Search This Blog

Tuesday, January 15, 2019

Semantic Web (updated)

From Wikipedia, the free encyclopedia

The Semantic Web is an extension of the World Wide Web through standards by the World Wide Web Consortium (W3C). The standards promote common data formats and exchange protocols on the Web, most fundamentally the Resource Description Framework (RDF). According to the W3C, "The Semantic Web provides a common framework that allows data to be shared and reused across application, enterprise, and community boundaries". The Semantic Web is therefore regarded as an integrator across different content, information applications and systems.
 
The term was coined by Tim Berners-Lee for a web of data (or data web) that can be processed by machines—that is, one in which much of the meaning is machine-readable. While its critics have questioned its feasibility, proponents argue that applications in industry, biology and human sciences research have already proven the validity of the original concept.

Berners-Lee originally expressed his vision of the Semantic Web as follows:
I have a dream for the Web [in which computers] become capable of analyzing all the data on the Web – the content, links, and transactions between people and computers. A "Semantic Web", which makes this possible, has yet to emerge, but when it does, the day-to-day mechanisms of trade, bureaucracy and our daily lives will be handled by machines talking to machines. The "intelligent agents" people have touted for ages will finally materialize.
The 2001 Scientific American article by Berners-Lee, Hendler, and Lassila described an expected evolution of the existing Web to a Semantic Web. In 2006, Berners-Lee and colleagues stated that: "This simple idea…remains largely unrealized". In 2013, more than four million Web domains contained Semantic Web markup.

Example

In the following example, the text 'Paul Schuster was born in Dresden' on a Website will be annotated, connecting a person with their place of birth. The following HTML-fragment shows how a small graph is being described, in RDFa-syntax using a schema.org vocabulary and a Wikidata ID: 

Graph resulting from the RDFa example

<div vocab="http://schema.org/" typeof="Person">
  <span property="name">Paul Schuster</span> was born in
  <span property="birthPlace" typeof="Place" href="http://www.wikidata.org/entity/Q1731">
    <span property="name">Dresden</span>.
  </span>
</div>

The example defines the following five triples (shown in Turtle Syntax). Each triple represents one edge in the resulting graph: the first element of the triple (the subject) is the name of the node where the edge starts, the second element (the predicate) the type of the edge, and the last and third element (the object) either the name of the node where the edge ends or a literal value (e.g. a text, a number, etc.). 


The triples result in the graph shown in the given figure.

Graph resulting from the RDFa example, enriched with further data from the Web
 
One of the advantages of using Uniform Resource Identifiers (URIs) is that they can be dereferenced using the HTTP protocol. According to the so-called Linked Open Data principles, such a dereferenced URI should result in a document that offers further data about the given URI. In this example, all URIs, both for edges and nodes (e.g. http://schema.org/Person, http://schema.org/birthPlace, http://www.wikidata.org/entity/Q1731) can be dereferenced and will result in further RDF graphs, describing the URI, e.g. that Dresden is a city in Germany, or that a person, in the sense of that URI, can be fictional. 

The second graph shows the previous example, but now enriched with a few of the triples from the documents that result from dereferencing http://schema.org/Person (green edge) and http://www.wikidata.org/entity/Q1731 (blue edges). 

Additionally to the edges given in the involved documents explicitly, edges can be automatically inferred: the triple 


from the original RDFa fragment and the triple 


from the document at http://schema.org/Person (green edge in the Figure) allow to infer the following triple, given OWL semantics (red dashed line in the second Figure): 

Background

The concept of the semantic network model was formed in the early 1960s by researchers such as the cognitive scientist Allan M. Collins, linguist M. Ross Quillian and psychologist Elizabeth F. Loftus as a form to represent semantically structured knowledge. When applied in the context of the modern internet, it extends the network of hyperlinked human-readable web pages by inserting machine-readable metadata about pages and how they are related to each other. This enables automated agents to access the Web more intelligently and perform more tasks on behalf of users. The term "Semantic Web" was coined by Tim Berners-Lee, the inventor of the World Wide Web and director of the World Wide Web Consortium ("W3C"), which oversees the development of proposed Semantic Web standards. He defines the Semantic Web as "a web of data that can be processed directly and indirectly by machines". 

Many of the technologies proposed by the W3C already existed before they were positioned under the W3C umbrella. These are used in various contexts, particularly those dealing with information that encompasses a limited and defined domain, and where sharing data is a common necessity, such as scientific research or data exchange among businesses. In addition, other technologies with similar goals have emerged, such as microformats.

Limitations of HTML

Many files on a typical computer can also be loosely divided into human readable documents and machine readable data. Documents like mail messages, reports, and brochures are read by humans. Data, such as calendars, addressbooks, playlists, and spreadsheets are presented using an application program that lets them be viewed, searched and combined.

Currently, the World Wide Web is based mainly on documents written in Hypertext Markup Language (HTML), a markup convention that is used for coding a body of text interspersed with multimedia objects such as images and interactive forms. Metadata tags provide a method by which computers can categorize the content of web pages. In the examples below, the field names "keywords", "description" and "author" are assigned values such as "computing", and "cheap widgets for sale" and "John Doe".

<meta name="keywords" content="computing, computer studies, computer" />
<meta name="description" content="Cheap widgets for sale" />
<meta name="author" content="John Doe" />

Because of this metadata tagging and categorization, other computer systems that want to access and share this data can easily identify the relevant values. 

With HTML and a tool to render it (perhaps web browser software, perhaps another user agent), one can create and present a page that lists items for sale. The HTML of this catalog page can make simple, document-level assertions such as "this document's title is 'Widget Superstore'", but there is no capability within the HTML itself to assert unambiguously that, for example, item number X586172 is an Acme Gizmo with a retail price of €199, or that it is a consumer product. Rather, HTML can only say that the span of text "X586172" is something that should be positioned near "Acme Gizmo" and "€199", etc. There is no way to say "this is a catalog" or even to establish that "Acme Gizmo" is a kind of title or that "€199" is a price. There is also no way to express that these pieces of information are bound together in describing a discrete item, distinct from other items perhaps listed on the page. 

Semantic HTML refers to the traditional HTML practice of markup following intention, rather than specifying layout details directly. For example, the use of denoting "emphasis" rather than , which specifies italics. Layout details are left up to the browser, in combination with Cascading Style Sheets. But this practice falls short of specifying the semantics of objects such as items for sale or prices. 

Microformats extend HTML syntax to create machine-readable semantic markup about objects including people, organizations, events and products. Similar initiatives include RDFa, Microdata and Schema.org.

Semantic Web solutions

The Semantic Web takes the solution further. It involves publishing in languages specifically designed for data: Resource Description Framework (RDF), Web Ontology Language (OWL), and Extensible Markup Language (XML). HTML describes documents and the links between them. RDF, OWL, and XML, by contrast, can describe arbitrary things such as people, meetings, or airplane parts.

