavy.

On all Earth-away launches, the long-duration spacecraft (whether tanker, cargo ship, or spaceship) is planned to also play a role briefly as the second stage of the launch vehicle to provide acceleration to orbital velocity, a design approach not used in other launch vehicles.

Passenger spaceship

The passenger spacecraft is an interplanetary-capable ship with a carbon-fiber primary structure propelled by Raptor engines operating on densified methane/oxygen propellants.

As of September 2017, the current design is known as the BFR spaceship and by October 2017, was slated to be powered by seven Raptor engines, the three center engines to be used for retropropulsive landing of the spaceship.

The 2016 design—termed the Interplanetary Spaceship—was 49.5 m (162 ft)-long, had a maximum hull diameter of 12 m, with a 17 m (56 ft)-diameter at its widest point, was powered by nine Raptor engines, and was projected to be capable of transporting up to 450 tonnes (990,000 lb) of cargo and passengers per trip to Mars, with on-orbit propellant refill before the beyond-Earth-orbit part of the journey.

Early flights to Mars are expected to carry mostly equipment and few people.

The transport capacity of the 2016 spaceship from low Earth orbit to a Mars trajectory—with a trans-Mars trajectory insertion energy gain of 6 km/s (3.7 mi/s) and full propellant tanks—was projected to be 450 tonnes (500 tons) to Mars orbit, or 300 tonnes (330 tons) landed on the surface with retropropulsive landing. SpaceX estimated Earth-Mars transit times to vary between 80–150 days, depending on particular planetary alignments during the nine discrete 2020–2037 mission opportunities, assuming 6 km/s delta-v added at trans-Mars injection.

Artist's rendering of an Interplanetary Spaceship entering the Martian atmosphere

The spaceship is designed to enter the Martian atmosphere at entry velocities in excess of 8.5 km/s and allow aerodynamic forces to provide the major part of the deceleration before the three center Raptor engines perform the final landing burn. The heat shield material protecting the ship on descent is PICA 3.0, and is reusable. Entry g-forces at Mars are expected to be in order of 4–6 g during the descent. The spaceship design g-load would be in the range of 5 g nominal, but able to withstand peak loads 2 to 3 times higher without breaking up. Energy for the spaceship during the journey to Mars is projected to be produced by two large solar panel arrays, generating in the 2016 design approximately 200 kW of power while at the distance of Earth from the Sun, and less as the journey progresses and the Sun is farther away as the ship nears Mars. On Mars journeys, the spaceship may use a large internal water layer to help shield occupants from space radiation, and may have a cabin oxygen content that is up to two times that which is found in Earth's atmosphere. The initial tests of the spaceship are not expected prior to 2020, with the booster to follow only later.

According to Musk, once landed, the spaceship would effectively become the first human habitat on Mars.

Tanker and cargo spacecraft

A key feature of the overall launch system is a propellant-cargo-only tanker or cargo spacecraft: the BFR tanker or BFR satellite delivery spacecraft. Just as for the spaceship, the tanker or cargo spacecraft serve as the upper stage of the ITS launch vehicle during the launch from Earth. 

The vehicle design for the tanker is exclusively for the launch and short-term holding of propellants to be transported to low Earth orbit for re-filling propellants in the spacecraft/ships. Once on orbit, a rendezvous operation will be effected with any ship that will be transiting on to a beyond Earth-orbit (BEO) destination, plumbing connections are made, and liquid methane and liquid oxygen propellants are transferred to the spaceship. To fully fuel a BEO ship for a long-duration flight, it is expected that several tankers would be required to launch from Earth, carrying and transferring the propellant to fully load for the longer, high-energy journey.

Following completion of the on-orbit propellant offloading, the concept of operations called for the reusable tanker to reenter Earth's atmosphere, land, and be prepared for another tanker flight.

The tankers and cargo ships are planned to be the same physical dimensions as the passenger spaceship.

