Search This Blog

Sunday, February 24, 2019

Parallax (updated)

From Wikipedia, the free encyclopedia

A simplified illustration of the parallax of an object against a distant background due to a perspective shift. When viewed from "Viewpoint A", the object appears to be in front of the blue square. When the viewpoint is changed to "Viewpoint B", the object appears to have moved in front of the red square.
 
This animation is an example of parallax. As the viewpoint moves side to side, the objects in the distance appear to move more slowly than the objects close to the camera. In this case, the blue cube in front appears to move faster than the red cube.
 
Parallax (from Ancient Greek παράλλαξις (parallaxis), meaning 'alternation') is a displacement or difference in the apparent position of an object viewed along two different lines of sight, and is measured by the angle or semi-angle of inclination between those two lines. Due to foreshortening, nearby objects show a larger parallax than farther objects when observed from different positions, so parallax can be used to determine distances. 

To measure large distances, such as the distance of a planet or a star from Earth, astronomers use the principle of parallax. Here, the term parallax is the semi-angle of inclination between two sight-lines to the star, as observed when Earth is on opposite sides of the Sun in its orbit. These distances form the lowest rung of what is called "the cosmic distance ladder", the first in a succession of methods by which astronomers determine the distances to celestial objects, serving as a basis for other distance measurements in astronomy forming the higher rungs of the ladder.

Parallax also affects optical instruments such as rifle scopes, binoculars, microscopes, and twin-lens reflex cameras that view objects from slightly different angles. Many animals, including humans, have two eyes with overlapping visual fields that use parallax to gain depth perception; this process is known as stereopsis. In computer vision the effect is used for computer stereo vision, and there is a device called a parallax rangefinder that uses it to find range, and in some variations also altitude to a target. 

A simple everyday example of parallax can be seen in the dashboard of motor vehicles that use a needle-style speedometer gauge. When viewed from directly in front, the speed may show exactly 60; but when viewed from the passenger seat the needle may appear to show a slightly different speed, due to the angle of viewing.

Visual perception

As the eyes of humans and other animals are in different positions on the head, they present different views simultaneously. This is the basis of stereopsis, the process by which the brain exploits the parallax due to the different views from the eye to gain depth perception and estimate distances to objects. Animals also use motion parallax, in which the animals (or just the head) move to gain different viewpoints. For example, pigeons (whose eyes do not have overlapping fields of view and thus cannot use stereopsis) bob their heads up and down to see depth.

The motion parallax is exploited also in wiggle stereoscopy, computer graphics which provide depth cues through viewpoint-shifting animation rather than through binocular vision.

Astronomy

Parallax is an angle subtended by a line on a point. In the upper diagram, the earth in its orbit sweeps the parallax angle subtended on the sun. The lower diagram shows an equal angle swept by the sun in a geostatic model. A similar diagram can be drawn for a star except that the angle of parallax would be minuscule.
 
Parallax arises due to change in viewpoint occurring due to motion of the observer, of the observed, or of both. What is essential is relative motion. By observing parallax, measuring angles, and using geometry, one can determine distance.

Stellar parallax

Stellar parallax created by the relative motion between the Earth and a star can be seen, in the Copernican model, as arising from the orbit of the Earth around the Sun: the star only appears to move relative to more distant objects in the sky. In a geostatic model, the movement of the star would have to be taken as real with the star oscillating across the sky with respect to the background stars.

Stellar parallax is most often measured using annual parallax, defined as the difference in position of a star as seen from the Earth and Sun, i. e. the angle subtended at a star by the mean radius of the Earth's orbit around the Sun. The parsec (3.26 light-years) is defined as the distance for which the annual parallax is 1 arcsecond. Annual parallax is normally measured by observing the position of a star at different times of the year as the Earth moves through its orbit. Measurement of annual parallax was the first reliable way to determine the distances to the closest stars. The first successful measurements of stellar parallax were made by Friedrich Bessel in 1838 for the star 61 Cygni using a heliometer. Stellar parallax remains the standard for calibrating other measurement methods. Accurate calculations of distance based on stellar parallax require a measurement of the distance from the Earth to the Sun, now based on radar reflection off the surfaces of planets.

The angles involved in these calculations are very small and thus difficult to measure. The nearest star to the Sun (and thus the star with the largest parallax), Proxima Centauri, has a parallax of 0.7687 ± 0.0003 arcsec. This angle is approximately that subtended by an object 2 centimeters in diameter located 5.3 kilometers away.

Hubble Space TelescopeSpatial scanning precisely measures distances up to 10,000 light-years away (10 April 2014).
 
The fact that stellar parallax was so small that it was unobservable at the time was used as the main scientific argument against heliocentrism during the early modern age. It is clear from Euclid's geometry that the effect would be undetectable if the stars were far enough away, but for various reasons such gigantic distances involved seemed entirely implausible: it was one of Tycho's principal objections to Copernican heliocentrism that in order for it to be compatible with the lack of observable stellar parallax, there would have to be an enormous and unlikely void between the orbit of Saturn (then the most distant known planet) and the eighth sphere (the fixed stars).

In 1989, the satellite Hipparcos was launched primarily for obtaining improved parallaxes and proper motions for over 100,000 nearby stars, increasing the reach of the method tenfold. Even so, Hipparcos is only able to measure parallax angles for stars up to about 1,600 light-years away, a little more than one percent of the diameter of the Milky Way Galaxy. The European Space Agency's Gaia mission, launched in December 2013, will be able to measure parallax angles to an accuracy of 10 microarcseconds, thus mapping nearby stars (and potentially planets) up to a distance of tens of thousands of light-years from Earth. In April 2014, NASA astronomers reported that the Hubble Space Telescope, by using spatial scanning, can now precisely measure distances up to 10,000 light-years away, a ten-fold improvement over earlier measurements.

Distance measurement

 
Distance measurement by parallax is a special case of the principle of triangulation, which states that one can solve for all the sides and angles in a network of triangles if, in addition to all the angles in the network, the length of at least one side has been measured. Thus, the careful measurement of the length of one baseline can fix the scale of an entire triangulation network. In parallax, the triangle is extremely long and narrow, and by measuring both its shortest side (the motion of the observer) and the small top angle (always less than 1 arcsecond, leaving the other two close to 90 degrees), the length of the long sides (in practice considered to be equal) can be determined.

Assuming the angle is small (see derivation below), the distance to an object (measured in parsecs) is the reciprocal of the parallax (measured in arcseconds): For example, the distance to Proxima Centauri is 1/0.7687=1.3009 parsecs (4.243 ly).