These technologies are combined in order to provide descriptions that supplement or replace the content of Web documents. Thus, content may manifest itself as descriptive data stored in Web-accessible databases, or as markup within documents (particularly, in Extensible HTML (XHTML) interspersed with XML, or, more often, purely in XML, with layout or rendering cues stored separately). The machine-readable descriptions enable content managers to add meaning to the content, i.e., to describe the structure of the knowledge we have about that content. In this way, a machine can process knowledge itself, instead of text, using processes similar to human deductive reasoning and inference, thereby obtaining more meaningful results and helping computers to perform automated information gathering and research.

An example of a tag that would be used in a non-semantic web page: 

blog

Encoding similar information in a semantic web page might look like this: 

 rdf:about="http://example.org/semantic-web/">Semantic Web

Tim Berners-Lee calls the resulting network of Linked Data the Giant Global Graph, in contrast to the HTML-based World Wide Web. Berners-Lee posits that if the past was document sharing, the future is data sharing. His answer to the question of "how" provides three points of instruction. One, a URL should point to the data. Two, anyone accessing the URL should get data back. Three, relationships in the data should point to additional URLs with data.

Web 3.0

Tim Berners-Lee has described the semantic web as a component of "Web 3.0".
People keep asking what Web 3.0 is. I think maybe when you've got an overlay of scalable vector graphics – everything rippling and folding and looking misty – on Web 2.0 and access to a semantic Web integrated across a huge space of data, you'll have access to an unbelievable data resource …
— Tim Berners-Lee, 2006
"Semantic Web" is sometimes used as a synonym for "Web 3.0", though the definition of each term varies. Web 3.0 has started to emerge as a movement away from the centralization of services like search, social media and chat applications that are dependent on a single organisation to function.

Guardian journalist John Harris reviewed the Web 3.0 concept favorably in early‑2019 and, in particular, work by Berners‑Lee on a project called 'Solid', based around personal data stores or 'Pods', over which individuals retain control. Berners‑Lee has formed a startup, Inrupt, to advance the idea and attract volunteer developers.

Challenges

Some of the challenges for the Semantic Web include vastness, vagueness, uncertainty, inconsistency, and deceit. Automated reasoning systems will have to deal with all of these issues in order to deliver on the promise of the Semantic Web.
  • Vastness: The World Wide Web contains many billions of pages. The SNOMED CT medical terminology ontology alone contains 370,000 class names, and existing technology has not yet been able to eliminate all semantically duplicated terms. Any automated reasoning system will have to deal with truly huge inputs.
  • Vagueness: These are imprecise concepts like "young" or "tall". This arises from the vagueness of user queries, of concepts represented by content providers, of matching query terms to provider terms and of trying to combine different knowledge bases with overlapping but subtly different concepts. Fuzzy logic is the most common technique for dealing with vagueness.
  • Uncertainty: These are precise concepts with uncertain values. For example, a patient might present a set of symptoms that correspond to a number of different distinct diagnoses each with a different probability. Probabilistic reasoning techniques are generally employed to address uncertainty.
  • Inconsistency: These are logical contradictions that will inevitably arise during the development of large ontologies, and when ontologies from separate sources are combined. Deductive reasoning fails catastrophically when faced with inconsistency, because "anything follows from a contradiction". Defeasible reasoning and paraconsistent reasoning are two techniques that can be employed to deal with inconsistency.
  • Deceit: This is when the producer of the information is intentionally misleading the consumer of the information. Cryptography techniques are currently utilized to alleviate this threat. By providing a means to determine the information's integrity, including that which relates to the identity of the entity that produced or published the information, however credibility issues still have to be addressed in cases of potential deceit.
This list of challenges is illustrative rather than exhaustive, and it focuses on the challenges to the "unifying logic" and "proof" layers of the Semantic Web. The World Wide Web Consortium (W3C) Incubator Group for Uncertainty Reasoning for the World Wide Web (URW3-XG) final report lumps these problems together under the single heading of "uncertainty". Many of the techniques mentioned here will require extensions to the Web Ontology Language (OWL) for example to annotate conditional probabilities. This is an area of active research.

Standards

Standardization for Semantic Web in the context of Web 3.0 is under the care of W3C.

Components

The term "Semantic Web" is often used more specifically to refer to the formats and technologies that enable it. The collection, structuring and recovery of linked data are enabled by technologies that provide a formal description of concepts, terms, and relationships within a given knowledge domain. These technologies are specified as W3C standards and include:

The Semantic Web Stack illustrates the architecture of the Semantic Web. The functions and relationships of the components can be summarized as follows:
  • XML provides an elemental syntax for content structure within documents, yet associates no semantics with the meaning of the content contained within. XML is not at present a necessary component of Semantic Web technologies in most cases, as alternative syntaxes exists, such as Turtle. Turtle is a de facto standard, but has not been through a formal standardization process.
  • XML Schema is a language for providing and restricting the structure and content of elements contained within XML documents.
  • RDF is a simple language for expressing data models, which refer to objects ("web resources") and their relationships. An RDF-based model can be represented in a variety of syntaxes, e.g., RDF/XML, N3, Turtle, and RDFa. RDF is a fundamental standard of the Semantic Web.
  • RDF Schema extends RDF and is a vocabulary for describing properties and classes of RDF-based resources, with semantics for generalized-hierarchies of such properties and classes.
  • OWL adds more vocabulary for describing properties and classes: among others, relations between classes (e.g. disjointness), cardinality (e.g. "exactly one"), equality, richer typing of properties, characteristics of properties (e.g. symmetry), and enumerated classes.
  • SPARQL is a protocol and query language for semantic web data sources.
  • RIF is the W3C Rule Interchange Format. It's an XML language for expressing Web rules that computers can execute. RIF provides multiple versions, called dialects. It includes a RIF Basic Logic Dialect (RIF-BLD) and RIF Production Rules Dialect (RIF PRD).