Propellant plant on Mars

A key part of the Mars system architecture that Musk conceptualized in order to radically decrease the cost of spaceflight to beyond-Earth-orbit destinations is the placement and operation of a physical plant on Mars to handle in situ production and storage of the propellant components necessary to launch and fly the cargo and passenger spaceships back to Earth, or perhaps to increase the mass that can be transported onward to destinations in the outer Solar System. Coupled with the Earth-orbit tank filling prior to the journey to Mars, and the fully reusable launch vehicles and spacecraft, all three elements are needed to reduce the transport cost by the multiple orders of magnitude that Musk sees as necessary to support sustainable colonization of Mars.

The first cargo spaceship to transit to Mars was projected to carry a small propellant plant as a part of its cargo load. The plant is expected to be expanded over multiple synods as more equipment arrives, is installed, and placed into mostly autonomous production.

The propellant plant intends to take advantage of the large supplies of carbon dioxide and water resources on Mars, mining the water (H2O) from subsurface ice and collecting CO2 from the atmosphere. A chemical plant will process the raw materials by means of electrolysis and the Sabatier process to produce molecular oxygen (O2) and methane (CH4), and then liquefy it to facilitate long-term storage and ultimate use. Analysis of a Mars-based chemical plant based on Earth-constructed pressurized modules that fit whole into the cargo hold of an ITS cargo ship, analogous to shipping containers, has been proposed to initiate a chemical industry on Mars.

Launch site

As of September 2017, the SpaceX next-generation launch vehicle, BFR, will be used to replace all existing SpaceX launch vehicles—Falcon 9 and Falcon Heavy—as well as the Dragon spacecraft, and that is the launch vehicle that will be used to support the SpaceX Mars space transport architecture. The SpaceX leased launch facility at LC-39A will be used to launch BFR.

When their earlier concept, then-named "Mars Colonial Transporter," was initially discussed in March 2014, no launch site had yet been selected for the super-heavy lift rocket and SpaceX indicated at the time that their leased facility at historic Launch Pad 39A would not be large enough to accommodate the vehicle as it was understood conceptually in 2014, and that therefore a new site would need to be built in order to launch the >10-meter diameter rocket. However, it was later revealed that the optimized size of the Raptor engine would be fairly close to the physical size of the Merlin 1D (although each engine will have approximately three times the thrust), allowing the use of LC-39A for BFR.

During a groundbreaking ceremony for the SpaceX South Texas Launch Site in September 2014, Elon Musk mused that the first person to go to another planet could possibly launch from Texas, but did not indicate at the time what launch vehicle might be used to carry humans to orbit. Musk stated in September 2016 that the launch vehicle may launch from more than one site.

Mission concepts

Mars early missions

Musk has indicated that the earliest SpaceX-sponsored missions would have a smaller crew and use much of the pressurized space for cargo.

As envisioned in 2016, the first crewed Mars missions might be expected to have approximately 12 people, with the primary goal to "build out and troubleshoot the propellant plant and Mars Base Alpha power system" as well as a "rudimentary base." In the event of an emergency, the spaceship would be able to return to Earth without having to wait a full 26 months for the next synodic period.

Before any people are transported to Mars, some number of cargo missions would be undertaken first in order to transport the requisite equipment, habitats and supplies. Equipment that would accompany the early groups would include "machines to produce fertilizer, methane and oxygen from Mars' atmospheric nitrogen and carbon dioxide and the planet's subsurface water ice" as well as construction materials to build transparent domes for crop growth.

The early concepts for "green living space" habitats include glass panes with a carbon-fiber-frame geodesic domes, and "a lot of miner/tunneling droids [for building] out a huge amount of pressurized space for industrial operations." But these are merely conceptual and not a detailed design plan.

Mars settlement concept

As of 2016 when publicly discussed, SpaceX the company is concentrating its resources on the transportation part of the overall Mars architecture project as well as an autonomous propellant plant that could be deployed on Mars to produce methane and oxygen rocket propellants from local resources. If built, and if planned objectives are achieved, then the transport cost of getting material and people to space, and across the inner Solar System, will be reduced by several orders of magnitude. SpaceX CEO Elon Musk is championing a much larger set of long-term Mars settlement objectives, ones that take advantage of these lower transport costs to go far beyond what the SpaceX company will build and that will ultimately involve many more economic actors—whether individual, company, or government—to build out the settlement over many decades.

