Search This Blog

Saturday, December 15, 2018

Oort cloud (updated)

From Wikipedia, the free encyclopedia

This graphic shows the distance from the Oort cloud to the rest of the Solar System and two of the nearest stars measured in astronomical units. The scale is logarithmic, with each specified distance ten times further out than the previous one. Red arrow indicates location of Voyager 1, a space probe that will reach the Oort cloud in about 300 years.
 
An artist's impression of the Oort cloud and the Kuiper belt (inset). Sizes of individual objects have been exaggerated for visibility.

The Oort cloud (/ɔːrt, ʊərt/), named after the Dutch astronomer Jan Oort, sometimes called the Öpik–Oort cloud, is a theoretical cloud of predominantly icy planetesimals proposed to surround the Sun at distances ranging from 2,000 to 200,000 AU (0.03 to 3.2 light-years). It is divided into two regions: a disc-shaped inner Oort cloud (or Hills cloud) and a spherical outer Oort cloud. Both regions lie beyond the heliosphere and in interstellar space. The Kuiper belt and the scattered disc, the other two reservoirs of trans-Neptunian objects, are less than one thousandth as far from the Sun as the Oort cloud.

The outer limit of the Oort cloud defines the cosmographical boundary of the Solar System and the extent of the Sun's Hill sphere. The outer Oort cloud is only loosely bound to the Solar System, and thus is easily affected by the gravitational pull both of passing stars and of the Milky Way itself. These forces occasionally dislodge comets from their orbits within the cloud and send them toward the inner Solar System. Based on their orbits, most of the short-period comets may come from the scattered disc, but some may still have originated from the Oort cloud.

Astronomers conjecture that the matter composing the Oort cloud formed closer to the Sun and was scattered far into space by the gravitational effects of the giant planets early in the Solar System's evolution. Although no confirmed direct observations of the Oort cloud have been made, it may be the source of all long-period and Halley-type comets entering the inner Solar System, and many of the centaurs and Jupiter-family comets as well.

The existence of the Oort cloud was first postulated by Estonian astronomer Ernst Öpik in 1932.

Hypothesis

There are two main classes of comet: short-period comets (also called ecliptic comets) and long-period comets (also called nearly isotropic comets). Ecliptic comets have relatively small orbits, below 10 AU, and follow the ecliptic plane, the same plane in which the planets lie. All long-period comets have very large orbits, on the order of thousands of AU, and appear from every direction in the sky.

A. O. Leuschner in 1907 suggested that many comets believed to have parabolic orbits, and thus making single visits to the solar system, actually had elliptical orbits and would return after very long periods. In 1932 Estonian astronomer Ernst Öpik postulated that long-period comets originated in an orbiting cloud at the outermost edge of the Solar System. Dutch astronomer Jan Oort independently revived the idea in 1950 as a means to resolve a paradox:
  • Over the course of the Solar System's existence the orbits of comets are unstable and eventually dynamics dictate that a comet must either collide with the Sun or a planet or else be ejected from the Solar System by planetary perturbations.
  • Moreover, their volatile composition means that as they repeatedly approach the Sun, radiation gradually boils the volatiles off until the comet splits or develops an insulating crust that prevents further outgassing.
Thus, Oort reasoned, a comet could not have formed while in its current orbit and must have been held in an outer reservoir for almost all of its existence. He noted that there was a peak in numbers of long-period comets with aphelia (their farthest distance from the Sun) of roughly 20,000 AU, which suggested a reservoir at that distance with a spherical, isotropic distribution. Those relatively rare comets with orbits of about 10,000 AU have probably gone through one or more orbits through the Solar System and have had their orbits drawn inward by the gravity of the planets.

Structure and composition

The presumed distance of the Oort cloud compared to the rest of the Solar System

The Oort cloud is thought to occupy a vast space from somewhere between 2,000 and 5,000 AU (0.03 and 0.08 ly) to as far as 50,000 AU (0.79 ly) from the Sun. Some estimates place the outer edge at between 100,000 and 200,000 AU (1.58 and 3.16 ly). The region can be subdivided into a spherical outer Oort cloud of 20,000–50,000 AU (0.32–0.79 ly), and a torus-shaped inner Oort cloud of 2,000–20,000 AU (0.0–0.3 ly). The outer cloud is only weakly bound to the Sun and supplies the long-period (and possibly Halley-type) comets to inside the orbit of Neptune. The inner Oort cloud is also known as the Hills cloud, named after Jack G. Hills, who proposed its existence in 1981. Models predict that the inner cloud should have tens or hundreds of times as many cometary nuclei as the outer halo; it is seen as a possible source of new comets to resupply the tenuous outer cloud as the latter's numbers are gradually depleted. The Hills cloud explains the continued existence of the Oort cloud after billions of years.