Diurnal parallax

Diurnal parallax is a parallax that varies with rotation of the Earth or with difference of location on the Earth. The Moon and to a smaller extent the terrestrial planets or asteroids seen from different viewing positions on the Earth (at one given moment) can appear differently placed against the background of fixed stars.

Lunar parallax

Lunar parallax (often short for lunar horizontal parallax or lunar equatorial horizontal parallax), is a special case of (diurnal) parallax: the Moon, being the nearest celestial body, has by far the largest maximum parallax of any celestial body, it can exceed 1 degree.

The diagram (above) for stellar parallax can illustrate lunar parallax as well, if the diagram is taken to be scaled right down and slightly modified. Instead of 'near star', read 'Moon', and instead of taking the circle at the bottom of the diagram to represent the size of the Earth's orbit around the Sun, take it to be the size of the Earth's globe, and of a circle around the Earth's surface. Then, the lunar (horizontal) parallax amounts to the difference in angular position, relative to the background of distant stars, of the Moon as seen from two different viewing positions on the Earth: one of the viewing positions is the place from which the Moon can be seen directly overhead at a given moment (that is, viewed along the vertical line in the diagram); and the other viewing position is a place from which the Moon can be seen on the horizon at the same moment (that is, viewed along one of the diagonal lines, from an Earth-surface position corresponding roughly to one of the blue dots on the modified diagram). 

The lunar (horizontal) parallax can alternatively be defined as the angle subtended at the distance of the Moon by the radius of the Earth—equal to angle p in the diagram when scaled-down and modified as mentioned above. 

The lunar horizontal parallax at any time depends on the linear distance of the Moon from the Earth. The Earth–Moon linear distance varies continuously as the Moon follows its perturbed and approximately elliptical orbit around the Earth. The range of the variation in linear distance is from about 56 to 63.7 Earth radii, corresponding to horizontal parallax of about a degree of arc, but ranging from about 61.4' to about 54'. The Astronomical Almanac and similar publications tabulate the lunar horizontal parallax and/or the linear distance of the Moon from the Earth on a periodical e.g. daily basis for the convenience of astronomers (and formerly, of navigators), and the study of the way in which this coordinate varies with time forms part of lunar theory

Diagram of daily lunar parallax

Parallax can also be used to determine the distance to the Moon.

One way to determine the lunar parallax from one location is by using a lunar eclipse. A full shadow of the Earth on the Moon has an apparent radius of curvature equal to the difference between the apparent radii of the Earth and the Sun as seen from the Moon. This radius can be seen to be equal to 0.75 degree, from which (with the solar apparent radius 0.25 degree) we get an Earth apparent radius of 1 degree. This yields for the Earth–Moon distance 60.27 Earth radii or 384,399 kilometres (238,854 mi) This procedure was first used by Aristarchus of Samos and Hipparchus, and later found its way into the work of Ptolemy. The diagram at the right shows how daily lunar parallax arises on the geocentric and geostatic planetary model in which the Earth is at the center of the planetary system and does not rotate. It also illustrates the important point that parallax need not be caused by any motion of the observer, contrary to some definitions of parallax that say it is, but may arise purely from motion of the observed. 

Another method is to take two pictures of the Moon at exactly the same time from two locations on Earth and compare the positions of the Moon relative to the stars. Using the orientation of the Earth, those two position measurements, and the distance between the two locations on the Earth, the distance to the Moon can be triangulated:
Example of lunar parallax: Occultation of Pleiades by the Moon

This is the method referred to by Jules Verne in From the Earth to the Moon:
Until then, many people had no idea how one could calculate the distance separating the Moon from the Earth. The circumstance was exploited to teach them that this distance was obtained by measuring the parallax of the Moon. If the word parallax appeared to amaze them, they were told that it was the angle subtended by two straight lines running from both ends of the Earth's radius to the Moon. If they had doubts on the perfection of this method, they were immediately shown that not only did this mean distance amount to a whole two hundred thirty-four thousand three hundred and forty-seven miles (94,330 leagues), but also that the astronomers were not in error by more than seventy miles (≈ 30 leagues).

Solar parallax

After Copernicus proposed his heliocentric system, with the Earth in revolution around the Sun, it was possible to build a model of the whole Solar System without scale. To ascertain the scale, it is necessary only to measure one distance within the Solar System, e.g., the mean distance from the Earth to the Sun (now called an astronomical unit, or AU). When found by triangulation, this is referred to as the solar parallax, the difference in position of the Sun as seen from the Earth's center and a point one Earth radius away, i. e., the angle subtended at the Sun by the Earth's mean radius. Knowing the solar parallax and the mean Earth radius allows one to calculate the AU, the first, small step on the long road of establishing the size and expansion age of the visible Universe. 

A primitive way to determine the distance to the Sun in terms of the distance to the Moon was already proposed by Aristarchus of Samos in his book On the Sizes and Distances of the Sun and Moon. He noted that the Sun, Moon, and Earth form a right triangle (with the right angle at the Moon) at the moment of first or last quarter moon. He then estimated that the Moon, Earth, Sun angle was 87°. Using correct geometry but inaccurate observational data, Aristarchus concluded that the Sun was slightly less than 20 times farther away than the Moon. The true value of this angle is close to 89° 50', and the Sun is actually about 390 times farther away. He pointed out that the Moon and Sun have nearly equal apparent angular sizes and therefore their diameters must be in proportion to their distances from Earth. He thus concluded that the Sun was around 20 times larger than the Moon; this conclusion, although incorrect, follows logically from his incorrect data. It does suggest that the Sun is clearly larger than the Earth, which could be taken to support the heliocentric model.

Measuring Venus transit times to determine solar parallax
 
Although Aristarchus' results were incorrect due to observational errors, they were based on correct geometric principles of parallax, and became the basis for estimates of the size of the Solar System for almost 2000 years, until the transit of Venus was correctly observed in 1761 and 1769. This method was proposed by Edmond Halley in 1716, although he did not live to see the results. The use of Venus transits was less successful than had been hoped due to the black drop effect, but the resulting estimate, 153 million kilometers, is just 2% above the currently accepted value, 149.6 million kilometers. 

Much later, the Solar System was "scaled" using the parallax of asteroids, some of which, such as Eros, pass much closer to Earth than Venus. In a favorable opposition, Eros can approach the Earth to within 22 million kilometers. Both the opposition of 1901 and that of 1930/1931 were used for this purpose, the calculations of the latter determination being completed by Astronomer Royal Sir Harold Spencer Jones.