Current state of standardization

Well-established standards:
Not yet fully realized:

Applications

The intent is to enhance the usability and usefulness of the Web and its interconnected resources by creating Semantic Web Services, such as:
  • Servers that expose existing data systems using the RDF and SPARQL standards. Many converters to RDF exist from different applications. Relational databases are an important source. The semantic web server attaches to the existing system without affecting its operation.
  • Documents "marked up" with semantic information (an extension of the HTML tags used in today's Web pages to supply information for Web search engines using web crawlers). This could be machine-understandable information about the human-understandable content of the document (such as the creator, title, description, etc.) or it could be purely metadata representing a set of facts (such as resources and services elsewhere on the site). Note that anything that can be identified with a Uniform Resource Identifier (URI) can be described, so the semantic web can reason about animals, people, places, ideas, etc. There are four semantic annotation formats that can be used in HTML documents; Microformat, RDFa, Microdata and JSON-LD. Semantic markup is often generated automatically, rather than manually.
  • Common metadata vocabularies (ontologies) and maps between vocabularies that allow document creators to know how to mark up their documents so that agents can use the information in the supplied metadata (so that Author in the sense of 'the Author of the page' won't be confused with Author in the sense of a book that is the subject of a book review).
  • Automated agents to perform tasks for users of the semantic web using this data.
  • Web-based services (often with agents of their own) to supply information specifically to agents, for example, a Trust service that an agent could ask if some online store has a history of poor service or spamming.
Such services could be useful to public search engines, or could be used for knowledge management within an organization. Business applications include:
  • Facilitating the integration of information from mixed sources
  • Dissolving ambiguities in corporate terminology
  • Improving information retrieval thereby reducing information overload and increasing the refinement and precision of the data retrieved
  • Identifying relevant information with respect to a given domain
  • Providing decision making support
In a corporation, there is a closed group of users and the management is able to enforce company guidelines like the adoption of specific ontologies and use of semantic annotation. Compared to the public Semantic Web there are lesser requirements on scalability and the information circulating within a company can be more trusted in general; privacy is less of an issue outside of handling of customer data.

Skeptical reactions

Practical feasibility

Critics question the basic feasibility of a complete or even partial fulfillment of the Semantic Web, pointing out both difficulties in setting it up and a lack of general-purpose usefulness that prevents the required effort from being invested. In a 2003 paper, Marshall and Shipman point out the cognitive overhead inherent in formalizing knowledge, compared to the authoring of traditional web hypertext:
While learning the basics of HTML is relatively straightforward, learning a knowledge representation language or tool requires the author to learn about the representation's methods of abstraction and their effect on reasoning. For example, understanding the class-instance relationship, or the superclass-subclass relationship, is more than understanding that one concept is a “type of” another concept. […] These abstractions are taught to computer scientists generally and knowledge engineers specifically but do not match the similar natural language meaning of being a "type of" something. Effective use of such a formal representation requires the author to become a skilled knowledge engineer in addition to any other skills required by the domain. […] Once one has learned a formal representation language, it is still often much more effort to express ideas in that representation than in a less formal representation […]. Indeed, this is a form of programming based on the declaration of semantic data and requires an understanding of how reasoning algorithms will interpret the authored structures.
According to Marshall and Shipman, the tacit and changing nature of much knowledge adds to the knowledge engineering problem, and limits the Semantic Web's applicability to specific domains. A further issue that they point out are domain- or organisation-specific ways to express knowledge, which must be solved through community agreement rather than only technical means. As it turns out, specialized communities and organizations for intra-company projects have tended to adopt semantic web technologies greater than peripheral and less-specialized communities. The practical constraints toward adoption have appeared less challenging where domain and scope is more limited than that of the general public and the World-Wide Web.

Finally, Marshall and Shipman see pragmatic problems in the idea of (Knowledge Navigator-style) intelligent agents working in the largely manually curated Semantic Web:
In situations in which user needs are known and distributed information resources are well described, this approach can be highly effective; in situations that are not foreseen and that bring together an unanticipated array of information resources, the Google approach is more robust. Furthermore, the Semantic Web relies on inference chains that are more brittle; a missing element of the chain results in a failure to perform the desired action, while the human can supply missing pieces in a more Google-like approach. […] cost-benefit tradeoffs can work in favor of specially-created Semantic Web metadata directed at weaving together sensible well-structured domain-specific information resources; close attention to user/customer needs will drive these federations if they are to be successful.
Cory Doctorow's critique ("metacrap") is from the perspective of human behavior and personal preferences. For example, people may include spurious metadata into Web pages in an attempt to mislead Semantic Web engines that naively assume the metadata's veracity. This phenomenon was well-known with metatags that fooled the Altavista ranking algorithm into elevating the ranking of certain Web pages: the Google indexing engine specifically looks for such attempts at manipulation. Peter Gärdenfors and Timo Honkela point out that logic-based semantic web technologies cover only a fraction of the relevant phenomena related to semantics.

Censorship and privacy

Enthusiasm about the semantic web could be tempered by concerns regarding censorship and privacy. For instance, text-analyzing techniques can now be easily bypassed by using other words, metaphors for instance, or by using images in place of words. An advanced implementation of the semantic web would make it much easier for governments to control the viewing and creation of online information, as this information would be much easier for an automated content-blocking machine to understand. In addition, the issue has also been raised that, with the use of FOAF files and geolocation meta-data, there would be very little anonymity associated with the authorship of articles on things such as a personal blog. Some of these concerns were addressed in the "Policy Aware Web" project and is an active research and development topic.

Doubling output formats

Another criticism of the semantic web is that it would be much more time-consuming to create and publish content because there would need to be two formats for one piece of data: one for human viewing and one for machines. However, many web applications in development are addressing this issue by creating a machine-readable format upon the publishing of data or the request of a machine for such data. The development of microformats has been one reaction to this kind of criticism. Another argument in defense of the feasibility of semantic web is the likely falling price of human intelligence tasks in digital labor markets, such as Amazon's Mechanical Turk.

Specifications such as eRDF and RDFa allow arbitrary RDF data to be embedded in HTML pages. The GRDDL (Gleaning Resource Descriptions from Dialects of Language) mechanism allows existing material (including microformats) to be automatically interpreted as RDF, so publishers only need to use a single format, such as HTML.

Research activities on corporate applications

The first research group explicitly focusing on the Corporate Semantic Web was the ACACIA team at INRIA-Sophia-Antipolis, founded in 2002. Results of their work include the RDF(S) based Corese search engine, and the application of semantic web technology in the realm of E-learning.

Since 2008, the Corporate Semantic Web research group, located at the Free University of Berlin, focuses on building blocks: Corporate Semantic Search, Corporate Semantic Collaboration, and Corporate Ontology Engineering.

Ontology engineering research includes the question of how to involve non-expert users in creating ontologies and semantically annotated content and for extracting explicit knowledge from the interaction of users within enterprises.

Future of applications

Tim O'Reilly, who coined the term Web 2.0 proposed a long-term vision of the Semantic Web as a web of data, where sophisticated applications manipulate the data web. The data web transforms the Web from a distributed file system into a distributed database system.

Metadata

From Wikipedia, the free encyclopedia

In the 2010s, metadata typically refers to digital forms, but traditional card catalogues contain metadata, with cards holding information about books in a library (author, title, subject, etc.).
 
