Search This Blog

Sunday, March 31, 2019

Time travel (updated)

From Wikipedia, the free encyclopedia

Time travel is the concept of movement between certain points in time, analogous to movement between different points in space by an object or a person, typically using a hypothetical device known as a time machine. Time travel is a widely-recognized concept in philosophy and fiction. The idea of a time machine was popularized by H. G. Wells' 1895 novel The Time Machine.
 
It is uncertain if time travel to the past is physically possible. Forward time travel, outside the usual sense of the perception of time, is an extensively-observed phenomenon and well-understood within the framework of special relativity and general relativity. However, making one body advance or delay more than a few milliseconds compared to another body is not feasible with current technology. As for backwards time travel, it is possible to find solutions in general relativity that allow for it, but the solutions require conditions that may not be physically possible. Traveling to an arbitrary point in spacetime has a very limited support in theoretical physics, and usually only connected with quantum mechanics or wormholes, also known as Einstein-Rosen bridges.

History of the time travel concept

Some ancient myths depict a character skipping forward in time. In Hindu mythology, the Mahabharata mentions the story of King Raivata Kakudmi, who travels to heaven to meet the creator Brahma and is surprised to learn when he returns to Earth that many ages have passed. The Buddhist Pāli Canon mentions the relativity of time. The Payasi Sutta tells of one of the Buddha's chief disciples, Kumara Kassapa, who explains to the skeptic Payasi that time in the Heavens passes differently than on Earth. The Japanese tale of "Urashima Tarō", first described in the Nihongi (720) tells of a young fisherman named Urashima Taro who visits an undersea palace. After three days, he returns home to his village and finds himself 300 years in the future, where he has been forgotten, his house is in ruins, and his family has died. In Jewish tradition, the 1st-century BC scholar Honi ha-M'agel is said to have fallen asleep and slept for seventy years. When waking up he returned home but found none of the people he knew, and no one believed his claims of who he was.

Shift to science fiction

Early science fiction stories feature characters who sleep for years and awaken in a changed society, or are transported to the past through supernatural means. Among them L'An 2440, rêve s'il en fût jamais (1770) by Louis-Sébastien Mercier, Rip Van Winkle (1819) by Washington Irving, Looking Backward (1888) by Edward Bellamy, and When the Sleeper Awakes (1899) by H.G. Wells. Prolonged sleep, like the more familiar time machine, is used as a means of time travel in these stories.

The earliest work about backwards time travel is uncertain. Samuel Madden's Memoirs of the Twentieth Century (1733) is a series of letters from British ambassadors in 1997 and 1998 to diplomats in the past, conveying the political and religious conditions of the future. Because the narrator receives these letters from his guardian angel, Paul Alkon suggests in his book Origins of Futuristic Fiction that "the first time-traveler in English literature is a guardian angel." Madden does not explain how the angel obtains these documents, but Alkon asserts that Madden "deserves recognition as the first to toy with the rich idea of time-travel in the form of an artifact sent backward from the future to be discovered in the present." In the science fiction anthology Far Boundaries (1951), editor August Derleth claims that an early short story about time travel is Missing One's Coach: An Anachronism, written for the Dublin Literary Magazine by an anonymous author in 1838. While the narrator waits under a tree for a coach to take him out of Newcastle, he is transported back in time over a thousand years. He encounters the Venerable Bede in a monastery and explains to him the developments of the coming centuries. However, the story never makes it clear whether these events are real or a dream. Another early work about time travel is The Forebears of Kalimeros: Alexander, son of Philip of Macedon by Alexander Veltman published in 1836.

Mr. and Mrs. Fezziwig dance in a vision shown to Scrooge by the Ghost of Christmas Past.
 
Charles Dickens's A Christmas Carol (1843) has early depictions of time travel in both directions, as the protagonist, Ebenezer Scrooge, is transported to Christmases past and future. Other stories employ the same template, where a character naturally goes to sleep, and upon waking up finds themself in a different time. A clearer example of backward time travel is found in the popular 1861 book Paris avant les hommes (Paris before Men) by the French botanist and geologist Pierre Boitard, published posthumously. In this story, the protagonist is transported to the prehistoric past by the magic of a "lame demon" (a French pun on Boitard's name), where he encounters a Plesiosaur and an apelike ancestor and is able to interact with ancient creatures. Edward Everett Hale's "Hands Off" (1881) tells the story of an unnamed being, possibly the soul of a person who has recently died, who interferes with ancient Egyptian history by preventing Joseph's enslavement. This may have been the first story to feature an alternate history created as a result of time travel.