Also radar reflections, both off Venus (1958) and off asteroids, like Icarus, have been used for solar parallax determination. Today, use of spacecraft telemetry links has solved this old problem. The currently accepted value of solar parallax is 8".794 143.

Dynamical or moving-cluster parallax

The open stellar cluster Hyades in Taurus extends over such a large part of the sky, 20 degrees, that the proper motions as derived from astrometry appear to converge with some precision to a perspective point north of Orion. Combining the observed apparent (angular) proper motion in seconds of arc with the also observed true (absolute) receding motion as witnessed by the Doppler redshift of the stellar spectral lines, allows estimation of the distance to the cluster (151 light-years) and its member stars in much the same way as using annual parallax.

Dynamical parallax has sometimes also been used to determine the distance to a supernova, when the optical wave front of the outburst is seen to propagate through the surrounding dust clouds at an apparent angular velocity, while its true propagation velocity is known to be the speed of light.

Derivation

where is the parallax, 1 AU (149,600,000 km) is approximately the average distance from the Sun to Earth, and is the distance to the star. Using small-angle approximations (valid when the angle is small compared to 1 radian), 



so the parallax, measured in arcseconds, is
If the parallax is 1", then the distance is



This defines the parsec, a convenient unit for measuring distance using parallax. Therefore, the distance, measured in parsecs, is simply , when the parallax is given in arcseconds.

Error

Precise parallax measurements of distance have an associated error. However this error in the measured parallax angle does not translate directly into an error for the distance, except for relatively small errors. The reason for this is that an error toward a smaller angle results in a greater error in distance than an error toward a larger angle. 

However, an approximation of the distance error can be computed by
where d is the distance and p is the parallax. The approximation is far more accurate for parallax errors that are small relative to the parallax than for relatively large errors. For meaningful results in stellar astronomy, Dutch astronomer Floor van Leeuwen recommends that the parallax error be no more than 10% of the total parallax when computing this error estimate.

Spatio-temporal parallax

From enhanced relativistic positioning systems, spatio-temporal parallax generalizing the usual notion of parallax in space only has been developed. Then, eventfields in spacetime can be deduced directly without intermediate models of light bending by massive bodies such as the one used in the PPN formalism for instance.

Metrology

The correct line of sight needs to be used to avoid parallax error.
 
Measurements made by viewing the position of some marker relative to something to be measured are subject to parallax error if the marker is some distance away from the object of measurement and not viewed from the correct position. For example, if measuring the distance between two ticks on a line with a ruler marked on its top surface, the thickness of the ruler will separate its markings from the ticks. If viewed from a position not exactly perpendicular to the ruler, the apparent position will shift and the reading will be less accurate than the ruler is capable of. 

A similar error occurs when reading the position of a pointer against a scale in an instrument such as an analog multimeter. To help the user avoid this problem, the scale is sometimes printed above a narrow strip of mirror, and the user's eye is positioned so that the pointer obscures its own reflection, guaranteeing that the user's line of sight is perpendicular to the mirror and therefore to the scale. The same effect alters the speed read on a car's speedometer by a driver in front of it and a passenger off to the side, values read from a graticule not in actual contact with the display on an oscilloscope, etc.

Photogrammetry

Aerial picture pairs, when viewed through a stereo viewer, offer a pronounced stereo effect of landscape and buildings. High buildings appear to 'keel over' in the direction away from the centre of the photograph. Measurements of this parallax are used to deduce the height of the buildings, provided that flying height and baseline distances are known. This is a key component to the process of photogrammetry.

Photography

Contax III rangefinder camera with macro photography setting. Because the viewfinder is on top of the lens and of the close proximity of the subject, goggles are fitted in front of the rangefinder and a dedicated viewfinder installed to compensate for parallax.
 
Failed panoramic image due to the parallax, since axis of rotation of tripod is not same of focal point.
 
Parallax error can be seen when taking photos with many types of cameras, such as twin-lens reflex cameras and those including viewfinders (such as rangefinder cameras). In such cameras, the eye sees the subject through different optics (the viewfinder, or a second lens) than the one through which the photo is taken. As the viewfinder is often found above the lens of the camera, photos with parallax error are often slightly lower than intended, the classic example being the image of person with his or her head cropped off. This problem is addressed in single-lens reflex cameras, in which the viewfinder sees through the same lens through which the photo is taken (with the aid of a movable mirror), thus avoiding parallax error. 

Parallax is also an issue in image stitching, such as for panoramas.

Sights

Parallax affects sighting devices of ranged weapons in many ways. On sights fitted on small arms and bows, etc. the perpendicular distance between the sight and the weapon's launch axis (e.g. the bore axis of a gun) — generally referred to as "sight height" — can induce significant aiming errors when shooting at close range, particularly when shooting at small targets. This parallax error is compensated for (when needed) via calculations that also take in other variables such as bullet drop, windage, and the distance at which the target is expected to be. Sight height can be used to advantage when "sighting-in" rifles for field use. A typical hunting rifle (.222 with telescopic sights) sighted-in at 75m will still be useful from 50m to 200m without needing further adjustment.

Optical sights

Simple animation demonstrating the effects of parallax compensation in telescopic sights, as the eye moves relative to the sight.
 
In some reticled optical instruments such as telescopes, microscopes or in telescopic sights ("scopes") used on small arms and theodolites, parallax can create problems with aiming when the reticle is not coincident with the focal plane of the target image. This is because when the reticle and the target are not at the same focus, the optically corresponded distances being projected through the eyepiece are also different, and the user's eye will register the difference in parallaxes between the reticle and the target (whenever eye position changes) as a relative displacement on top of each other. The term parallax shift refers to that resultant apparent "floating" movements of the reticle over the target image when the user moves his/her head laterally (up/down or left/right) behind the sight, i.e. an error where the reticle does not stay aligned with the user's optical axis

Some firearm scopes are equipped with a parallax compensation mechanism, which basically consists of a movable optical element that enables the optical system to shift the focus of the target image at varying distances into the exact same optical plane of the reticle (or vice versa). Many low-tier telescopic sights may have no parallax compensation because in practice they can still perform very acceptably without eliminating parallax shift, in which case the scope is often set fixed at a designated parallax-free distance that best suits their intended usage. Typical standard factory parallax-free distances for hunting scopes are 100 yd (or 100 m) to make them suited for hunting shots that rarely exceed 300 yd/m. Some competition and military-style scopes without parallax compensation may be adjusted to be parallax free at ranges up to 300 yd/m to make them better suited for aiming at longer ranges. Scopes for guns with shorter practical ranges, such as airguns, rimfire rifles, shotguns and muzzle loaders, will have parallax settings for shorter distances, commonly 50 yd/m for rimfire scopes and 100 yd/m for shotguns and muzzleloaders. Airgun scopes are very often found with adjustable parallax, usually in the form of an adjustable objective (or "AO" for short) design, and may adjust down to as near as 3 yards (2.7 meters).