Metadata is data [information] that provides information about other data. Many distinct types of metadata exist, among these descriptive metadata, structural metadata, administrative metadata, reference metadata and statistical metadata
  • Descriptive metadata describes a resource for purposes such as discovery and identification. It can include elements such as title, abstract, author, and keywords.
  • Structural metadata is metadata about containers of data and indicates how compound objects are put together, for example, how pages are ordered to form chapters. It describes the types, versions, relationships and other characteristics of digital materials. 
  • Administrative metadata provides information to help manage a resource, such as when and how it was created, file type and other technical information, and who can access it.
  • Reference metadata describes the contents and quality of statistical data
  • Statistical metadata may also describe processes that collect, process, or produce statistical data; such metadata are also called process data.

History

Metadata was traditionally used in the card catalogs of libraries until the 1980s, when libraries converted their catalog data to digital databases. In the 2000s, as digital formats were becoming the prevalent way of storing data and information, metadata was also used to describe digital data using metadata standards

The first description of "meta data" for computer systems is purportedly noted by MIT's Center for International Studies experts David Griffel and Stuart McIntosh in 1967: "In summary then, we have statements in an object language about subject descriptions of data and token codes for the data. We also have statements in a meta language describing the data relationships and transformations, and ought/is relations between norm and data." 

There are different metadata standards for each different discipline (e.g., museum collections, digital audio files, websites, etc.). Describing the contents and context of data or data files increases its usefulness. For example, a web page may include metadata specifying what software language the page is written in (e.g., HTML), what tools were used to create it, what subjects the page is about, and where to find more information about the subject. This metadata can automatically improve the reader's experience and make it easier for users to find the web page online. A CD may include metadata providing information about the musicians, singers and songwriters whose work appears on the disc.

A principal purpose of metadata is to help users find relevant information and discover resources. Metadata also helps to organize electronic resources, provide digital identification, and support the archiving and preservation of resources. Metadata assists users in resource discovery by "allowing resources to be found by relevant criteria, identifying resources, bringing similar resources together, distinguishing dissimilar resources, and giving location information." Metadata of telecommunication activities including Internet traffic is very widely collected by various national governmental organizations. This data is used for the purposes of traffic analysis and can be used for mass surveillance.

In many countries, the metadata relating to emails, telephone calls, web pages, video traffic, IP connections and cell phone locations are routinely stored by government organizations.

Definition

Metadata means "data about data". Although the "meta" prefix (from the Greek preposition and prefix μετά-) means "after" or "beyond", it is used to mean "about" in epistemology. Metadata is defined as the data providing information about one or more aspects of the data; it is used to summarize basic information about data which can make tracking and working with specific data easier. Some examples include:
  • Means of creation of the data
  • Purpose of the data
  • Time and date of creation
  • Creator or author of the data
  • Location on a computer network where the data was created
  • Standards used
  • File size
  • Data quality
  • Source of the data
  • Process used to create the data
For example, a digital image may include metadata that describes how large the picture is, the color depth, the image resolution, when the image was created, the shutter speed, and other data. A text document's metadata may contain information about how long the document is, who the author is, when the document was written, and a short summary of the document. Metadata within web pages can also contain descriptions of page content, as well as key words linked to the content. These links are often called "Metatags", which were used as the primary factor in determining order for a web search until the late 1990s. The reliance of metatags in web searches was decreased in the late 1990s because of "keyword stuffing". Metatags were being largely misused to trick search engines into thinking some websites had more relevance in the search than they really did.

Metadata can be stored and managed in a database, often called a metadata registry or metadata repository. However, without context and a point of reference, it might be impossible to identify metadata just by looking at it. For example: by itself, a database containing several numbers, all 13 digits long could be the results of calculations or a list of numbers to plug into an equation - without any other context, the numbers themselves can be perceived as the data. But if given the context that this database is a log of a book collection, those 13-digit numbers may now be identified as ISBNs - information that refers to the book, but is not itself the information within the book. The term "metadata" was coined in 1968 by Philip Bagley, in his book "Extension of Programming Language Concepts" where it is clear that he uses the term in the ISO 11179 "traditional" sense, which is "structural metadata" i.e. "data about the containers of data"; rather than the alternative sense "content about individual instances of data content" or metacontent, the type of data usually found in library catalogues. Since then the fields of information management, information science, information technology, librarianship, and GIS have widely adopted the term. In these fields the word metadata is defined as "data about data". While this is the generally accepted definition, various disciplines have adopted their own more specific explanation and uses of the term.

Types

While the metadata application is manifold, covering a large variety of fields, there are specialized and well-accepted models to specify types of metadata. Bretherton & Singley (1994) distinguish between two distinct classes: structural/control metadata and guide metadata. Structural metadata describes the structure of database objects such as tables, columns, keys and indexes. Guide metadata helps humans find specific items and are usually expressed as a set of keywords in a natural language. According to Ralph Kimball metadata can be divided into 2 similar categories: technical metadata and business metadata. Technical metadata corresponds to internal metadata, and business metadata corresponds to external metadata. Kimball adds a third category, process metadata. On the other hand, NISO distinguishes among three types of metadata: descriptive, structural, and administrative.

Descriptive metadata is typically used for discovery and identification, as information to search and locate an object, such as title, author, subjects, keywords, publisher. Structural metadata describes how the components of an object are organized. An example of structural metadata would be how pages are ordered to form chapters of a book. Finally, administrative metadata gives information to help manage the source. Administrative metadata refers to the technical information, including file type, or when and how the file was created. Two sub-types of administrative metadata are rights management metadata and preservation metadata. Rights management metadata explains intellectual property rights, while preservation metadata contains information to preserve and save a resource.

Statistical data repositories have their own requirements for metadata in order to describe not only the source and quality of the data but also what statistical processes were used to create the data, which is of particular importance to the statistical community in order to both validate and improve the process of statistical data production
.
An additional type of metadata beginning to be more developed is accessibility metadata. Accessibility metadata is not a new concept to libraries; however, advances in universal design have raised its profile. Projects like Cloud4All and GPII identified the lack of common terminologies and models to describe the needs and preferences of users and information that fits those needs as a major gap in providing universal access solutions.. Those types of information are accessibility metadata. Schema.org has incorporated several accessibility properties based on IMS Global Access for All Information Model Data Element Specification. The Wiki page WebSchemas/Accessibility lists several properties and their values. 

While the efforts to describe and standardize the varied accessibility needs of information seekers are beginning to become more robust their adoption into established metadata schemas has not been as developed. For example, while Dublin Core (DC)'s “audience” and MARC 21's “reading level” could be used to identify resources suitable for users with dyslexia and DC's “Format” could be used to identify resources available in braille, audio, or large print formats, there is more work to be done.

Structures

Metadata (metacontent) or, more correctly, the vocabularies used to assemble metadata (metacontent) statements, is typically structured according to a standardized concept using a well-defined metadata scheme, including: metadata standards and metadata models. Tools such as controlled vocabularies, taxonomies, thesauri, data dictionaries, and metadata registries can be used to apply further standardization to the metadata. Structural metadata commonality is also of paramount importance in data model development and in database design.