The outer Oort cloud may have trillions of objects larger than 1 km (0.62 mi), and billions with absolute magnitudes brighter than 11 (corresponding to approximately 20-kilometre (12 mi) diameter), with neighboring objects tens of millions of kilometres apart. Its total mass is not known, but, assuming that Halley's Comet is a suitable prototype for comets within the outer Oort cloud, roughly the combined mass is 3×1025 kilograms (6.6×1025 lb), or five times that of Earth. Earlier it was thought to be more massive (up to 380 Earth masses), but improved knowledge of the size distribution of long-period comets led to lower estimates. The mass of the inner Oort cloud has not been characterized. 

If analyses of comets are representative of the whole, the vast majority of Oort-cloud objects consist of ices such as water, methane, ethane, carbon monoxide and hydrogen cyanide. However, the discovery of the object 1996 PW, an object whose appearance was consistent with a D-type asteroid in an orbit typical of a long-period comet, prompted theoretical research that suggests that the Oort cloud population consists of roughly one to two percent asteroids. Analysis of the carbon and nitrogen isotope ratios in both the long-period and Jupiter-family comets shows little difference between the two, despite their presumably vastly separate regions of origin. This suggests that both originated from the original protosolar cloud, a conclusion also supported by studies of granular size in Oort-cloud comets and by the recent impact study of Jupiter-family comet Tempel 1.

Origin

The Oort cloud is thought to be a remnant of the original protoplanetary disc that formed around the Sun approximately 4.6 billion years ago. The most widely accepted hypothesis is that the Oort cloud's objects initially coalesced much closer to the Sun as part of the same process that formed the planets and minor planets, but that gravitational interaction with young gas giants such as Jupiter ejected the objects into extremely long elliptic or parabolic orbits. Recent research has been cited by NASA hypothesizing that a large number of Oort cloud objects are the product of an exchange of materials between the Sun and its sibling stars as they formed and drifted apart, and it is suggested that many—possibly the majority of—Oort cloud objects did not form in close proximity to the Sun. Simulations of the evolution of the Oort cloud from the beginnings of the Solar System to the present suggest that the cloud's mass peaked around 800 million years after formation, as the pace of accretion and collision slowed and depletion began to overtake supply.

Models by Julio Ángel Fernández suggest that the scattered disc, which is the main source for periodic comets in the Solar System, might also be the primary source for Oort cloud objects. According to the models, about half of the objects scattered travel outward toward the Oort cloud, whereas a quarter are shifted inward to Jupiter's orbit, and a quarter are ejected on hyperbolic orbits. The scattered disc might still be supplying the Oort cloud with material. A third of the scattered disc's population is likely to end up in the Oort cloud after 2.5 billion years.

Computer models suggest that collisions of cometary debris during the formation period play a far greater role than was previously thought. According to these models, the number of collisions early in the Solar System's history was so great that most comets were destroyed before they reached the Oort cloud. Therefore, the current cumulative mass of the Oort cloud is far less than was once suspected. The estimated mass of the cloud is only a small part of the 50–100 Earth masses of ejected material.

Gravitational interaction with nearby stars and galactic tides modified cometary orbits to make them more circular. This explains the nearly spherical shape of the outer Oort cloud. On the other hand, the Hills cloud, which is bound more strongly to the Sun, has not acquired a spherical shape. Recent studies have shown that the formation of the Oort cloud is broadly compatible with the hypothesis that the Solar System formed as part of an embedded cluster of 200–400 stars. These early stars likely played a role in the cloud's formation, since the number of close stellar passages within the cluster was much higher than today, leading to far more frequent perturbations.

In June 2010 Harold F. Levison and others suggested on the basis of enhanced computer simulations that the Sun "captured comets from other stars while it was in its birth cluster". Their results imply that "a substantial fraction of the Oort cloud comets, perhaps exceeding 90%, are from the protoplanetary discs of other stars".

Comets

Comet Hale–Bopp, an archetypical Oort-cloud comet

Comets are thought to have two separate points of origin in the Solar System. Short-period comets (those with orbits of up to 200 years) are generally accepted to have emerged from either the Kuiper belt or the scattered disc, which are two linked flat discs of icy debris beyond Neptune's orbit at 30 AU and jointly extending out beyond 100 AU from the Sun. Long-period comets, such as comet Hale–Bopp, whose orbits last for thousands of years, are thought to originate in the Oort cloud. The orbits within the Kuiper belt are relatively stable, and so very few comets are thought to originate there. The scattered disc, however, is dynamically active, and is far more likely to be the place of origin for comets. Comets pass from the scattered disc into the realm of the outer planets, becoming what are known as centaurs. These centaurs are then sent farther inward to become the short-period comets.

There are two main varieties of short-period comet: Jupiter-family comets (those with semi-major axes of less than 5 AU) and Halley-family comets. Halley-family comets, named for their prototype, Halley's Comet, are unusual in that although they are short-period comets, it is hypothesized that their ultimate origin lies in the Oort cloud, not in the scattered disc. Based on their orbits, it is suggested they were long-period comets that were captured by the gravity of the giant planets and sent into the inner Solar System. This process may have also created the present orbits of a significant fraction of the Jupiter-family comets, although the majority of such comets are thought to have originated in the scattered disc.