In addition to explicit SpaceX plans and concepts for a transportation system and early missions, Musk has personally been a very public exponent of a large systemic vision for building a sustainable human presence on Mars over the very long term, a vision well beyond what his company or he personally can effect. The growth of such a system over decades cannot be planned in every detail, but is rather a complex adaptive system that will come about only as others make their own independent choices as to how they might, or might not, connect with the broader "system" of an incipient (and later, growing) Mars settlement. Musk sees the new and radically lower-cost transport infrastructure facilitating the buildup of a bottom-up economic order of other interested parties—whether companies, individuals, or governments—who will innovate and supply the demand that such a growing venture would occasion.

While the initial SpaceX Mars settlement would start very small, with an initial group of about a dozen people, with time, Musk hopes that such an outpost would grow into something much larger and become self-sustaining, at least 1 million people. According to Musk,
Even at a million people you’re assuming an incredible amount of productivity per person, because you would need to recreate the entire industrial base on Mars. You would need to mine and refine all of these different materials, in a much more difficult environment than Earth. There would be no trees growing. There would be no oxygen or nitrogen that are just there. No oil.
Excluding organic growth, if you could take 100 people at a time, you would need 10,000 trips to get to a million people. But you would also need a lot of cargo to support those people. In fact, your cargo to person ratio is going to be quite high. It would probably be 10 cargo trips for every human trip, so more like 100,000 trips. And we’re talking 100,000 trips of a giant spaceship.
The notional journeys outlined in the November 2016 talk would require 80 to 150 days of transit time, with an average trip time to Mars of approximately 115 days (for the nine synodic periods occurring between 2020 and 2037). In 2012, Musk stated an aspirational price goal for such a trip might be on the order of US$500,000 per person, but in 2016 he mentioned that long-term costs might become as low as US$200,000.

As of September 2016, the complex project has financial commitments only from SpaceX and Musk's personal capital. The Washington Post pointed out that "The [US] government doesn't have the budget for Mars colonization. Thus, the private sector would have to see Mars as an attractive business environment. Musk is willing to pour his wealth into the project" but it will not be enough to build the colony he envisions.

Outer planet concepts

Artist's impression of the Interplanetary Spaceship over Saturn.

The overview presentation on the Mars architecture given by Musk in September 2016 included concept slides outlining missions to the Saturnian moon Enceladus, the Jovian moon Europa, Kuiper belt objects, a fuel depot on Pluto and even the uses to take payloads to the Oort Cloud. "Musk said ... the system can open up the entire Solar System to people. If fuel depots based on this design were put on asteroids or other areas around the Solar System, people could go anywhere they wanted just by planet or moon hopping. 'The goal of SpaceX is to build the transport system ... Once that transport system is built, then there is a tremendous opportunity for anyone that wants to go to Mars to create something new or build a new planet.'" Outer planet trips would likely require propellant refills at Mars, and perhaps other locations in the outer Solar System. Plans for the 2018 BFR reiterated the idea of using it for missions to outer planets.

Funding

The extensive development and manufacture of much of the space transport technology has been through 2016, and is being privately funded by SpaceX. The entire project is even possible only as a result of SpaceX multi-faceted approach focusing on the reduction of launch costs.