Syntax

Metadata (metacontent) syntax refers to the rules created to structure the fields or elements of metadata (metacontent). A single metadata scheme may be expressed in a number of different markup or programming languages, each of which requires a different syntax. For example, Dublin Core may be expressed in plain text, HTML, XML, and RDF.

A common example of (guide) metacontent is the bibliographic classification, the subject, the Dewey Decimal class number. There is always an implied statement in any "classification" of some object. To classify an object as, for example, Dewey class number 514 (Topology) (i.e. books having the number 514 on their spine) the implied statement is: <514>. This is a subject-predicate-object triple, or more importantly, a class-attribute-value triple. The first two elements of the triple (class, attribute) are pieces of some structural metadata having a defined semantic. The third element is a value, preferably from some controlled vocabulary, some reference (master) data. The combination of the metadata and master data elements results in a statement which is a metacontent statement i.e. "metacontent = metadata + master data". All of these elements can be thought of as "vocabulary". Both metadata and master data are vocabularies which can be assembled into metacontent statements. There are many sources of these vocabularies, both meta and master data: UML, EDIFACT, XSD, Dewey/UDC/LoC, SKOS, ISO-25964, Pantone, Linnaean Binomial Nomenclature, etc. Using controlled vocabularies for the components of metacontent statements, whether for indexing or finding, is endorsed by ISO 25964: "If both the indexer and the searcher are guided to choose the same term for the same concept, then relevant documents will be retrieved." This is particularly relevant when considering search engines of the internet, such as Google. The process indexes pages then matches text strings using its complex algorithm; there is no intelligence or "inferencing" occurring, just the illusion thereof.

Hierarchical, linear and planar schemata

Metadata schemata can be hierarchical in nature where relationships exist between metadata elements and elements are nested so that parent-child relationships exist between the elements. An example of a hierarchical metadata schema is the IEEE LOM schema, in which metadata elements may belong to a parent metadata element. Metadata schemata can also be one-dimensional, or linear, where each element is completely discrete from other elements and classified according to one dimension only. An example of a linear metadata schema is the Dublin Core schema, which is one dimensional. Metadata schemata are often two dimensional, or planar, where each element is completely discrete from other elements but classified according to two orthogonal dimensions.

Hypermapping

In all cases where the metadata schemata exceed the planar depiction, some type of hypermapping is required to enable display and view of metadata according to chosen aspect and to serve special views. Hypermapping frequently applies to layering of geographical and geological information overlays.

Granularity

The degree to which the data or metadata is structured is referred to as its "granularity". "Granularity" refers to how much detail is provided. Metadata with a high granularity allows for deeper, more detailed, and more structured information and enables greater level of technical manipulation. A lower level of granularity means that metadata can be created for considerably lower costs but will not provide as detailed information. The major impact of granularity is not only on creation and capture, but moreover on maintenance costs. As soon as the metadata structures become outdated, so too is the access to the referred data. Hence granularity must take into account the effort to create the metadata as well as the effort to maintain it.

Standards

International standards apply to metadata. Much work is being accomplished in the national and international standards communities, especially ANSI (American National Standards Institute) and ISO (International Organization for Standardization) to reach consensus on standardizing metadata and registries. The core metadata registry standard is ISO/IEC 11179 Metadata Registries (MDR), the framework for the standard is described in ISO/IEC 11179-1:2004. A new edition of Part 1 is in its final stage for publication in 2015 or early 2016. It has been revised to align with the current edition of Part 3, ISO/IEC 11179-3:2013 which extends the MDR to support registration of Concept Systems. (see ISO/IEC 11179). This standard specifies a schema for recording both the meaning and technical structure of the data for unambiguous usage by humans and computers. ISO/IEC 11179 standard refers to metadata as information objects about data, or "data about data". In ISO/IEC 11179 Part-3, the information objects are data about Data Elements, Value Domains, and other reusable semantic and representational information objects that describe the meaning and technical details of a data item. This standard also prescribes the details for a metadata registry, and for registering and administering the information objects within a Metadata Registry. ISO/IEC 11179 Part 3 also has provisions for describing compound structures that are derivations of other data elements, for example through calculations, collections of one or more data elements, or other forms of derived data. While this standard describes itself originally as a "data element" registry, its purpose is to support describing and registering metadata content independently of any particular application, lending the descriptions to being discovered and reused by humans or computers in developing new applications, databases, or for analysis of data collected in accordance with the registered metadata content. This standard has become the general basis for other kinds of metadata registries, reusing and extending the registration and administration portion of the standard.

The Geospatial community has a tradition of specialized geospatial metadata standards, particularly building on traditions of map- and image-libraries and catalogues. Formal metadata is usually essential for geospatial data, as common text-processing approaches are not applicable.

The Dublin Core metadata terms are a set of vocabulary terms which can be used to describe resources for the purposes of discovery. The original set of 15 classic metadata terms, known as the Dublin Core Metadata Element Set are endorsed in the following standards documents:
  • IETF RFC 5013
  • ISO Standard 15836-2009
  • NISO Standard Z39.85.
Although not a standard, Microformat (also mentioned in the section metadata on the internet below) is a web-based approach to semantic markup which seeks to re-use existing HTML/XHTML tags to convey metadata. Microformat follows XHTML and HTML standards but is not a standard in itself. One advocate of microformats, Tantek Çelik, characterized a problem with alternative approaches: 

Use

Photographs

Metadata may be written into a digital photo file that will identify who owns it, copyright and contact information, what brand or model of camera created the file, along with exposure information (shutter speed, f-stop, etc.) and descriptive information, such as keywords about the photo, making the file or image searchable on a computer and/or the Internet. Some metadata is created by the camera and some is input by the photographer and/or software after downloading to a computer. Most digital cameras write metadata about model number, shutter speed, etc., and some enable you to edit it; this functionality has been available on most Nikon DSLRs since the Nikon D3, on most new Canon cameras since the Canon EOS 7D, and on most Pentax DSLRs since the Pentax K-3. Metadata can be used to make organizing in post-production easier with the use of key-wording. Filters can be used to analyze a specific set of photographs and create selections on criteria like rating or capture time.

Photographic Metadata Standards are governed by organizations that develop the following standards. They include, but are not limited to:
  • IPTC Information Interchange Model IIM (International Press Telecommunications Council),
  • IPTC Core Schema for XMP
  • XMP – Extensible Metadata Platform (an ISO standard)
  • Exif – Exchangeable image file format, Maintained by CIPA (Camera & Imaging Products Association) and published by JEITA (Japan Electronics and Information Technology Industries Association)
  • Dublin Core (Dublin Core Metadata Initiative – DCMI)
  • PLUS (Picture Licensing Universal System).
  • VRA Core (Visual Resource Association)

Telecommunications

Information on the times, origins and destinations of phone calls, electronic messages, instant messages and other modes of telecommunication, as opposed to message content, is another form of metadata. Bulk collection of this call detail record metadata by intelligence agencies has proven controversial after disclosures by Edward Snowden of the fact that certain Intelligence agencies such as the NSA had been (and perhaps still are) keeping online metadata on millions of internet user for up to a year, regardless of whether or not they [ever] were persons of interest to the agency.