Oort noted that the number of returning comets was far less than his model predicted, and this issue, known as "cometary fading", has yet to be resolved. No dynamical process are known to explain the smaller number of observed comets than Oort estimated. Hypotheses for this discrepancy include the destruction of comets due to tidal stresses, impact or heating; the loss of all volatiles, rendering some comets invisible, or the formation of a non-volatile crust on the surface. Dynamical studies of hypothetical Oort cloud comets have estimated that their occurrence in the outer-planet region would be several times higher than in the inner-planet region. This discrepancy may be due to the gravitational attraction of Jupiter, which acts as a kind of barrier, trapping incoming comets and causing them to collide with it, just as it did with Comet Shoemaker–Levy 9 in 1994.

Tidal effects

Most of the comets seen close to the Sun seem to have reached their current positions through gravitational perturbation of the Oort cloud by the tidal force exerted by the Milky Way. Just as the Moon's tidal force deforms Earth's oceans, causing the tides to rise and fall, the galactic tide also distorts the orbits of bodies in the outer Solar System. In the charted regions of the Solar System, these effects are negligible compared to the gravity of the Sun, but in the outer reaches of the system, the Sun's gravity is weaker and the gradient of the Milky Way's gravitational field has substantial effects. Galactic tidal forces stretch the cloud along an axis directed toward the galactic centre and compress it along the other two axes; these small perturbations can shift orbits in the Oort cloud to bring objects close to the Sun. The point at which the Sun's gravity concedes its influence to the galactic tide is called the tidal truncation radius. It lies at a radius of 100,000 to 200,000 AU, and marks the outer boundary of the Oort cloud.

Some scholars theorise that the galactic tide may have contributed to the formation of the Oort cloud by increasing the perihelia (smallest distances to the Sun) of planetesimals with large aphelia (largest distances to the Sun). The effects of the galactic tide are quite complex, and depend heavily on the behaviour of individual objects within a planetary system. Cumulatively, however, the effect can be quite significant: up to 90% of all comets originating from the Oort cloud may be the result of the galactic tide. Statistical models of the observed orbits of long-period comets argue that the galactic tide is the principal means by which their orbits are perturbed toward the inner Solar System.

Stellar perturbations and stellar companion hypotheses

Besides the galactic tide, the main trigger for sending comets into the inner Solar System is thought to be interaction between the Sun's Oort cloud and the gravitational fields of nearby stars or giant molecular clouds. The orbit of the Sun through the plane of the Milky Way sometimes brings it in relatively close proximity to other stellar systems. For example, it is hypothesized that 70 thousand years ago, perhaps Scholz's star passed through the outer Oort cloud (although its low mass and high relative velocity limited its effect). During the next 10 million years the known star with the greatest possibility of perturbing the Oort cloud is Gliese 710. This process could also scatter Oort cloud objects out of the ecliptic plane, potentially also explaining its spherical distribution.

In 1984, Physicist Richard A. Muller postulated that the Sun has a heretofore undetected companion, either a brown dwarf or a red dwarf, in an elliptical orbit within the Oort cloud. This object, known as Nemesis, was hypothesized to pass through a portion of the Oort cloud approximately every 26 million years, bombarding the inner Solar System with comets. However, to date no evidence of Nemesis or the Oort cloud have been found, and many lines of evidence (such as crater counts), have thrown their existence into doubt. Recent scientific analysis no longer supports the idea that extinctions on Earth happen at regular, repeating intervals. Thus, the Nemesis hypothesis is no longer needed to explain current assumptions.

A somewhat similar hypothesis was advanced by astronomer John J. Matese of the University of Louisiana at Lafayette in 2002. He contends that more comets are arriving in the inner Solar System from a particular region of the postulated Oort cloud than can be explained by the galactic tide or stellar perturbations alone, and that the most likely cause would be a Jupiter-mass object in a distant orbit. This hypothetical gas giant was nicknamed Tyche. The WISE mission, an all-sky survey using parallax measurements in order to clarify local star distances, was capable of proving or disproving the Tyche hypothesis. In 2014, NASA announced that the WISE survey had ruled out any object as they had defined it.

Future exploration


Space probes have yet to reach the area of the Oort cloud. Voyager 1, the fastest and farthest of the interplanetary space probes currently leaving the Solar System, will reach the Oort cloud in about 300 years and would take about 30,000 years to pass through it. However, around 2025, the radioisotope thermoelectric generators on Voyager 1 will no longer supply enough power to operate any of its scientific instruments, preventing any exploration by Voyager 1. The other four probes currently escaping the Solar System either are already or are predicted to be non-functional when they reach the Oort cloud; however, it may be possible to find an object from the cloud that has been knocked into the inner Solar System. 

In the 1980s there was a concept for a probe to reach 1,000 AU in 50 years called TAU; among its missions would be to look for the Oort cloud.