Non-magnifying reflector or "reflex" sights have the ability to be theoretically "parallax free." But since these sights use parallel collimated light this is only true when the target is at infinity. At finite distances eye movement perpendicular to the device will cause parallax movement in the reticle image in exact relationship to eye position in the cylindrical column of light created by the collimating optics. Firearm sights, such as some red dot sights, try to correct for this via not focusing the reticle at infinity, but instead at some finite distance, a designed target range where the reticle will show very little movement due to parallax. Some manufactures market reflector sight models they call "parallax free," but this refers to an optical system that compensates for off axis spherical aberration, an optical error induced by the spherical mirror used in the sight that can cause the reticle position to diverge off the sight's optical axis with change in eye position.

Artillery gunfire

Because of the positioning of field or naval artillery guns, each one has a slightly different perspective of the target relative to the location of the fire-control system itself. Therefore, when aiming its guns at the target, the fire control system must compensate for parallax in order to assure that fire from each gun converges on the target.

Rangefinders

Parallax theory for finding naval distances
 
A coincidence rangefinder or parallax rangefinder can be used to find distance to a target.

As a metaphor

In a philosophic/geometric sense: an apparent change in the direction of an object, caused by a change in observational position that provides a new line of sight. The apparent displacement, or difference of position, of an object, as seen from two different stations, or points of view. In contemporary writing parallax can also be the same story, or a similar story from approximately the same time line, from one book told from a different perspective in another book. The word and concept feature prominently in James Joyce's 1922 novel, Ulysses. Orson Scott Card also used the term when referring to Ender's Shadow as compared to Ender's Game

The metaphor is invoked by Slovenian philosopher Slavoj Žižek in his work The Parallax View, borrowing the concept of "parallax view" from the Japanese philosopher and literary critic Kojin Karatani. Žižek notes,
The philosophical twist to be added (to parallax), of course, is that the observed distance is not simply subjective, since the same object that exists 'out there' is seen from two different stances, or points of view. It is rather that, as Hegel would have put it, subject and object are inherently mediated so that an 'epistemological' shift in the subject's point of view always reflects an ontological shift in the object itself. Or—to put it in Lacanese—the subject's gaze is always-already inscribed into the perceived object itself, in the guise of its 'blind spot,' that which is 'in the object more than object itself', the point from which the object itself returns the gaze. Sure the picture is in my eye, but I am also in the picture.
— Slavoj Žižek, The Parallax View

Globular cluster (updated)

From Wikipedia, the free encyclopedia

The Messier 80 globular cluster in the constellation Scorpius is located about 30,000 light-years from the Sun and contains hundreds of thousands of stars.
 
A globular cluster is a spherical collection of stars that orbits a galactic core as a satellite. Globular clusters are very tightly bound by gravity, which gives them their spherical shapes and relatively high stellar densities toward their centers. The name of this category of star cluster is derived from the Latin globulus—a small sphere. A globular cluster is sometimes known more simply as a globular.

Globular clusters are found in the halo of a galaxy and contain considerably more stars and are much older than the less dense open clusters, which are found in the disk of a galaxy. Globular clusters are fairly common; there are about 150 to 158 currently known globular clusters in the Milky Way, with perhaps 10 to 20 more still undiscovered. Larger galaxies can have more: Andromeda Galaxy, for instance, may have as many as 500. Some giant elliptical galaxies (particularly those at the centers of galaxy clusters), such as M87, have as many as 13,000 globular clusters. 

Every galaxy of sufficient mass in the Local Group has an associated group of globular clusters, and almost every large galaxy surveyed has been found to possess a system of globular clusters. The Sagittarius Dwarf galaxy and the disputed Canis Major Dwarf galaxy appear to be in the process of donating their associated globular clusters (such as Palomar 12) to the Milky Way. This demonstrates how many of this galaxy's globular clusters might have been acquired in the past. 

Although it appears that globular clusters contain some of the first stars to be produced in the galaxy, their origins and their role in galactic evolution are still unclear. It does appear clear that globular clusters are significantly different from dwarf elliptical galaxies and were formed as part of the star formation of the parent galaxy rather than as a separate galaxy.

Observation history

Early globular cluster discoveries
Cluster name Discovered by Year
M22 Abraham Ihle 1665
ω Cen Edmond Halley 1677
M5 Gottfried Kirch 1702
M13 Edmond Halley 1714
M71 Philippe Loys de Chéseaux 1745
M4 Philippe Loys de Chéseaux 1746
M15 Jean-Dominique Maraldi 1746
M2 Jean-Dominique Maraldi 1746

The first known globular cluster, now called M22, was discovered in 1665 by Abraham Ihle, a German amateur astronomer. However, given the small aperture of early telescopes, individual stars within a globular cluster were not resolved until Charles Messier observed M4 in 1764. The first eight globular clusters discovered are shown in the table. Subsequently, Abbé Lacaille would list NGC 104, NGC 4833, M55, M69, and NGC 6397 in his 1751–52 catalogue. The M before a number refers to Charles Messier's catalogue, while NGC is from the New General Catalogue by John Dreyer.
When William Herschel began his comprehensive survey of the sky using large telescopes in 1782 there were 34 known globular clusters. Herschel discovered another 36 himself and was the first to resolve virtually all of them into stars. He coined the term "globular cluster" in his Catalogue of a Second Thousand New Nebulae and Clusters of Stars published in 1789.

The number of globular clusters discovered continued to increase, reaching 83 in 1915, 93 in 1930 and 97 by 1947. A total of 152 globular clusters have now been discovered in the Milky Way galaxy, out of an estimated total of 180 ± 20. These additional, undiscovered globular clusters are believed to be hidden behind the gas and dust of the Milky Way. 

Beginning in 1914, Harlow Shapley began a series of studies of globular clusters, published in about 40 scientific papers. He examined the RR Lyrae variables in the clusters (which he assumed were Cepheid variables) and used their period–luminosity relationship for distance estimates. Later, it was found that RR Lyrae variables are fainter than Cepheid variables, which caused Shapley to overestimate the distances of the clusters.