Video

Metadata is particularly useful in video, where information about its contents (such as transcripts of conversations and text descriptions of its scenes) is not directly understandable by a computer, but where efficient search of the content is desirable. This is particularly useful in video applications such as Automatic Number Plate Recognition and Vehicle Recognition Identification software, wherein license plate data is saved and used to create reports and alerts. There are two sources in which video metadata is derived: (1) operational gathered metadata, that is information about the content produced, such as the type of equipment, software, date, and location; (2) human-authored metadata, to improve search engine visibility, discoverability, audience engagement, and providing advertising opportunities to video publishers. In today's society most professional video editing software has access to metadata. Avid's MetaSync and Adobe's Bridge are two prime examples of this.

Creation

Metadata can be created either by automated information processing or by manual work. Elementary metadata captured by computers can include information about when an object was created, who created it, when it was last updated, file size, and file extension. In this context an object refers to any of the following:
  • A physical item such as a book, CD, DVD, a paper map, chair, table, flower pot, etc.
  • An electronic file such as a digital image, digital photo, electronic document, program file, database table, etc.

Data virtualization

Data virtualization has emerged in the 2000s as the new software technology to complete the virtualization "stack" in the enterprise. Metadata is used in data virtualization servers which are enterprise infrastructure components, alongside database and application servers. Metadata in these servers is saved as persistent repository and describe business objects in various enterprise systems and applications. Structural metadata commonality is also important to support data virtualization.

Statistics and census services

Standardization and harmonization work has brought advantages to industry efforts to build metadata systems in the statistical community. Several metadata guidelines and standards such as the European Statistics Code of Practice and ISO 17369:2013 (Statistical Data and Metadata Exchange or SDMX) provide key principles for how businesses, government bodies, and other entities should manage statistical data and metadata. Entities such as Eurostat, European System of Central Banks, and the U.S. Environmental Protection Agency have implemented these and other such standards and guidelines with the goal of improving "efficiency when managing statistical business processes."

Library and information science

Metadata has been used in various ways as a means of cataloging items in libraries in both digital and analog format. Such data helps classify, aggregate, identify, and locate a particular book, DVD, magazine or any object a library might hold in its collection. Until the 1980s, many library catalogues used 3x5 inch cards in file drawers to display a book's title, author, subject matter, and an abbreviated alpha-numeric string (call number) which indicated the physical location of the book within the library's shelves. The Dewey Decimal System employed by libraries for the classification of library materials by subject is an early example of metadata usage. Beginning in the 1980s and 1990s, many libraries replaced these paper file cards with computer databases. These computer databases make it much easier and faster for users to do keyword searches. Another form of older metadata collection is the use by US Census Bureau of what is known as the "Long Form." The Long Form asks questions that are used to create demographic data to find patterns of distribution. Libraries employ metadata in library catalogues, most commonly as part of an Integrated Library Management System. Metadata is obtained by cataloguing resources such as books, periodicals, DVDs, web pages or digital images. This data is stored in the integrated library management system, ILMS, using the MARC metadata standard. The purpose is to direct patrons to the physical or electronic location of items or areas they seek as well as to provide a description of the item/s in question. 

More recent and specialized instances of library metadata include the establishment of digital libraries including e-print repositories and digital image libraries. While often based on library principles, the focus on non-librarian use, especially in providing metadata, means they do not follow traditional or common cataloging approaches. Given the custom nature of included materials, metadata fields are often specially created e.g. taxonomic classification fields, location fields, keywords or copyright statement. Standard file information such as file size and format are usually automatically included. Library operation has for decades been a key topic in efforts toward international standardization. Standards for metadata in digital libraries include Dublin Core, METS, MODS, DDI, DOI, URN, PREMIS schema, EML, and OAI-PMH. Leading libraries in the world give hints on their metadata standards strategies.

In museums

Metadata in a museum context is the information that trained cultural documentation specialists, such as archivists, librarians, museum registrars and curators, create to index, structure, describe, identify, or otherwise specify works of art, architecture, cultural objects and their images. Descriptive metadata is most commonly used in museum contexts for object identification and resource recovery purposes.

Usage

Metadata is developed and applied within collecting institutions and museums in order to:
  • Facilitate resource discovery and execute search queries.
  • Create digital archives that store information relating to various aspects of museum collections and cultural objects, and serves for archival and managerial purposes.
  • Provide public audiences access to cultural objects through publishing digital content online.

Standards

Many museums and cultural heritage centers recognize that given the diversity of art works and cultural objects, no single model or standard suffices to describe and catalogue cultural works. For example, a sculpted Indigenous artifact could be classified as an artwork, an archaeological artifact, or an Indigenous heritage item. The early stages of standardization in archiving, description and cataloging within the museum community began in the late 1990s with the development of standards such as Categories for the Description of Works of Art (CDWA), Spectrum, CIDOC Conceptual Reference Model (CRM), Cataloging Cultural Objects (CCO) and the CDWA Lite XML schema. These standards use HTML and XML markup languages for machine processing, publication and implementation. The Anglo-American Cataloguing Rules (AACR), originally developed for characterizing books, have also been applied to cultural objects, works of art and architecture. Standards, such as the CCO, are integrated within a Museum's Collections Management System (CMS), a database through which museums are able to manage their collections, acquisitions, loans and conservation. Scholars and professionals in the field note that the "quickly evolving landscape of standards and technologies" create challenges for cultural documentarians, specifically non-technically trained professionals. Most collecting institutions and museums use a relational database to categorize cultural works and their images. Relational databases and metadata work to document and describe the complex relationships amongst cultural objects and multi-faceted works of art, as well as between objects and places, people and artistic movements. Relational database structures are also beneficial within collecting institutions and museums because they allow for archivists to make a clear distinction between cultural objects and their images; an unclear distinction could lead to confusing and inaccurate searches.

Cultural objects and art works

An object's materiality, function and purpose, as well as the size (e.g., measurements, such as height, width, weight), storage requirements (e.g., climate-controlled environment) and focus of the museum and collection, influence the descriptive depth of the data attributed to the object by cultural documentarians. The established institutional cataloging practices, goals and expertise of cultural documentarians and database structure also influence the information ascribed to cultural objects, and the ways in which cultural objects are categorized. Additionally, museums often employ standardized commercial collection management software that prescribes and limits the ways in which archivists can describe artworks and cultural objects. As well, collecting institutions and museums use Controlled Vocabularies to describe cultural objects and artworks in their collections. Getty Vocabularies and the Library of Congress Controlled Vocabularies are reputable within the museum community and are recommended by CCO standards. Museums are encouraged to use controlled vocabularies that are contextual and relevant to their collections and enhance the functionality of their digital information systems. Controlled Vocabularies are beneficial within databases because they provide a high level of consistency, improving resource retrieval. Metadata structures, including controlled vocabularies, reflect the ontologies of the systems from which they were created. Often the processes through which cultural objects are described and categorized through metadata in museums do not reflect the perspectives of the maker communities.