As of October 2016, SpaceX was expending "a few tens of millions of dollars annually on development of the Mars transport concept, which amounts to well under 5 percent of the company’s total expenses", but expects that figure to rise to some US$300 million per year by around 2018. The cost of all work leading up to the first Mars launch was expected to be "on the order of US$10 billion" and SpaceX expected to expend that much before it generates any transport revenue. No public update of total costs before revenue was given in 2017 after SpaceX redirected to the small launch vehicle design of the BFR

Musk indicated in September 2016 that the full build-out of the Mars colonialization plans would likely be funded by both private and public funds. The speed of commercially available Mars transport for both cargo and humans will be driven, in large part, by market demand as well as constrained by the technology development and development funding. In October 2017, he reiterated that "the actual establishment of a base was something that would be handled largely by other companies and organizations. ... 'Our goal is get you there and ensure the basic infrastructure for propellant production and survival is in place', he said, comparing the BFR to the transcontinental railways of the 19th century. 'A vast amount of industry will need to be built on Mars by many other companies and millions of people'.

In 2016, Elon Musk stated that there is no expectation of receiving NASA contracts for any of the Mars architecture system work, but affirmed that such contracts would be good.

SpaceX tentative calendar for Mars missions

In 2016 SpaceX announced that there would be a number of early missions to Mars prior to the first trip of the new large composite-structure spacecraft. The early missions are planned to collect essential data to refine the design, and better select landing locations based on the availability of extraterrestrial resources such as water and building materials.

2016 plans

In 2016, SpaceX announced plans to fly its earliest missions to Mars using its Falcon Heavy launch vehicle prior to the completion, and first launch, of any ITS vehicle. Later missions utilizing this technology—the ITS launch vehicle and Interplanetary Spaceship with on-orbit propellant refill via ITS tanker—were to begin no earlier than 2022. At the time, the company was planning for launches of research spacecraft to Mars using Falcon Heavy launch vehicles and specialized modified Dragon spacecraft, called "Red Dragon". Due to planetary alignment in the inner Solar System, Mars launches are typically limited to a window of approximately every 26 months. As announced in June 2016, the first launch was planned for Spring 2018, with an announced intent to launch again in every Mars launch window thereafter. In February 2017, however, the first launch to Mars was pushed back to 2020,[53] and in July 2017, SpaceX announced it would not be using a propulsively-landed "Red Dragon" spacecraft at all for the early missions, as had been previously announced.

The tentative mission manifest from November 2016 included three Falcon Heavy missions to Mars prior to the first possible flight of an ITS to Mars in 2022:
  • 2018: initial SpaceX Mars mission: the Red Dragon, a modified Dragon 2 spacecraft launched by Falcon Heavy launch vehicle.
  • 2020: second preparatory mission: at least two Red Dragons to be injected into Mars transfer orbit via Falcon Heavy launches
  • 2022: third uncrewed preparatory mission: first use of the entire ITS system to put a spacecraft on an interplanetary trajectory and carry heavy equipment to Mars, notably a local power plant.
  • 2024: first crewed ITS flight to Mars according to the "optimistic" schedule Musk discussed in October 2016, with "about a dozen people".

2017 revisions

In February 2017, public statements were made that the first Red Dragon launch would be postponed to 2020. It was unclear at that time whether the overall sequence of Mars missions would be kept intact and simply pushed back by 26 months. In July 2017, Musk announced that development of propulsive landing for the Red Dragon lander capsule was cancelled in favor of a "much better" landing technique, as yet unrevealed, for a larger spacecraft.

A 9 m (30 ft)-diameter BFR rocket design, using the same Raptor engine technology and carbon-fiber composite materials of the earlier ITS, was unveiled at International Astronautical Congress on 29 September 2017. It is similar to the ITS design, but smaller. Musk announced additional capabilities for the BFR, including Earth missions that could shuttle people across the planet in under an hour (most flights would be less than half an hour), Lunar missions, as well as Mars missions, that would aim to land the first humans on the planet by 2024. SpaceX now plans to focus mainly on one launch vehicle for these missions - the BFR. By focusing the company's efforts onto just a single launch vehicle, the cost, according to Musk, can be brought down significantly. SpaceX also plans to use the BFR for Earth-orbit missions, replacing all current SpaceX Falcon launch vehicles. Construction of the first of the BFR vehicles would begin in 2018, according to Musk.

Operator (computer programming)

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Operator_(computer_programmin...