NGC 7006 is a highly concentrated, Class I globular cluster.
 
Of the globular clusters within the Milky Way, the majority are found in a halo around the galactic core, and the large majority are located in the celestial sky centered on the core. In 1918, this strongly asymmetrical distribution was used by Shapley to make a determination of the overall dimensions of the galaxy. By assuming a roughly spherical distribution of globular clusters around the galaxy's center, he used the positions of the clusters to estimate the position of the Sun relative to the galactic center. While his distance estimate was in significant error (although within the same order of magnitude as the currently accepted value), it did demonstrate that the dimensions of the galaxy were much greater than had been previously thought. His error was due to interstellar dust in the Milky Way, which absorbs and diminishes the amount of light from distant objects, such as globular clusters, that reaches the Earth, thus making them appear to be more distant than they are.

Shapley's measurements also indicated that the Sun is relatively far from the center of the galaxy, also contrary to what had previously been inferred from the apparently nearly even distribution of ordinary stars. In reality, most ordinary stars lie within the galaxy's disk and those stars that lie in the direction of the galactic center and beyond are thus obscured by gas and dust, whereas globular clusters lie outside the disk and can be seen at much further distances.

Classification

Shapley was subsequently assisted in his studies of clusters by Henrietta Swope and Helen Battles Sawyer (later Hogg). In 1927–29, Shapley and Sawyer categorized clusters according to the degree of concentration each system has toward its core. The most concentrated clusters were identified as Class I, with successively diminishing concentrations ranging to Class XII. This became known as the Shapley–Sawyer Concentration Class (it is sometimes given with numbers [Class 1–12] rather than Roman numerals.) In 2015, a new type of globular cluster was proposed on the basis of observational data, the dark globular clusters.

Formation

NGC 2808 contains three distinct generations of stars. NASA image
 
The formation of globular clusters remains a poorly understood phenomenon and it remains uncertain whether the stars in a globular cluster form in a single generation or are spawned across multiple generations over a period of several hundred million years. In many globular clusters, most of the stars are at approximately the same stage in stellar evolution, suggesting that they formed at about the same time. However, the star formation history varies from cluster to cluster, with some clusters showing distinct populations of stars. An example of this is the globular clusters in the Large Magellanic Cloud (LMC) that exhibit a bimodal population. During their youth, these LMC clusters may have encountered giant molecular clouds that triggered a second round of star formation. This star-forming period is relatively brief, compared to the age of many globular clusters. It has also been proposed that the reason for this multiplicity in stellar populations could have a dynamical origin. In the Antennae galaxy, for example, the Hubble Space Telescope has observed clusters of clusters, regions in the galaxy that span hundreds of parsecs, where many of the clusters will eventually collide and merge. Many of them present a significant range in ages, hence possibly metallicities, and their merger could plausibly lead to clusters with a bimodal or even multiple distribution of populations.

Globular star cluster Messier 54.
 
Observations of globular clusters show that these stellar formations arise primarily in regions of efficient star formation, and where the interstellar medium is at a higher density than in normal star-forming regions. Globular cluster formation is prevalent in starburst regions and in interacting galaxies. Research indicates a correlation between the mass of a central supermassive black holes (SMBH) and the extent of the globular cluster systems of elliptical and lenticular galaxies. The mass of the SMBH in such a galaxy is often close to the combined mass of the galaxy's globular clusters.

No known globular clusters display active star formation, which is consistent with the view that globular clusters are typically the oldest objects in the Galaxy, and were among the first collections of stars to form. Very large regions of star formation known as super star clusters, such as Westerlund 1 in the Milky Way, may be the precursors of globular clusters.

Composition

Djorgovski 1's stars contain hydrogen and helium, but not much else. In astronomical terms, they are described as "metal-poor".
 
Globular clusters are generally composed of hundreds of thousands of low-metal, old stars. The type of stars found in a globular cluster are similar to those in the bulge of a spiral galaxy but confined to a volume of only a few million cubic parsecs. They are free of gas and dust and it is presumed that all of the gas and dust was long ago turned into stars.

Globular clusters can contain a high density of stars; on average about 0.4 stars per cubic parsec, increasing to 100 or 1000 stars per cubic parsec in the core of the cluster. The typical distance between stars in a globular cluster is about 1 light year, but at its core, the separation is comparable to the size of the Solar System (100 to 1000 times closer than stars near the Solar System).

Globular clusters are not thought to be favorable locations for the survival of planetary systems. Planetary orbits are dynamically unstable within the cores of dense clusters because of the perturbations of passing stars. A planet orbiting at 1 astronomical unit around a star that is within the core of a dense cluster such as 47 Tucanae would only survive on the order of 108 years. There is a planetary system orbiting a pulsar (PSR B1620−26) that belongs to the globular cluster M4, but these planets likely formed after the event that created the pulsar.

Some globular clusters, like Omega Centauri in the Milky Way and G1 in M31, are extraordinarily massive, with several million solar masses (M) and multiple stellar populations. Both can be regarded as evidence that supermassive globular clusters are in fact the cores of dwarf galaxies that are consumed by the larger galaxies. About a quarter of the globular cluster population in the Milky Way may have been accreted along with their host dwarf galaxy.

Several globular clusters (like M15) have extremely massive cores which may harbor black holes, although simulations suggest that a less massive black hole or central concentration of neutron stars or massive white dwarfs explain observations equally well.

Metallic content

Messier 53 contains an unusual number of a type of star called blue stragglers.
 
Globular clusters normally consist of Population II stars, which have a low proportion of elements other than hydrogen and helium when compared to Population I stars such as the Sun. Astronomers refer to these heavier elements as metals and to the proportions of these elements as the metallicity. These elements are produced by stellar nucleosynthesis and then are recycled into the interstellar medium, where they enter the next generation of stars. Hence the proportion of metals can be an indication of the age of a star, with older stars typically having a lower metallicity.

The Dutch astronomer Pieter Oosterhoff noticed that there appear to be two populations of globular clusters, which became known as Oosterhoff groups. The second group has a slightly longer period of RR Lyrae variable stars. Both groups have weak lines of metallic elements. But the lines in the stars of Oosterhoff type I (OoI) cluster are not quite as weak as those in type II (OoII). Hence type I are referred to as "metal-rich" (for example, Terzan 7), while type II are "metal-poor" (for example, ESO 280-SC06).