Early time machines

One of the first stories to feature time travel by means of a machine is "The Clock that Went Backward" by Edward Page Mitchell, which appeared in the New York Sun in 1881. However, the mechanism borders on fantasy. An unusual clock, when wound, runs backwards and transports people nearby back in time. The author does not explain the origin or properties of the clock. Enrique Gaspar y Rimbau's El Anacronópete (1887) may have been the first story to feature a vessel engineered to travel through time. Andrew Sawyer has commented that the story "does seem to be the first literary description of a time machine noted so far", adding that "Edward Page Mitchell's story 'The Clock That Went Backward' (1881) is usually described as the first time-machine story, but I'm not sure that a clock quite counts." H. G. Wells's The Time Machine (1895) popularized the concept of time travel by mechanical means.

Time travel in physics

Some theories, most notably special and general relativity, suggest that suitable geometries of spacetime or specific types of motion in space might allow time travel into the past and future if these geometries or motions were possible. In technical papers, physicists discuss the possibility of closed timelike curves, which are world lines that form closed loops in spacetime, allowing objects to return to their own past. There are known to be solutions to the equations of general relativity that describe spacetimes which contain closed timelike curves, such as Gödel spacetime, but the physical plausibility of these solutions is uncertain. 

Many in the scientific community believe that backward time travel is highly unlikely. Any theory that would allow time travel would introduce potential problems of causality. The classic example of a problem involving causality is the "grandfather paradox": what if one were to go back in time and kill one's own grandfather before one's father was conceived? Some physicists, such as Novikov and Deutsch, suggested that these sorts of temporal paradoxes can be avoided through the Novikov self-consistency principle or to a variation of the many-worlds interpretation with interacting worlds.

General relativity

Time travel to the past is theoretically possible in certain general relativity spacetime geometries that permit traveling faster than the speed of light, such as cosmic strings, transversable wormholes, and Alcubierre drive. The theory of general relativity does suggest a scientific basis for the possibility of backward time travel in certain unusual scenarios, although arguments from semiclassical gravity suggest that when quantum effects are incorporated into general relativity, these loopholes may be closed. These semiclassical arguments led Stephen Hawking to formulate the chronology protection conjecture, suggesting that the fundamental laws of nature prevent time travel, but physicists cannot come to a definite judgment on the issue without a theory of quantum gravity to join quantum mechanics and general relativity into a completely unified theory.

Different spacetime geometries

The theory of general relativity describes the universe under a system of field equations that determine the metric, or distance function, of spacetime. There exist exact solutions to these equations that include closed time-like curves, which are world lines that intersect themselves; some point in the causal future of the world line is also in its causal past, a situation which is akin to time travel. Such a solution was first proposed by Kurt Gödel, a solution known as the Gödel metric, but his (and others') solution requires the universe to have physical characteristics that it does not appear to have, such as rotation and lack of Hubble expansion. Whether general relativity forbids closed time-like curves for all realistic conditions is still being researched.

Wormholes

Wormholes are a hypothetical warped spacetime which are permitted by the Einstein field equations of general relativity. A proposed time-travel machine using a traversable wormhole would hypothetically work in the following way: One end of the wormhole is accelerated to some significant fraction of the speed of light, perhaps with some advanced propulsion system, and then brought back to the point of origin. Alternatively, another way is to take one entrance of the wormhole and move it to within the gravitational field of an object that has higher gravity than the other entrance, and then return it to a position near the other entrance. For both of these methods, time dilation causes the end of the wormhole that has been moved to have aged less, or become "younger", than the stationary end as seen by an external observer; however, time connects differently through the wormhole than outside it, so that synchronized clocks at either end of the wormhole will always remain synchronized as seen by an observer passing through the wormhole, no matter how the two ends move around. This means that an observer entering the "younger" end would exit the "older" end at a time when it was the same age as the "younger" end, effectively going back in time as seen by an observer from the outside. One significant limitation of such a time machine is that it is only possible to go as far back in time as the initial creation of the machine; in essence, it is more of a path through time than it is a device that itself moves through time, and it would not allow the technology itself to be moved backward in time. 