In the 2014 Announcement of Opportunity for the Discovery program, an observatory to detect the objects in the Oort cloud (and Kuiper belt) called the "Whipple Mission" was proposed. It would monitor distant stars with a photometer, looking for transits up to 10,000 AU away. The observatory was proposed for halo orbiting around L2 with a suggested 5-year mission. It has been suggested that the Kepler observatory may also be able to detect objects in the Oort cloud.

Callisto (moon)

From Wikipedia, the free encyclopedia

Callisto
Callisto.jpg
Callisto's anti-Jovian hemisphere imaged in 2001 by NASA's Galileo spacecraft. It shows a heavily cratered terrain. The large impact structure Asgard is on the limb at upper right. The prominent rayed crater below and just right of center is Bran.
Discovery
Discovered byGalileo Galilei
Discovery date7 January 1610
Designations
Jupiter IV
AdjectivesCallistoan, Callistonian
Orbital characteristics
Periapsis1869000 km
Apoapsis1897000 km
1 882 700 km
Eccentricity0.0074
16.6890184 d
Average orbital speed
8.204 km/s
Inclination2.017° (to the ecliptic)
0.192° (to local Laplace planes)
Satellite ofJupiter
Physical characteristics
Mean radius
2410.3±1.5 km (0.378 Earths)
7.30×107 km2 (0.143 Earths)
Volume5.9×1010 km3 (0.0541 Earths)
Mass(1.075938±0.000137)×1023 kg (0.018 Earths)
Mean density
1.8344±0.0034 g/cm3
1.235 m/s2 (0.126 g)
0.359±0.005 (estimate)
2.440 km/s
synchronous
zero
Albedo0.22 (geometric)
Surface temp. min mean max
K 80±5 134±11 165±5
5.65 (opposition)
Atmosphere
Surface pressure
7.5 picobar (7.5×10−10 kPa, 7.4019×10−12 atm)
Composition by volume≈ 4×108 molecules/cm3 carbon dioxide;
up to 2×1010 molecules/cm3 molecular oxygen(O2)

Callisto /kəˈlɪst/ (Jupiter IV) is the second-largest moon of Jupiter, after Ganymede. It is the third-largest moon in the Solar System after Ganymede and Saturn's largest moon Titan, and the largest object in the Solar System not to be properly differentiated. Callisto was discovered in 1610 by Galileo Galilei. At 4821 km in diameter, Callisto has about 99% the diameter of the planet Mercury but only about a third of its mass. It is the fourth Galilean moon of Jupiter by distance, with an orbital radius of about 1883000 km. It is not in an orbital resonance like the three other Galilean satellites—Io, Europa, and Ganymede—and is thus not appreciably tidally heated. Callisto's rotation is tidally locked to its orbit around Jupiter, so that the same hemisphere always faces inward; Jupiter appears to stand nearly still in Callisto's sky. It is less affected by Jupiter's magnetosphere than the other inner satellites because of its more remote orbit, located just outside Jupiter's main radiation belt.

Callisto is composed of approximately equal amounts of rock and ices, with a density of about 1.83 g/cm3, the lowest density and surface gravity of Jupiter's major moons. Compounds detected spectroscopically on the surface include water ice, carbon dioxide, silicates, and organic compounds. Investigation by the Galileo spacecraft revealed that Callisto may have a small silicate core and possibly a subsurface ocean of liquid water at depths greater than 100 km.

The surface of Callisto is the oldest and most heavily cratered in the Solar System. Its surface is completely covered with impact craters. It does not show any signatures of subsurface processes such as plate tectonics or volcanism, with no signs that geological activity in general has ever occurred, and is thought to have evolved predominantly under the influence of impacts. Prominent surface features include multi-ring structures, variously shaped impact craters, and chains of craters (catenae) and associated scarps, ridges and deposits. At a small scale, the surface is varied and made up of small, sparkly frost deposits at the tips of high spots, surrounded by a low-lying, smooth blanket of dark material. This is thought to result from the sublimation-driven degradation of small landforms, which is supported by the general deficit of small impact craters and the presence of numerous small knobs, considered to be their remnants. The absolute ages of the landforms are not known.

Callisto is surrounded by an extremely thin atmosphere composed of carbon dioxide and probably molecular oxygen, as well as by a rather intense ionosphere. Callisto is thought to have formed by slow accretion from the disk of the gas and dust that surrounded Jupiter after its formation. Callisto's gradual accretion and the lack of tidal heating meant that not enough heat was available for rapid differentiation. The slow convection in the interior of Callisto, which commenced soon after formation, led to partial differentiation and possibly to the formation of a subsurface ocean at a depth of 100–150 km and a small, rocky core.

The likely presence of an ocean within Callisto leaves open the possibility that it could harbor life. However, conditions are thought to be less favorable than on nearby Europa. Various space probes from Pioneers 10 and 11 to Galileo and Cassini have studied Callisto. Because of its low radiation levels, Callisto has long been considered the most suitable place for a human base for future exploration of the Jovian system.

History

Discovery

Callisto was discovered by Galileo in January 1610, along with the three other large Jovian moons—Ganymede, Io, and Europa.