These two populations have been observed in many galaxies, especially massive elliptical galaxies. Both groups are nearly as old as the universe itself and are of similar ages, but differ in their metal abundances. Many scenarios have been suggested to explain these sub-populations, including violent gas-rich galaxy mergers, the accretion of dwarf galaxies, and multiple phases of star formation in a single galaxy. In the Milky Way, the metal-poor clusters are associated with the halo and the metal-rich clusters with the bulge.

In the Milky Way it has been discovered that the large majority of the low metallicity clusters are aligned along a plane in the outer part of the galaxy's halo. This result argues in favor of the view that type II clusters in the galaxy were captured from a satellite galaxy, rather than being the oldest members of the Milky Way's globular cluster system as had been previously thought. The difference between the two cluster types would then be explained by a time delay between when the two galaxies formed their cluster systems.

Exotic components

Globular clusters have a very high star density, and therefore close interactions and near-collisions of stars occur relatively often. Due to these chance encounters, some exotic classes of stars, such as blue stragglers, millisecond pulsars and low-mass X-ray binaries, are much more common in globular clusters. A blue straggler is formed from the merger of two stars, possibly as a result of an encounter with a binary system. The resulting star has a higher temperature than comparable stars in the cluster with the same luminosity, and thus differs from the main sequence stars formed at the beginning of the cluster.

Globular cluster M15 may have an intermediate-mass black hole at its core. NASA image.
 
Astronomers have searched for black holes within globular clusters since the 1970s. The resolution requirements for this task, however, are exacting, and it is only with the Hubble space telescope that the first confirmed discoveries have been made. In independent programs, a 4,000 M intermediate-mass black hole has been suggested to exist based on HST observations in the globular cluster M15 and a 20,000 M black hole in the Mayall II cluster in the Andromeda Galaxy. Both x-ray and radio emissions from Mayall II appear to be consistent with an intermediate-mass black hole.

They are the first black holes discovered that were intermediate in mass between the conventional stellar-mass black hole and the supermassive black holes discovered at the cores of galaxies. The mass of these intermediate mass black holes is proportional to the mass of the clusters, following a pattern previously discovered between supermassive black holes and their surrounding galaxies. 

Claims of intermediate mass black holes have been met with some skepticism. The heaviest objects in globular clusters are expected to migrate to the cluster center due to mass segregation. As pointed out in two papers by Holger Baumgardt and collaborators, the mass-to-light ratio should rise sharply towards the center of the cluster, even without a black hole, in both M15 and Mayall II.

Color-magnitude diagram

Messier 5 is a globular cluster consisting of hundreds of thousands of stars bound together by their collective gravity.
 
The Hertzsprung-Russell diagram (HR-diagram) is a graph of a large sample of stars that plots their visual absolute magnitude against their color index. The color index, B−V, is the difference between the magnitude of the star in blue light, or B, and the magnitude in visual light (green-yellow), or V. Large positive values indicate a red star with a cool surface temperature, while negative values imply a blue star with a hotter surface. 

When the stars near the Sun are plotted on an HR diagram, it displays a distribution of stars of various masses, ages, and compositions. Many of the stars lie relatively close to a sloping curve with increasing absolute magnitude as the stars are hotter, known as main-sequence stars. However the diagram also typically includes stars that are in later stages of their evolution and have wandered away from this main-sequence curve.

As all the stars of a globular cluster are at approximately the same distance from the Earth, their absolute magnitudes differ from their visual magnitude by about the same amount. The main-sequence stars in the globular cluster will fall along a line that is believed to be comparable to similar stars in the solar neighborhood. The accuracy of this assumption is confirmed by comparable results obtained by comparing the magnitudes of nearby short-period variables, such as RR Lyrae stars and Cepheid variables, with those in the cluster.

By matching up these curves on the HR diagram the absolute magnitude of main-sequence stars in the cluster can also be determined. This in turn provides a distance estimate to the cluster, based on the visual magnitude of the stars. The difference between the relative and absolute magnitude, the distance modulus, yields this estimate of the distance.

When the stars of a particular globular cluster are plotted on an HR diagram, in many cases nearly all of the stars fall upon a relatively well-defined curve. This differs from the HR diagram of stars near the Sun, which lumps together stars of differing ages and origins. The shape of the curve for a globular cluster is characteristic of a grouping of stars that were formed at approximately the same time and from the same materials, differing only in their initial mass. As the position of each star in the HR diagram varies with age, the shape of the curve for a globular cluster can be used to measure the overall age of the star population.

However, the above-mentioned historic process of determining the age and distance to globular clusters is not as robust as first thought, since the morphology and luminosity of globular cluster stars in color-magnitude diagrams are influenced by numerous parameters, many of which are still being actively researched. Certain clusters even display populations that are absent from other globular clusters (e.g., blue hook stars), or feature multiple populations. The historical paradigm that all globular clusters consist of stars born at exactly the same time, or sharing exactly the same chemical abundance, has likewise been overturned (e.g., NGC 2808). Further, the morphology of the cluster stars in a color-magnitude diagram, and that includes the brightness of distance indicators such as RR Lyrae variable members, can be influenced by observational biases. One such effect is called blending, and it arises because the cores of globular clusters are so dense that in low-resolution observations multiple (unresolved) stars may appear as a single target. Thus the brightness measured for that seemingly single star (e.g., an RR Lyrae variable) is erroneously too bright, given those unresolved stars contributed to the brightness determined. Consequently, the computed distance is wrong, and more importantly, certain researchers have argued that the blending effect can introduce a systematic uncertainty into the cosmic distance ladder, and may bias the estimated age of the Universe and the Hubble constant.

Color-magnitude diagram for the globular cluster M3. Note the characteristic "knee" in the curve at magnitude 19 where stars begin entering the giant stage of their evolutionary path.
 
The most massive main-sequence stars will also have the highest absolute magnitude, and these will be the first to evolve into the giant star stage. As the cluster ages, stars of successively lower masses will also enter the giant star stage. Thus the age of a single population cluster can be measured by looking for the stars that are just beginning to enter the giant star stage. This forms a "knee" in the HR diagram, bending to the upper right from the main-sequence line. The absolute magnitude at this bend is directly a function of the age of globular cluster, so an age scale can be plotted on an axis parallel to the magnitude. 

In addition, globular clusters can be dated by looking at the temperatures of the coolest white dwarfs. Typical results for globular clusters are that they may be as old as 12.7 billion years. This is in contrast to open clusters which are only tens of millions of years old. 

The ages of globular clusters place a bound on the age limit of the entire universe. This lower limit has been a significant constraint in cosmology. Historically, astronomers were faced with age estimates of globular clusters that appeared older than cosmological models would allow. However, better measurements of cosmological parameters through deep sky surveys and satellites such as the Hubble Space Telescope appear to have resolved this issue.