Museums and the Internet

Metadata has been instrumental in the creation of digital information systems and archives within museums, and has made it easier for museums to publish digital content online. This has enabled audiences who might not have had access to cultural objects due to geographic or economic barriers to have access to them. In the 2000s, as more museums have adopted archival standards and created intricate databases, discussions about Linked Data between museum databases have come up in the museum, archival and library science communities. Collection Management Systems (CMS) and Digital Asset Management tools can be local or shared systems. Digital Humanities scholars note many benefits of interoperability between museum databases and collections, while also acknowledging the difficulties achieving such interoperability.

Law

United States

Problems involving metadata in litigation in the United States are becoming widespread. Courts have looked at various questions involving metadata, including the discoverability of metadata by parties. Although the Federal Rules of Civil Procedure have only specified rules about electronic documents, subsequent case law has elaborated on the requirement of parties to reveal metadata. In October 2009, the Arizona Supreme Court has ruled that metadata records are public record. Document metadata have proven particularly important in legal environments in which litigation has requested metadata, which can include sensitive information detrimental to a certain party in court. Using metadata removal tools to "clean" or redact documents can mitigate the risks of unwittingly sending sensitive data. This process partially protects law firms from potentially damaging leaking of sensitive data through electronic discovery

Opinion polls have shown that 45% of Americans are "not at all confident" in the ability of social media sites ensure their personal data is secure and 40% say that social media sites should not be able to store any information on individuals. 76% of Americans say that they are not confident that the information advertising agencies collect on them is secure and 50% say that online advertising agencies should not be allowed to record any of their information at all.

Australia

In Australia, the need to strengthen national security has resulted in the introduction of a new metadata storage law. This new law means that both security and policing agencies will be allowed to access up to two years of an individual's metadata, with the aim of making it easier to stop any terrorist attacks and serious crimes from happening.

In legislation

legislative metadata has been the subject of some discussion in law.gov forums such as workshops held by the Legal Information Institute at the Cornell Law School on March 22 and 23, 2010. The documentation for these forums are titled, "Suggested metadata practices for legislation and regulations."

A handful of key points have been outlined by these discussions, section headings of which are listed as follows:
  • General Considerations
  • Document Structure
  • Document Contents
  • Metadata (elements of)
  • Layering
  • Point-in-time versus post-hoc

In healthcare

Australian medical research pioneered the definition of metadata for applications in health care. That approach offers the first recognized attempt to adhere to international standards in medical sciences instead of defining a proprietary standard under the World Health Organization (WHO) umbrella. The medical community yet did not approve the need to follow metadata standards despite research that supported these standards.

In biomedical research

Research studies in the fields of biomedicine and molecular biology frequently yield large quantities of data, including results of genome or meta-genome sequencing, proteomics data, and even notes or plans created during the course of research itself. Each data type involves its own variety of metadata and the processes necessary to produce these metadata. General metadata standards, such as ISA-Tab, allow researchers to create and exchange experimental metadata in consistent formats. Specific experimental approaches frequently have their own metadata standards and systems: metadata standards for mass spectrometry include mzML and SPLASH, while XML-based standard such as PDBML and SRA XML serve as standards for macromolecular structure and sequencing data, respectively. 

The products of biomedical research are generally realized as peer-reviewed manuscripts and these publications are yet another source of data. Metadata for biomedical publications is often created by journal publishers and citation databases such as PubMed and Web of Science. The data contained within manuscripts or accompanying them as supplementary material is less often subject to metadata creation, though they may be submitted to biomedical databases after publication. The original authors and database curators then become responsible for metadata creation, with the assistance of automated processes. Comprehensive metadata for all experimental data is the foundation of the FAIR Guiding Principles, or the standards for ensuring research data are findable, accessible, interoperable, and reusable.

Data Warehousing

A data warehouse (DW) is a repository of an organization's electronically stored data. Data warehouses are designed to manage and store the data. Data warehouses differ from business intelligence (BI) systems, because BI systems are designed to use data to create reports and analyze the information, to provide strategic guidance to management. Metadata is an important tool in how data is stored in data warehouses. The purpose of a data warehouse is to house standardized, structured, consistent, integrated, correct, "cleaned" and timely data, extracted from various operational systems in an organization. The extracted data are integrated in the data warehouse environment to provide an enterprise-wide perspective. Data are structured in a way to serve the reporting and analytic requirements. The design of structural metadata commonality using a data modeling method such as entity relationship model diagramming is important in any data warehouse development effort. They detail metadata on each piece of data in the data warehouse. An essential component of a data warehouse/business intelligence system is the metadata and tools to manage and retrieve the metadata. Ralph Kimball describes metadata as the DNA of the data warehouse as metadata defines the elements of the data warehouse and how they work together. 

Kimball et al. refers to three main categories of metadata: Technical metadata, business metadata and process metadata. Technical metadata is primarily definitional, while business metadata and process metadata is primarily descriptive. The categories sometimes overlap.
  • Technical metadata defines the objects and processes in a DW/BI system, as seen from a technical point of view. The technical metadata includes the system metadata, which defines the data structures such as tables, fields, data types, indexes and partitions in the relational engine, as well as databases, dimensions, measures, and data mining models. Technical metadata defines the data model and the way it is displayed for the users, with the reports, schedules, distribution lists, and user security rights.
  • Business metadata is content from the data warehouse described in more user-friendly terms. The business metadata tells you what data you have, where they come from, what they mean and what their relationship is to other data in the data warehouse. Business metadata may also serve as a documentation for the DW/BI system. Users who browse the data warehouse are primarily viewing the business metadata.
  • Process metadata is used to describe the results of various operations in the data warehouse. Within the ETL process, all key data from tasks is logged on execution. This includes start time, end time, CPU seconds used, disk reads, disk writes, and rows processed. When troubleshooting the ETL or query process, this sort of data becomes valuable. Process metadata is the fact measurement when building and using a DW/BI system. Some organizations make a living out of collecting and selling this sort of data to companies - in that case the process metadata becomes the business metadata for the fact and dimension tables. Collecting process metadata is in the interest of business people who can use the data to identify the users of their products, which products they are using, and what level of service they are receiving.