Name

Callisto is named after one of Zeus's many lovers in Greek mythology. Callisto was a nymph (or, according to some sources, the daughter of Lycaon) who was associated with the goddess of the hunt, Artemis. The name was suggested by Simon Marius soon after Callisto's discovery. Marius attributed the suggestion to Johannes Kepler. However, the names of the Galilean satellites fell into disfavor for a considerable time, and were not revived in common use until the mid-20th century. In much of the earlier astronomical literature, Callisto is referred to by its Roman numeral designation, a system introduced by Galileo, as Jupiter IV or as "the fourth satellite of Jupiter". In scientific writing, the adjectival form of the name is Callistoan, pronounced /ˌkælɪˈst.ən/, or Callistan.

Orbit and rotation

Callisto (bottom left), Jupiter (top right) and Europa (below and left of Jupiter's Great Red Spot) as viewed by Cassini–Huygens

Callisto is the outermost of the four Galilean moons of Jupiter. It orbits at a distance of approximately 1 880 000 km (26.3 times the 71 492 km radius of Jupiter itself). This is significantly larger than the orbital radius—1 070 000 km—of the next-closest Galilean satellite, Ganymede. As a result of this relatively distant orbit, Callisto does not participate in the mean-motion resonance—in which the three inner Galilean satellites are locked—and probably never has.

Like most other regular planetary moons, Callisto's rotation is locked to be synchronous with its orbit. The length of Callisto's day, simultaneously its orbital period, is about 16.7 Earth days. Its orbit is very slightly eccentric and inclined to the Jovian equator, with the eccentricity and inclination changing quasi-periodically due to solar and planetary gravitational perturbations on a timescale of centuries. The ranges of change are 0.0072–0.0076 and 0.20–0.60°, respectively. These orbital variations cause the axial tilt (the angle between rotational and orbital axes) to vary between 0.4 and 1.6°.

The dynamical isolation of Callisto means that it has never been appreciably tidally heated, which has important consequences for its internal structure and evolution. Its distance from Jupiter also means that the charged-particle flux from Jupiter's magnetosphere at its surface is relatively low—about 300 times lower than, for example, that at Europa. Hence, unlike the other Galilean moons, charged-particle irradiation has had a relatively minor effect on Callisto's surface. The radiation level at Callisto's surface is equivalent to a dose of about 0.01 rem (0.1 mSv) per day, which is over ten times higher than Earth's average background radiation.

Physical characteristics

Composition

Size comparison of Earth, Moon and Callisto
 
Near-IR spectra of dark cratered plains (red) and the Asgard impact structure (blue), showing the presence of more water ice (absorption bands from 1 to 2 µm) and less rocky material within Asgard.

The average density of Callisto, 1.83 g/cm3, suggests a composition of approximately equal parts of rocky material and water ice, with some additional volatile ices such as ammonia. The mass fraction of ices is 49–55%. The exact composition of Callisto's rock component is not known, but is probably close to the composition of L/LL type ordinary chondrites, which are characterized by less total iron, less metallic iron and more iron oxide than H chondrites. The weight ratio of iron to silicon is 0.9–1.3 in Callisto, whereas the solar ratio is around 1:8.

Callisto's surface has an albedo of about 20%. Its surface composition is thought to be broadly similar to its composition as a whole. Near-infrared spectroscopy has revealed the presence of water ice absorption bands at wavelengths of 1.04, 1.25, 1.5, 2.0 and 3.0 micrometers. Water ice seems to be ubiquitous on the surface of Callisto, with a mass fraction of 25–50%. The analysis of high-resolution, near-infrared and UV spectra obtained by the Galileo spacecraft and from the ground has revealed various non-ice materials: magnesium- and iron-bearing hydrated silicates, carbon dioxide, sulfur dioxide, and possibly ammonia and various organic compounds. Spectral data indicate that Callisto's surface is extremely heterogeneous at the small scale. Small, bright patches of pure water ice are intermixed with patches of a rock–ice mixture and extended dark areas made of a non-ice material.

The Callistoan surface is asymmetric: the leading hemisphere is darker than the trailing one. This is different from other Galilean satellites, where the reverse is true. The trailing hemisphere of Callisto appears to be enriched in carbon dioxide, whereas the leading hemisphere has more sulfur dioxide. Many fresh impact craters like Lofn also show enrichment in carbon dioxide. Overall, the chemical composition of the surface, especially in the dark areas, may be close to that seen on D-type asteroids, whose surfaces are made of carbonaceous material.

Internal structure

Model of Callisto's internal structure showing a surface ice layer, a possible liquid water layer, and an ice–rock interior

Callisto's battered surface lies on top of a cold, stiff, and icy lithosphere that is between 80 and 150 km thick. A salty ocean 150–200 km deep may lie beneath the crust, indicated by studies of the magnetic fields around Jupiter and its moons. It was found that Callisto responds to Jupiter's varying background magnetic field like a perfectly conducting sphere; that is, the field cannot penetrate inside Callisto, suggesting a layer of highly conductive fluid within it with a thickness of at least 10 km. The existence of an ocean is more likely if water contains a small amount of ammonia or other antifreeze, up to 5% by weight. In this case the water+ice layer can be as thick as 250–300 km. Failing an ocean, the icy lithosphere may be somewhat thicker, up to about 300 km. 