Evolutionary studies of globular clusters can also be used to determine changes due to the starting composition of the gas and dust that formed the cluster. That is, the evolutionary tracks change with changes in the abundance of heavy elements. The data obtained from studies of globular clusters are then used to study the evolution of the Milky Way as a whole.

In globular clusters a few stars known as blue stragglers are observed, apparently continuing the main sequence in the direction of brighter, bluer stars. The origins of these stars is still unclear, but most models suggest that these stars are the result of mass transfer in multiple star systems.

Morphology

NGC 411 is classified as an open cluster.
 
In contrast to open clusters, most globular clusters remain gravitationally bound for time periods comparable to the life spans of the majority of their stars. However, a possible exception is when strong tidal interactions with other large masses result in the dispersal of the stars. 

After they are formed, the stars in the globular cluster begin to interact gravitationally with each other. As a result, the velocity vectors of the stars are steadily modified, and the stars lose any history of their original velocity. The characteristic interval for this to occur is the relaxation time. This is related to the characteristic length of time a star needs to cross the cluster as well as the number of stellar masses in the system. The value of the relaxation time varies by cluster, but the mean value is on the order of 109 years.

Ellipticity of globular clusters
Galaxy Ellipticity
Milky Way 0.07±0.04
LMC 0.16±0.05
SMC 0.19±0.06
M31 0.09±0.04

Although globular clusters generally appear spherical in form, ellipticities can occur due to tidal interactions. Clusters within the Milky Way and the Andromeda Galaxy are typically oblate spheroids in shape, while those in the Large Magellanic Cloud are more elliptical.

Radii

Astronomers characterize the morphology of a globular cluster by means of standard radii. These are the core radius (rc), the half-light radius (rh), and the tidal (or Jacobi) radius (rt). The overall luminosity of the cluster steadily decreases with distance from the core, and the core radius is the distance at which the apparent surface luminosity has dropped by half. A comparable quantity is the half-light radius, or the distance from the core within which half the total luminosity from the cluster is received. This is typically larger than the core radius. 

The half-light radius includes stars in the outer part of the cluster that happen to lie along the line of sight, so theorists will also use the half-mass radius (rm)—the radius from the core that contains half the total mass of the cluster. When the half-mass radius of a cluster is small relative to the overall size, it has a dense core. An example of this is Messier 3 (M3), which has an overall visible dimension of about 18 arc minutes, but a half-mass radius of only 1.12 arc minutes.

Almost all globular clusters have a half-light radius of less than 10 pc, although there are well-established globular clusters with very large radii (i.e. NGC 2419 (Rh = 18 pc) and Palomar 14 (Rh = 25 pc)).

Finally the tidal radius, or Hill sphere, is the distance from the center of the globular cluster at which the external gravitation of the galaxy has more influence over the stars in the cluster than does the cluster itself. This is the distance at which the individual stars belonging to a cluster can be separated away by the galaxy. The tidal radius of M3 is about 40 arc minutes, or about 113 pc at the distance of 10.4 kpc.

Mass segregation, luminosity and core collapse

In measuring the luminosity curve of a given globular cluster as a function of distance from the core, most clusters in the Milky Way increase steadily in luminosity as this distance decreases, up to a certain distance from the core, then the luminosity levels off. Typically this distance is about 1–2 parsecs from the core. However about 20% of the globular clusters have undergone a process termed "core collapse". In this type of cluster, the luminosity continues to increase steadily all the way to the core region. An example of a core-collapsed globular is M15

47 Tucanae – the second most luminous globular cluster in the Milky Way, after Omega Centauri.
 
Core-collapse is thought to occur when the more massive stars in a globular cluster encounter their less massive companions. Over time, dynamic processes cause individual stars to migrate from the center of the cluster to the outside. This results in a net loss of kinetic energy from the core region, leading the remaining stars grouped in the core region to occupy a more compact volume. When this gravothermal instability occurs, the central region of the cluster becomes densely crowded with stars and the surface brightness of the cluster forms a power-law cusp. (Note that a core collapse is not the only mechanism that can cause such a luminosity distribution; a massive black hole at the core can also result in a luminosity cusp.) Over a lengthy period of time this leads to a concentration of massive stars near the core, a phenomenon called mass segregation

The dynamical heating effect of binary star systems works to prevent an initial core collapse of the cluster. When a star passes near a binary system, the orbit of the latter pair tends to contract, releasing energy. Only after the primordial supply of binaries is exhausted due to interactions can a deeper core collapse proceed. In contrast, the effect of tidal shocks as a globular cluster repeatedly passes through the plane of a spiral galaxy tends to significantly accelerate core collapse.

The different stages of core-collapse may be divided into three phases. During a globular cluster's adolescence, the process of core-collapse begins with stars near the core. However, the interactions between binary star systems prevents further collapse as the cluster approaches middle age. Finally, the central binaries are either disrupted or ejected, resulting in a tighter concentration at the core.

The interaction of stars in the collapsed core region causes tight binary systems to form. As other stars interact with these tight binaries, they increase the energy at the core, which causes the cluster to re-expand. As the mean time for a core collapse is typically less than the age of the galaxy, many of a galaxy's globular clusters may have passed through a core collapse stage, then re-expanded.

Globular cluster NGC 1854 is located in the Large Magellanic Cloud.
 
The Hubble Space Telescope has been used to provide convincing observational evidence of this stellar mass-sorting process in globular clusters. Heavier stars slow down and crowd at the cluster's core, while lighter stars pick up speed and tend to spend more time at the cluster's periphery. The globular star cluster 47 Tucanae, which is made up of about 1 million stars, is one of the densest globular clusters in the Southern Hemisphere. This cluster was subjected to an intensive photographic survey, which allowed astronomers to track the motion of its stars. Precise velocities were obtained for nearly 15,000 stars in this cluster.

A 2008 study by John Fregeau of 13 globular clusters in the Milky Way shows that three of them have an unusually large number of X-ray sources, or X-ray binaries, suggesting the clusters are middle-aged. Previously, these globular clusters had been classified as being in old age because they had very tight concentrations of stars in their centers, another test of age used by astronomers. The implication is that most globular clusters, including the other ten studied by Fregeau, are not in middle age as previously thought, but are actually in 'adolescence'.