According to current theories on the nature of wormholes, construction of a traversable wormhole would require the existence of a substance with negative energy, often referred to as "exotic matter". More technically, the wormhole spacetime requires a distribution of energy that violates various energy conditions, such as the null energy condition along with the weak, strong, and dominant energy conditions. However, it is known that quantum effects can lead to small measurable violations of the null energy condition, and many physicists believe that the required negative energy may actually be possible due to the Casimir effect in quantum physics. Although early calculations suggested a very large amount of negative energy would be required, later calculations showed that the amount of negative energy can be made arbitrarily small.

In 1993, Matt Visser argued that the two mouths of a wormhole with such an induced clock difference could not be brought together without inducing quantum field and gravitational effects that would either make the wormhole collapse or the two mouths repel each other. Because of this, the two mouths could not be brought close enough for causality violation to take place. However, in a 1997 paper, Visser hypothesized that a complex "Roman ring" (named after Tom Roman) configuration of an N number of wormholes arranged in a symmetric polygon could still act as a time machine, although he concludes that this is more likely a flaw in classical quantum gravity theory rather than proof that causality violation is possible.

Other approaches based on general relativity

Another approach involves a dense spinning cylinder usually referred to as a Tipler cylinder, a GR solution discovered by Willem Jacob van Stockum in 1936 and Kornel Lanczos in 1924, but not recognized as allowing closed timelike curves until an analysis by Frank Tipler in 1974. If a cylinder is infinitely long and spins fast enough about its long axis, then a spaceship flying around the cylinder on a spiral path could travel back in time (or forward, depending on the direction of its spiral). However, the density and speed required is so great that ordinary matter is not strong enough to construct it. A similar device might be built from a cosmic string, but none are known to exist, and it does not seem to be possible to create a new cosmic string. Physicist Ronald Mallett is attempting to recreate the conditions of a rotating black hole with ring lasers, in order to bend spacetime and allow for time travel.

A more fundamental objection to time travel schemes based on rotating cylinders or cosmic strings has been put forward by Stephen Hawking, who proved a theorem showing that according to general relativity it is impossible to build a time machine of a special type (a "time machine with the compactly generated Cauchy horizon") in a region where the weak energy condition is satisfied, meaning that the region contains no matter with negative energy density (exotic matter). Solutions such as Tipler's assume cylinders of infinite length, which are easier to analyze mathematically, and although Tipler suggested that a finite cylinder might produce closed timelike curves if the rotation rate were fast enough, he did not prove this. But Hawking points out that because of his theorem, "it can't be done with positive energy density everywhere! I can prove that to build a finite time machine, you need negative energy." This result comes from Hawking's 1992 paper on the chronology protection conjecture, where he examines "the case that the causality violations appear in a finite region of spacetime without curvature singularities" and proves that "there will be a Cauchy horizon that is compactly generated and that in general contains one or more closed null geodesics which will be incomplete. One can define geometrical quantities that measure the Lorentz boost and area increase on going round these closed null geodesics. If the causality violation developed from a noncompact initial surface, the averaged weak energy condition must be violated on the Cauchy horizon." This theorem does not rule out the possibility of time travel by means of time machines with the non-compactly generated Cauchy horizons (such as the Deutsch-Politzer time machine) or in regions which contain exotic matter, which would be used for traversable wormholes or the Alcubierre drive.

Quantum physics

No-communication theorem

When a signal is sent from one location and received at another location, then as long as the signal is moving at the speed of light or slower, the mathematics of simultaneity in the theory of relativity show that all reference frames agree that the transmission-event happened before the reception-event. When the signal travels faster than light, it is received before it is sent, in all reference frames. The signal could be said to have moved backward in time. This hypothetical scenario is sometimes referred to as a tachyonic antitelephone.

Quantum-mechanical phenomena such as quantum teleportation, the EPR paradox, or quantum entanglement might appear to create a mechanism that allows for faster-than-light (FTL) communication or time travel, and in fact some interpretations of quantum mechanics such as the Bohm interpretation presume that some information is being exchanged between particles instantaneously in order to maintain correlations between particles. This effect was referred to as "spooky action at a distance" by Einstein. 