Beneath the lithosphere and putative ocean, Callisto's interior appears to be neither entirely uniform nor particularly variable. Galileo orbiter data (especially the dimensionless moment of inertia—0.3549 ± 0.0042—determined during close flybys) suggest that its interior is composed of compressed rocks and ices, with the amount of rock increasing with depth due to partial settling of its constituents. In other words, Callisto is only partially differentiated. The density and moment of inertia are compatible with the existence of a small silicate core in the center of Callisto. The radius of any such core cannot exceed 600 km, and the density may lie between 3.1 and 3.6 g/cm3. Callisto's interior is in stark contrast to that of Ganymede, which appears to be fully differentiated.

Surface features

Galileo image of cratered plains, illustrating the pervasive local smoothing of Callisto's surface

The ancient surface of Callisto is one of the most heavily cratered in the Solar System. In fact, the crater density is close to saturation: any new crater will tend to erase an older one. The large-scale geology is relatively simple; there are no large mountains on Callisto, volcanoes or other endogenic tectonic features. The impact craters and multi-ring structures—together with associated fractures, scarps and deposits—are the only large features to be found on the surface.

Callisto's surface can be divided into several geologically different parts: cratered plains, light plains, bright and dark smooth plains, and various units associated with particular multi-ring structures and impact craters. The cratered plains constitute most of the surface area and represent the ancient lithosphere, a mixture of ice and rocky material. The light plains include bright impact craters like Burr and Lofn, as well as the effaced remnants of old large craters called palimpsests, the central parts of multi-ring structures, and isolated patches in the cratered plains. These light plains are thought to be icy impact deposits. The bright, smooth plains constitute a small fraction of Callisto's surface and are found in the ridge and trough zones of the Valhalla and Asgard formations and as isolated spots in the cratered plains. They were thought to be connected with endogenic activity, but the high-resolution Galileo images showed that the bright, smooth plains correlate with heavily fractured and knobby terrain and do not show any signs of resurfacing. The Galileo images also revealed small, dark, smooth areas with overall coverage less than 10,000 km2, which appear to embay the surrounding terrain. They are possible cryovolcanic deposits. Both the light and the various smooth plains are somewhat younger and less cratered than the background cratered plains.

Impact crater Hár with a central dome. Chains of secondary craters from formation of the more recent crater Tindr at upper right crosscut the terrain.

Impact crater diameters seen range from 0.1 km—a limit defined by the imaging resolution—to over 100 km, not counting the multi-ring structures. Small craters, with diameters less than 5 km, have simple bowl or flat-floored shapes. Those 5–40 km across usually have a central peak. Larger impact features, with diameters in the range 25–100 km, have central pits instead of peaks, such as Tindr crater. The largest craters with diameters over 60 km can have central domes, which are thought to result from central tectonic uplift after an impact; examples include Doh and Hár craters. A small number of very large—more 100 km in diameter—and bright impact craters show anomalous dome geometry. These are unusually shallow and may be a transitional landform to the multi-ring structures, as with the Lofn impact feature. Callisto's craters are generally shallower than those on the Moon

Voyager 1 image of Valhalla, a multi-ring impact structure 3800 km in diameter

The largest impact features on Callisto's surface are multi-ring basins. Two are enormous. Valhalla is the largest, with a bright central region 600 kilometers in diameter, and rings extending as far as 1,800 kilometers from the center (see figure). The second largest is Asgard, measuring about 1,600 kilometers in diameter. Multi-ring structures probably originated as a result of a post-impact concentric fracturing of the lithosphere lying on a layer of soft or liquid material, possibly an ocean. The catenae—for example Gomul Catena—are long chains of impact craters lined up in straight lines across the surface. They were probably created by objects that were tidally disrupted as they passed close to Jupiter prior to the impact on Callisto, or by very oblique impacts. A historical example of a disruption was Comet Shoemaker-Levy 9

As mentioned above, small patches of pure water ice with an albedo as high as 80% are found on the surface of Callisto, surrounded by much darker material. High-resolution Galileo images showed the bright patches to be predominately located on elevated surface features: crater rims, scarps, ridges and knobs. They are likely to be thin water frost deposits. Dark material usually lies in the lowlands surrounding and mantling bright features and appears to be smooth. It often forms patches up to 5 km across within the crater floors and in the intercrater depressions.

Two landslides 3–3.5 km long are visible on the right sides of the floors of the two large craters on the right.