The overall luminosities of the globular clusters within the Milky Way and the Andromeda Galaxy can be modeled by means of a Gaussian curve. This Gaussian can be represented by means of an average magnitude Mv and a variance σ2. This distribution of globular cluster luminosities is called the Globular Cluster Luminosity Function (GCLF). (For the Milky Way, Mv = −7.20 ± 0.13, σ = 1.1 ± 0.1 magnitudes.) The GCLF has also been used as a "standard candle" for measuring the distance to other galaxies, under the assumption that the globular clusters in remote galaxies follow the same principles as they do in the Milky Way.

N-body simulations

Computing the interactions between the stars within a globular cluster requires solving what is termed the N-body problem. That is, each of the stars within the cluster continually interacts with the other N−1 stars, where N is the total number of stars in the cluster. The naive CPU computational "cost" for a dynamic simulation increases in proportion to N 2 (each of N objects must interact pairwise with each of the other N objects), so the potential computing requirements to accurately simulate such a cluster can be enormous. An efficient method of mathematically simulating the N-body dynamics of a globular cluster is done by subdividing into small volumes and velocity ranges, and using probabilities to describe the locations of the stars. The motions are then described by means of a formula called the Fokker–Planck equation. This can be solved by a simplified form of the equation, or by running Monte Carlo simulations and using random values. However the simulation becomes more difficult when the effects of binaries and the interaction with external gravitation forces (such as from the Milky Way galaxy) must also be included.

The results of N-body simulations have shown that the stars can follow unusual paths through the cluster, often forming loops and often falling more directly toward the core than would a single star orbiting a central mass. In addition, due to interactions with other stars that result in an increase in velocity, some of the stars gain sufficient energy to escape the cluster. Over long periods of time this will result in a dissipation of the cluster, a process termed evaporation. The typical time scale for the evaporation of a globular cluster is 1010 years. In 2010 it became possible to directly compute, star by star, N-body simulations of a globular cluster over the course of its lifetime.

Binary stars form a significant portion of the total population of stellar systems, with up to half of all stars occurring in binary systems. Numerical simulations of globular clusters have demonstrated that binaries can hinder and even reverse the process of core collapse in globular clusters. When a star in a cluster has a gravitational encounter with a binary system, a possible result is that the binary becomes more tightly bound and kinetic energy is added to the solitary star. When the massive stars in the cluster are sped up by this process, it reduces the contraction at the core and limits core collapse.

The ultimate fate of a globular cluster must be either to accrete stars at its core, causing its steady contraction, or gradual shedding of stars from its outer layers.

Intermediate forms

Messier 10 lies about 15,000 light-years from Earth, in the constellation of Ophiuchus.
 
The distinction between cluster types is not always clear-cut, and objects have been found that blur the lines between the categories. For example, BH 176 in the southern part of the Milky Way has properties of both an open and a globular cluster.

In 2005, astronomers discovered a completely new type of star cluster in the Andromeda Galaxy, which is, in several ways, very similar to globular clusters. The new-found clusters contain hundreds of thousands of stars, a similar number to that found in globular clusters. The clusters share other characteristics with globular clusters such as stellar populations and metallicity. What distinguishes them from the globular clusters is that they are much larger – several hundred light-years across – and hundreds of times less dense. The distances between the stars are, therefore, much greater within the newly discovered extended clusters. Parametrically, these clusters lie somewhere between a globular cluster and a dwarf spheroidal galaxy.

How these clusters are formed is not yet known, but their formation might well be related to that of globular clusters. Why M31 has such clusters, while the Milky Way does not, is not yet known. It is also unknown if any other galaxy contains these types of clusters, but it would be very unlikely that M31 is the sole galaxy with extended clusters.

Tidal encounters

When a globular cluster has a close encounter with a large mass, such as the core region of a galaxy, it undergoes a tidal interaction. The difference in the pull of gravity between the part of the cluster nearest the mass and the pull on the furthest part of the cluster results in a tidal force. A "tidal shock" occurs whenever the orbit of a cluster takes it through the plane of a galaxy.

As a result of a tidal shock, streams of stars can be pulled away from the cluster halo, leaving only the core part of the cluster. These tidal interaction effects create tails of stars that can extend up to several degrees of arc away from the cluster. These tails typically both precede and follow the cluster along its orbit. The tails can accumulate significant portions of the original mass of the cluster, and can form clump-like features.

The globular cluster Palomar 5, for example, is near the apogalactic point of its orbit after passing through the Milky Way. Streams of stars extend outward toward the front and rear of the orbital path of this cluster, stretching out to distances of 13,000 light-years. Tidal interactions have stripped away much of the mass from Palomar 5, and further interactions as it passes through the galactic core are expected to transform it into a long stream of stars orbiting the Milky Way halo.

Tidal interactions add kinetic energy into a globular cluster, dramatically increasing the evaporation rate and shrinking the size of the cluster. Not only does tidal shock strip off the outer stars from a globular cluster, but the increased evaporation accelerates the process of core collapse. The same physical mechanism may be at work in dwarf spheroidal galaxies such as the Sagittarius Dwarf, which appears to be undergoing tidal disruption due to its proximity to the Milky Way.

Orbits

There are many globular clusters with a retrograde orbit round the Milky Way Galaxy. A hypervelocity globular cluster was discovered around Messier 87 in 2014, having a velocity in excess of the escape velocity of M87.

Planets

Astronomers are searching for exoplanets of stars in globular star clusters.

In 2000, the results of a search for giant planets in the globular cluster 47 Tucanae were announced. The lack of any successful discoveries suggests that the abundance of elements (other than hydrogen or helium) necessary to build these planets may need to be at least 40% of the abundance in the Sun. Terrestrial planets are built from heavier elements such as silicon, iron and magnesium. The very low abundance of these elements in globular clusters means that the member stars have a far lower likelihood of hosting Earth-mass planets, when compared to stars in the neighborhood of the Sun. Hence the halo region of the Milky Way galaxy, including globular cluster members, are unlikely to host habitable terrestrial planets.

In spite of the lower likelihood of giant planet formation, just such an object has been found in the globular cluster Messier 4. This planet was detected orbiting a pulsar in the binary star system PSR B1620-26. The eccentric and highly inclined orbit of the planet suggests it may have been formed around another star in the cluster, then was later "exchanged" into its current arrangement. The likelihood of close encounters between stars in a globular cluster can disrupt planetary systems, some of which break loose to become free floating planets. Even close orbiting planets can become disrupted, potentially leading to orbital decay and an increase in orbital eccentricity and tidal effects.

Lie point symmetry

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Lie_point_symmetry     ...