Nevertheless, the fact that causality is preserved in quantum mechanics is a rigorous result in modern quantum field theories, and therefore modern theories do not allow for time travel or FTL communication. In any specific instance where FTL has been claimed, more detailed analysis has proven that to get a signal, some form of classical communication must also be used. The no-communication theorem also gives a general proof that quantum entanglement cannot be used to transmit information faster than classical signals.

Interacting many-worlds interpretation

A variation of Everett's many-worlds interpretation (MWI) of quantum mechanics provides a resolution to the grandfather paradox that involves the time traveler arriving in a different universe than the one they came from; it's been argued that since the traveler arrives in a different universe's history and not their own history, this is not "genuine" time travel. The accepted many-worlds interpretation suggests that all possible quantum events can occur in mutually exclusive histories. However, some variations allow different universes to interact. This concept is most often used in science-fiction, but some physicists such as David Deutsch have suggested that a time traveler should end up in a different history than the one he started from. On the other hand, Stephen Hawking has argued that even if the MWI is correct, we should expect each time traveler to experience a single self-consistent history, so that time travelers remain within their own world rather than traveling to a different one. The physicist Allen Everett argued that Deutsch's approach "involves modifying fundamental principles of quantum mechanics; it certainly goes beyond simply adopting the MWI". Everett also argues that even if Deutsch's approach is correct, it would imply that any macroscopic object composed of multiple particles would be split apart when traveling back in time through a wormhole, with different particles emerging in different worlds.

Experimental results

Certain experiments carried out give the impression of reversed causality, but fail to show it under closer examination. 

The delayed choice quantum eraser experiment performed by Marlan Scully involves pairs of entangled photons that are divided into "signal photons" and "idler photons", with the signal photons emerging from one of two locations and their position later measured as in the double-slit experiment. Depending on how the idler photon is measured, the experimenter can either learn which of the two locations the signal photon emerged from or "erase" that information. Even though the signal photons can be measured before the choice has been made about the idler photons, the choice seems to retroactively determine whether or not an interference pattern is observed when one correlates measurements of idler photons to the corresponding signal photons. However, since interference can only be observed after the idler photons are measured and they are correlated with the signal photons, there is no way for experimenters to tell what choice will be made in advance just by looking at the signal photons, only by gathering classical information from the entire system; thus causality is preserved.

The experiment of Lijun Wang might also show causality violation since it made it possible to send packages of waves through a bulb of caesium gas in such a way that the package appeared to exit the bulb 62 nanoseconds before its entry, but a wave package is not a single well-defined object but rather a sum of multiple waves of different frequencies, and the package can appear to move faster than light or even backward in time even if none of the pure waves in the sum do so. This effect cannot be used to send any matter, energy, or information faster than light, so this experiment is understood not to violate causality either. 

The physicists Günter Nimtz and Alfons Stahlhofen, of the University of Koblenz, claim to have violated Einstein's theory of relativity by transmitting photons faster than the speed of light. They say they have conducted an experiment in which microwave photons traveled "instantaneously" between a pair of prisms that had been moved up to 3 ft (0.91 m) apart, using a phenomenon known as quantum tunneling. Nimtz told New Scientist magazine: "For the time being, this is the only violation of special relativity that I know of." However, other physicists say that this phenomenon does not allow information to be transmitted faster than light. Aephraim Steinberg, a quantum optics expert at the University of Toronto, Canada, uses the analogy of a train traveling from Chicago to New York, but dropping off train cars at each station along the way, so that the center of the train moves forward at each stop; in this way, the speed of the center of the train exceeds the speed of any of the individual cars.

Shengwang Du claims in a peer-reviewed journal to have observed single photons' precursors, saying that they travel no faster than c in a vacuum. His experiment involved slow light as well as passing light through a vacuum. He generated two single photons, passing one through rubidium atoms that had been cooled with a laser (thus slowing the light) and passing one through a vacuum. Both times, apparently, the precursors preceded the photons' main bodies, and the precursor traveled at c in a vacuum. According to Du, this implies that there is no possibility of light traveling faster than c and, thus, no possibility of violating causality.