On a sub-kilometer scale the surface of Callisto is more degraded than the surfaces of other icy Galilean moons. Typically there is a deficit of small impact craters with diameters less than 1 km as compared with, for instance, the dark plains on Ganymede. Instead of small craters, the almost ubiquitous surface features are small knobs and pits. The knobs are thought to represent remnants of crater rims degraded by an as-yet uncertain process. The most likely candidate process is the slow sublimation of ice, which is enabled by a temperature of up to 165 K, reached at a subsolar point. Such sublimation of water or other volatiles from the dirty ice that is the bedrock causes its decomposition. The non-ice remnants form debris avalanches descending from the slopes of the crater walls. Such avalanches are often observed near and inside impact craters and termed "debris aprons". Sometimes crater walls are cut by sinuous valley-like incisions called "gullies", which resemble certain Martian surface features. In the ice sublimation hypothesis, the low-lying dark material is interpreted as a blanket of primarily non-ice debris, which originated from the degraded rims of craters and has covered a predominantly icy bedrock.

The relative ages of the different surface units on Callisto can be determined from the density of impact craters on them. The older the surface, the denser the crater population. Absolute dating has not been carried out, but based on theoretical considerations, the cratered plains are thought to be ~4.5 billion years old, dating back almost to the formation of the Solar System. The ages of multi-ring structures and impact craters depend on chosen background cratering rates and are estimated by different authors to vary between 1 and 4 billion years.

Atmosphere and ionosphere

Induced magnetic field around Callisto

Callisto has a very tenuous atmosphere composed of carbon dioxide. It was detected by the Galileo Near Infrared Mapping Spectrometer (NIMS) from its absorption feature near the wavelength 4.2 micrometers. The surface pressure is estimated to be 7.5 picobar (0.75 µPa) and particle density 4 × 108 cm−3. Because such a thin atmosphere would be lost in only about 4 days, it must be constantly replenished, possibly by slow sublimation of carbon dioxide ice from Callisto's icy crust, which would be compatible with the sublimation–degradation hypothesis for the formation of the surface knobs. 

Callisto's ionosphere was first detected during Galileo flybys; its high electron density of 7–17 × 104 cm−3 cannot be explained by the photoionization of the atmospheric carbon dioxide alone. Hence, it is suspected that the atmosphere of Callisto is actually dominated by molecular oxygen (in amounts 10–100 times greater than CO
2
). However, oxygen has not yet been directly detected in the atmosphere of Callisto. Observations with the Hubble Space Telescope (HST) placed an upper limit on its possible concentration in the atmosphere, based on lack of detection, which is still compatible with the ionospheric measurements. At the same time, HST was able to detect condensed oxygen trapped on the surface of Callisto.

Atomic hydrogen has also been detected in Callisto's atmosphere via recent analysis of 2001 Hubble Space Telescope data. Spectral images taken on 15 and 24 December 2001 were re-examined, revealing a faint signal of scattered light that indicates a hydrogen corona. The observed brightness from the scattered sunlight in Callisto's hydrogen corona is approximately two times larger when the leading hemisphere is observed. This asymmetry may originate from a different hydrogen abundance in both leading and trailing hemispheres. However, this hemispheric difference in Callisto's hydrogen corona brightness is likely to originate from the extinction of the signal in the Earth's geocorona, which is greater when the trailing hemisphere is observed.

Origin and evolution

The partial differentiation of Callisto (inferred e.g. from moment of inertia measurements) means that it has never been heated enough to melt its ice component. Therefore, the most favorable model of its formation is a slow accretion in the low-density Jovian subnebula—a disk of the gas and dust that existed around Jupiter after its formation. Such a prolonged accretion stage would allow cooling to largely keep up with the heat accumulation caused by impacts, radioactive decay and contraction, thereby preventing melting and fast differentiation. The allowable timescale of formation of Callisto lies then in the range 0.1 million–10 million years.

Views of eroding (top) and mostly eroded (bottom) ice knobs (~100 m high), possibly formed from the ejecta of an ancient impact

The further evolution of Callisto after accretion was determined by the balance of the radioactive heating, cooling through thermal conduction near the surface, and solid state or subsolidus convection in the interior. Details of the subsolidus convection in the ice is the main source of uncertainty in the models of all icy moons. It is known to develop when the temperature is sufficiently close to the melting point, due to the temperature dependence of ice viscosity. Subsolidus convection in icy bodies is a slow process with ice motions of the order of 1 centimeter per year, but is, in fact, a very effective cooling mechanism on long timescales. It is thought to proceed in the so-called stagnant lid regime, where a stiff, cold outer layer of Callisto conducts heat without convection, whereas the ice beneath it convects in the subsolidus regime. For Callisto, the outer conductive layer corresponds to the cold and rigid lithosphere with a thickness of about 100 km. Its presence would explain the lack of any signs of the endogenic activity on the Callistoan surface. The convection in the interior parts of Callisto may be layered, because under the high pressures found there, water ice exists in different crystalline phases beginning from the ice I on the surface to ice VII in the center. The early onset of subsolidus convection in the Callistoan interior could have prevented large-scale ice melting and any resulting differentiation that would have otherwise formed a large rocky core and icy mantle. Due to the convection process, however, very slow and partial separation and differentiation of rocks and ices inside Callisto has been proceeding on timescales of billions of years and may be continuing to this day.