On the Internet

The HTML format used to define web pages allows for the inclusion of a variety of types of metadata, from basic descriptive text, dates and keywords to further advanced metadata schemes such as the Dublin Core, e-GMS, and AGLS standards. Pages can also be geotagged with coordinates. Metadata may be included in the page's header or in a separate file. Microformats allow metadata to be added to on-page data in a way that regular web users do not see, but computers, web crawlers and search engines can readily access. Many search engines are cautious about using metadata in their ranking algorithms due to exploitation of metadata and the practice of search engine optimization, SEO, to improve rankings. See Meta element article for further discussion. This cautious attitude may be justified as people, according to Doctorow, are not executing care and diligence when creating their own metadata and that metadata is part of a competitive environment where the metadata is used to promote the metadata creators own purposes. Studies show that search engines respond to web pages with metadata implementations, and Google has an announcement on its site showing the meta tags that its search engine understands. Enterprise search startup Swiftype recognizes metadata as a relevance signal that webmasters can implement for their website-specific search engine, even releasing their own extension, known as Meta Tags 2.

In broadcast industry

In broadcast industry, metadata is linked to audio and video broadcast media to:
  • identify the media: clip or playlist names, duration, timecode, etc.
  • describe the content: notes regarding the quality of video content, rating, description (for example, during a sport event, keywords like goal, red card will be associated to some clips)
  • classify the media: metadata allows producers to sort the media or to easily and quickly find a video content (a TV news could urgently need some archive content for a subject). For example, the BBC have a large subject classification system, Lonclass, a customized version of the more general-purpose Universal Decimal Classification.
This metadata can be linked to the video media thanks to the video servers. Most major broadcast sport events like FIFA World Cup or the Olympic Games use this metadata to distribute their video content to TV stations through keywords. It is often the host broadcaster who is in charge of organizing metadata through its International Broadcast Centre and its video servers. This metadata is recorded with the images and are entered by metadata operators (loggers) who associate in live metadata available in metadata grids through software (such as Multicam(LSM) or IPDirector used during the FIFA World Cup or Olympic Games).

Geospatial

Metadata that describes geographic objects in electronic storage or format (such as datasets, maps, features, or documents with a geospatial component) has a history dating back to at least 1994 (refer MIT Library page on FGDC Metadata). This class of metadata is described more fully on the geospatial metadata article.

Ecological and environmental

Ecological and environmental metadata is intended to document the "who, what, when, where, why, and how" of data collection for a particular study. This typically means which organization or institution collected the data, what type of data, which date(s) the data was collected, the rationale for the data collection, and the methodology used for the data collection. Metadata should be generated in a format commonly used by the most relevant science community, such as Darwin Core, Ecological Metadata Language, or Dublin Core. Metadata editing tools exist to facilitate metadata generation (e.g. Metavist, Mercury: Metadata Search System, Morpho). Metadata should describe provenance of the data (where they originated, as well as any transformations the data underwent) and how to give credit for (cite) the data products.

Digital music

When first released in 1982, Compact Discs only contained a Table Of Contents (TOC) with the number of tracks on the disc and their length in samples. Fourteen years later in 1996, a revision of the CD Red Book standard added CD-Text to carry additional metadata. But CD-Text was not widely adopted. Shortly thereafter, it became common for personal computers to retrieve metadata from external sources (e.g. CDDB, Gracenote) based on the TOC. 

Digital audio formats such as digital audio files superseded music formats such as cassette tapes and CDs in the 2000s. Digital audio files could be labelled with more information than could be contained in just the file name. That descriptive information is called the audio tag or audio metadata in general. Computer programs specializing in adding or modifying this information are called tag editors. Metadata can be used to name, describe, catalogue and indicate ownership or copyright for a digital audio file, and its presence makes it much easier to locate a specific audio file within a group, typically through use of a search engine that accesses the metadata. As different digital audio formats were developed, attempts were made to standardize a specific location within the digital files where this information could be stored.

As a result, almost all digital audio formats, including mp3, broadcast wav and AIFF files, have similar standardized locations that can be populated with metadata. The metadata for compressed and uncompressed digital music is often encoded in the ID3 tag. Common editors such as TagLib support MP3, Ogg Vorbis, FLAC, MPC, Speex, WavPack TrueAudio, WAV, AIFF, MP4, and ASF file formats.

Cloud applications

With the availability of cloud applications, which include those to add metadata to content, metadata is increasingly available over the Internet.

Administration and management

Storage

Metadata can be stored either internally, in the same file or structure as the data (this is also called embedded metadata), or externally, in a separate file or field from the described data. A data repository typically stores the metadata detached from the data, but can be designed to support embedded metadata approaches. Each option has advantages and disadvantages:
  • Internal storage means metadata always travels as part of the data they describe; thus, metadata is always available with the data, and can be manipulated locally. This method creates redundancy (precluding normalization), and does not allow managing all of a system's metadata in one place. It arguably increases consistency, since the metadata is readily changed whenever the data is changed.
  • External storage allows collocating metadata for all the contents, for example in a database, for more efficient searching and management. Redundancy can be avoided by normalizing the metadata's organization. In this approach, metadata can be united with the content when information is transferred, for example in Streaming media; or can be referenced (for example, as a web link) from the transferred content. On the down side, the division of the metadata from the data content, especially in standalone files that refer to their source metadata elsewhere, increases the opportunities for misalignments between the two, as changes to either may not be reflected in the other.
Metadata can be stored in either human-readable or binary form. Storing metadata in a human-readable format such as XML can be useful because users can understand and edit it without specialized tools. However, text-based formats are rarely optimized for storage capacity, communication time, or processing speed. A binary metadata format enables efficiency in all these respects, but requires special software to convert the binary information into human-readable content.

Database management

Each relational database system has its own mechanisms for storing metadata. Examples of relational-database metadata include:
  • Tables of all tables in a database, their names, sizes, and number of rows in each table.
  • Tables of columns in each database, what tables they are used in, and the type of data stored in each column.
In database terminology, this set of metadata is referred to as the catalog. The SQL standard specifies a uniform means to access the catalog, called the information schema, but not all databases implement it, even if they implement other aspects of the SQL standard. For an example of database-specific metadata access methods, see Oracle metadata. Programmatic access to metadata is possible using APIs such as JDBC, or SchemaCrawler.

In popular culture

One of the first satirical examinations of the concept of Metadata as we understand it today is American Science Fiction author Hal Draper's short story, MS_Fnd_in_a_Lbry (1961). Here, the knowledge of all Mankind is condensed into an object the size of a desk drawer, however the magnitude of the metadata (e.g. catalog of catalogs of... , as well as indexes and histories) eventually leads to dire yet humorous consequence for the human race. The story prefigures the modern consequences of allowing metadata to become more important than the real data it is concerned with, and the risks inherent in that eventuality as a cautionary tale.

Inequality (mathematics)

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Inequality...