Absence of time travelers from the future

Krononauts
 
The absence of time travelers from the future is a variation of the Fermi paradox. As the absence of extraterrestrial visitors does not prove they do not exist, so the absence of time travelers fails to prove time travel is physically impossible; it might be that time travel is physically possible but is never developed or is cautiously used. Carl Sagan once suggested the possibility that time travelers could be here but are disguising their existence or are not recognized as time travelers. Some versions of general relativity suggest that time travel might only be possible in a region of spacetime that is warped a certain way, and hence time travelers would not be able to travel back to earlier regions in spacetime, before this region existed. Stephen Hawking stated that this would explain why the world has not already been overrun by "tourists from the future."

Several experiments have been carried out to try to entice future humans, who might invent time travel technology, to come back and demonstrate it to people of the present time. Events such as Perth's Destination Day or MIT's Time Traveler Convention heavily publicized permanent "advertisements" of a meeting time and place for future time travelers to meet. In 1982, a group in Baltimore, Maryland, identifying itself as the Krononauts, hosted an event of this type welcoming visitors from the future. These experiments only stood the possibility of generating a positive result demonstrating the existence of time travel, but have failed so far—no time travelers are known to have attended either event. Some versions of the many-worlds interpretation can be used to suggest that future humans have traveled back in time, but have traveled back to the meeting time and place in a parallel universe.

Forward time travel in physics

Time dilation

Transversal time dilation. The blue dots represent a pulse of light. Each pair of dots with light "bouncing" between them is a clock. For each group of clocks, the other group appears to be ticking more slowly, because the moving clock's light pulse has to travel a larger distance than the stationary clock's light pulse. That is so, even though the clocks are identical and their relative motion is perfectly symmetric.
 
There is a great deal of observable evidence for time dilation in special relativity and gravitational time dilation in general relativity, for example in the famous and easy-to-replicate observation of atmospheric muon decay. The theory of relativity states that the speed of light is invariant for all observers in any frame of reference; that is, it is always the same. Time dilation is a direct consequence of the invariance of the speed of light. Time dilation may be regarded in a limited sense as "time travel into the future": a person may use time dilation so that a small amount of proper time passes for them, while a large amount of proper time passes elsewhere. This can be achieved by traveling at relativistic speeds or through the effects of gravity.

For two identical clocks moving relative to each other without accelerating, each clock measures the other to be ticking slower. This is possible due to the relativity of simultaneity. However, the symmetry is broken if one clock accelerates, allowing for less proper time to pass for one clock than the other. The twin paradox describes this: one twin remains on Earth, while the other undergoes acceleration to relativistic speed as they travel into space, turn around, and travel back to Earth; the traveling twin ages less than the twin who stayed on Earth, because of the time dilation experienced during their acceleration. General relativity treats the effects of acceleration and the effects of gravity as equivalent, and shows that time dilation also occurs in gravity wells, with a clock deeper in the well ticking more slowly; this effect is taken into account when calibrating the clocks on the satellites of the Global Positioning System, and it could lead to significant differences in rates of aging for observers at different distances from a large gravity well such as a black hole.

A time machine that utilizes this principle might be, for instance, a spherical shell with a diameter of 5 meters and the mass of Jupiter. A person at its center will travel forward in time at a rate four times that of distant observers. Squeezing the mass of a large planet into such a small structure is not expected to be within humanity's technological capabilities in the near future. With current technologies, it is only possible to cause a human traveler to age less than companions on Earth by a few milliseconds, the current record being about 20 milliseconds for the cosmonaut Sergei Krikalev.

Philosophy

Philosophers have discussed the nature of time since at least the time of ancient Greece; for example, Parmenides presented the view that time is an illusion. Centuries later, Isaac Newton supported the idea of absolute time, while his contemporary Gottfried Wilhelm Leibniz maintained that time is only a relation between events and it cannot be expressed independently. The latter approach eventually gave rise to the spacetime of relativity.

Presentism vs. eternalism

Many philosophers have argued that relativity implies eternalism, the idea that the past and future exist in a real sense, not only as changes that occurred or will occur to the present. Philosopher of science Dean Rickles disagrees with some qualifications, but notes that "the consensus among philosophers seems to be that special and general relativity are incompatible with presentism." Some philosophers view time as a dimension equal to spatial dimensions, that future events are "already there" in the same sense different places exist, and that there is no objective flow of time; however, this view is disputed.

The bar and ring paradox is an example of the relativity of simultaneity. Both ends of the bar pass through the ring simultaneously in the rest frame of the ring (left), but the ends of the bar pass one after the other in the rest frame of the bar (right).
 