The current understanding of the evolution of Callisto allows for the existence of a layer or "ocean" of liquid water in its interior. This is connected with the anomalous behavior of ice I phase's melting temperature, which decreases with pressure, achieving temperatures as low as 251 K at 2,070 bar (207 MPa). In all realistic models of Callisto the temperature in the layer between 100 and 200 km in depth is very close to, or exceeds slightly, this anomalous melting temperature. The presence of even small amounts of ammonia—about 1–2% by weight—almost guarantees the liquid's existence because ammonia would lower the melting temperature even further.

Although Callisto is very similar in bulk properties to Ganymede, it apparently had a much simpler geological history. The surface appears to have been shaped mainly by impacts and other exogenic forces. Unlike neighboring Ganymede with its grooved terrain, there is little evidence of tectonic activity. Explanations that have been proposed for the contrasts in internal heating and consequent differentiation and geologic activity between Callisto and Ganymede include differences in formation conditions, the greater tidal heating experienced by Ganymede, and the more numerous and energetic impacts that would have been suffered by Ganymede during the Late Heavy Bombardment. The relatively simple geological history of Callisto provides planetary scientists with a reference point for comparison with other more active and complex worlds.

Potential habitability

It is speculated that there could be life in Callisto's subsurface ocean. Like Europa and Ganymede, as well as Saturn's moons Enceladus, Mimas, Dione and Titan, a possible subsurface ocean might be composed of salt water

It is possible that halophiles could thrive in the ocean. As with Europa and Ganymede, the idea has been raised that habitable conditions and even extraterrestrial microbial life may exist in the salty ocean under the Callistoan surface. However, the environmental conditions necessary for life appear to be less favorable on Callisto than on Europa. The principal reasons are the lack of contact with rocky material and the lower heat flux from the interior of Callisto. Scientist Torrence Johnson said the following about comparing the odds of life on Callisto with the odds on other Galilean moons:
The basic ingredients for life—what we call 'pre-biotic chemistry'—are abundant in many solar system objects, such as comets, asteroids and icy moons. Biologists believe liquid water and energy are then needed to actually support life, so it's exciting to find another place where we might have liquid water. But, energy is another matter, and currently, Callisto's ocean is only being heated by radioactive elements, whereas Europa has tidal energy as well, from its greater proximity to Jupiter.
Based on the considerations mentioned above and on other scientific observations, it is thought that of all of Jupiter's moons, Europa has the greatest chance of supporting microbial life.

Exploration

The Pioneer 10 and Pioneer 11 Jupiter encounters in the early 1970s contributed little new information about Callisto in comparison with what was already known from Earth-based observations. The real breakthrough happened later with the Voyager 1 and Voyager 2 flybys in 1979. They imaged more than half of the Callistoan surface with a resolution of 1–2 km, and precisely measured its temperature, mass and shape. A second round of exploration lasted from 1994 to 2003, when the Galileo spacecraft had eight close encounters with Callisto, the last flyby during the C30 orbit in 2001 came as close as 138 km to the surface. The Galileo orbiter completed the global imaging of the surface and delivered a number of pictures with a resolution as high as 15 meters of selected areas of Callisto. In 2000, the Cassini spacecraft en route to Saturn acquired high-quality infrared spectra of the Galilean satellites including Callisto. In February–March 2007, the New Horizons probe on its way to Pluto obtained new images and spectra of Callisto.

The next planned mission to the Jovian system is the European Space Agency's Jupiter Icy Moon Explorer (JUICE), due to launch in 2022. Several close flybys of Callisto are planned during the mission.

Old proposals

Formerly proposed for a launch in 2020, the Europa Jupiter System Mission (EJSM) was a joint NASA/ESA proposal for exploration of Jupiter's moons. In February 2009 it was announced that ESA/NASA had given this mission priority ahead of the Titan Saturn System Mission. ESA's contribution still faced funding competition from other ESA projects. EJSM consisted of the NASA-led Jupiter Europa Orbiter, the ESA-led Jupiter Ganymede Orbiter, and possibly a JAXA-led Jupiter Magnetospheric Orbiter.

Potential colonization

Artist's impression of a base on Callisto

In 2003 NASA conducted a conceptual study called Human Outer Planets Exploration (HOPE) regarding the future human exploration of the outer Solar System. The target chosen to consider in detail was Callisto.

The study proposed a possible surface base on Callisto that would produce rocket propellant for further exploration of the Solar System. Advantages of a base on Callisto include low radiation (due to its distance from Jupiter) and geological stability. Such a base could facilitate remote exploration of Europa, or be an ideal location for a Jovian system waystation servicing spacecraft heading farther into the outer Solar System, using a gravity assist from a close flyby of Jupiter after departing Callisto.

In December 2003, NASA reported that a manned mission to Callisto might be possible in the 2040s.

Operator (computer programming)

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Operator_(computer_programmin...