Presentism is a school of philosophy that holds that the future and the past exist only as changes that occurred or will occur to the present, and they have no real existence of their own. In this view, time travel is impossible because there is no future or past to travel to. Keller and Nelson have argued that even if past and future objects do not exist, there can still be definite truths about past and future events, and thus it is possible that a future truth about a time traveler deciding to travel back to the present date could explain the time traveler's actual appearance in the present; these views are contested by some authors.

Presentism in classical spacetime deems that only the present exists; this is not reconcilable with special relativity, shown in the following example: Alice and Bob are simultaneous observers of event O. For Alice, some event E is simultaneous with O, but for Bob, event E is in the past or future. Therefore, Alice and Bob disagree about what exists in the present, which contradicts classical presentism. "Here-now presentism" attempts to reconcile this by only acknowledging the time and space of a single point; this is unsatisfactory because objects coming and going from the "here-now" alternate between real and unreal, in addition to the lack of a privileged "here-now" that would be the "real" present. "Relativized presentism" acknowledges that there are infinite frames of reference, each of them has a different set of simultaneous events, which makes it impossible to distinguish a single "real" present, and hence either all events in time are real—blurring the difference between presentism and eternalism—or each frame of reference exists in its own reality. Options for presentism in special relativity appear to be exhausted, but Gödel and others suspect presentism may be valid for some forms of general relativity. Generally, the idea of absolute time and space is considered incompatible with general relativity; there is no universal truth about the absolute position of events which occur at different times, and thus no way to determine which point in space at one time is at the universal "same position" at another time, and all coordinate systems are on equal footing as given by the principle of diffeomorphism invariance.

The grandfather paradox

A common objection to the idea of traveling back in time is put forth in the grandfather paradox or the argument of auto-infanticide. If one were able to go back in time, inconsistencies and contradictions would ensue if the time traveler were to change anything; there is a contradiction if the past becomes different from the way it is. The paradox is commonly described with a person who travels to the past and kills their own grandfather, prevents the existence of their father or mother, and therefore their own existence. Philosophers question whether these paradoxes make time travel impossible. Some philosophers answer the paradoxes by arguing that it might be the case that backward time travel could be possible but that it would be impossible to actually change the past in any way, an idea similar to the proposed Novikov self-consistency principle in physics.

Ontological paradox

Compossibility

According to the philosophical theory of compossibility, what can happen, for example in the context of time travel, must be weighed against the context of everything relating to the situation. If the past is a certain way, it's not possible for it to be any other way. What can happen when a time traveler visits the past is limited to what did happen, in order to prevent logical contradictions.

Self-consistency principle

The Novikov self-consistency principle, named after Igor Dmitrievich Novikov, states that any actions taken by a time traveler or by an object that travels back in time were part of history all along, and therefore it is impossible for the time traveler to "change" history in any way. The time traveler's actions may be the cause of events in their own past though, which leads to the potential for circular causation, sometimes called a predestination paradox, ontological paradox, or bootstrap paradox. The term bootstrap paradox was popularized by Robert A. Heinlein's story "By His Bootstraps". The Novikov self-consistency principle proposes that the local laws of physics in a region of spacetime containing time travelers cannot be any different from the local laws of physics in any other region of spacetime.

The philosopher Kelley L. Ross argues in "Time Travel Paradoxes" that in a scenario involving a physical object whose world-line or history forms a closed loop in time there can be a violation of the second law of thermodynamics. Ross uses "Somewhere in Time" as an example of such an ontological paradox, where a watch is given to a person, and 60 years later the same watch is brought back in time and given to the same character. Ross states that entropy of the watch will increase, and the watch carried back in time will be more worn with each repetition of its history. The second law of thermodynamics is understood by modern physicists to be a statistical law, so decreasing entropy or non-increasing entropy are not impossible, just improbable. Additionally, entropy statistically increases in systems which are isolated, so non-isolated systems, such as an object, that interact with the outside world, can become less worn and decrease in entropy, and it's possible for an object whose world-line forms a closed loop to be always in the same condition in the same point of its history.

Daniel Greenberger and Karl Svozil proposed that quantum theory gives a model for time travel where the past must be self-consistent.

In fiction

Time travel themes in science fiction and the media can generally be grouped into three categories: immutable timeline; mutable timeline; and alternate histories, as in the interacting-many-worlds interpretation. Frequently in fiction, timeline is used to refer to all physical events in history, so that in time travel stories where events can be changed, the time traveler is described as creating a new or altered timeline. This usage is distinct from the use of the term timeline to refer to a type of chart that illustrates a particular series of events, and the concept is also distinct from a world line, a term from Einstein's theory of relativity which refers to the entire history of a single object.

Novikov self-consistency principle

From Wikipedia, the free encyclopedia

The Novikov self-consistency principle, also known as the Novikov self-consistency conjecture and Larry Niven's law of conservation of history, is a principle developed by Russian physicist Igor Dmitriyevich Novikov in the mid-1980s. Novikov intended it to solve the problem of paradoxes in time travel, which is theoretically permitted in certain solutions of general relativity that contain what are known as closed timelike curves. The principle asserts that if an event exists that would cause a paradox or any "change" to the past whatsoever, then the probability of that event is zero. It would thus be impossible to create time paradoxes.

History

Physicists have long known that some solutions to the theory of general relativity contain closed timelike curves—for example the Gödel metric. Novikov discussed the possibility of closed timelike curves (CTCs) in books he wrote in 1975 and 1983, offering the opinion that only self-consistent trips back in time would be permitted. In a 1990 paper by Novikov and several others, "Cauchy problem in spacetimes with closed timelike curves", the authors state:
The only type of causality violation that the authors would find unacceptable is that embodied in the science-fiction concept of going backward in time and killing one's younger self ("changing the past"). Some years ago one of us (Novikov) briefly considered the possibility that CTCs might exist and argued that they cannot entail this type of causality violation: events on a CTC are already guaranteed to be self-consistent, Novikov argued; they influence each other around a closed curve in a self-adjusted, cyclical, self-consistent way. The other authors recently have arrived at the same viewpoint.
We shall embody this viewpoint in a principle of self-consistency, which states that the only solutions to the laws of physics that can occur locally in the real Universe are those which are globally self-consistent. This principle allows one to build a local solution to the equations of physics only if that local solution can be extended to a part of a (not necessarily unique) global solution, which is well defined throughout the nonsingular regions of the space-time.
Among the co-authors of this 1990 paper were Kip Thorne, Mike Morris, and Ulvi Yurtsever, who in 1988 had stirred up renewed interest in the subject of time travel in general relativity with their paper "Wormholes, Time Machines, and the Weak Energy Condition", which showed that a new general relativity solution known as a traversable wormhole could lead to closed timelike curves, and unlike previous CTC-containing solutions, it did not require unrealistic conditions for the universe as a whole. After discussions with another co-author of the 1990 paper, John Friedman, they convinced themselves that time travel needn't lead to unresolvable paradoxes, regardless of the object sent through the wormhole.

"Polchinski's paradox".
 
Echeverria and Klinkhammer's resolution
 
By way of response, physicist Joseph Polchinski wrote them a letter arguing that one could avoid the issue of free will by considering a potentially paradoxical scenario involving a billiard ball sent back in time through a wormhole. In Polchinski's scenario, the billiard ball is fired into the wormhole at an angle such that, if it continues along its path, it will exit in the past at just the right angle to collide with its earlier self, knocking it off track and preventing it from entering the wormhole in the first place. Thorne would refer to this scenario as "Polchinski's paradox" in 1994.

Upon considering the scenario, Fernando Echeverria and Gunnar Klinkhammer, two students at Caltech (where Thorne taught), arrived at a solution to the problem that managed to avoid any inconsistencies. In the revised scenario, the ball emerges from the future at a different angle than the one that generates the paradox, and delivers its younger self a glancing blow instead of knocking it completely away from the wormhole. This blow alters its trajectory by just the right degree, meaning it will travel back in time with the angle required to deliver its younger self the necessary glancing blow. Echeverria and Klinkhammer actually found that there was more than one self-consistent solution, with slightly different angles for the glancing blow in each situation. Later analysis by Thorne and Robert Forward illustrated that for certain initial trajectories of the billiard ball, there could actually be an infinite number of self-consistent solutions.

Echeverria, Klinkhammer and Thorne published a paper discussing these results in 1991; in addition, they reported that they had tried to see if they could find any initial conditions for the billiard ball for which there were no self-consistent extensions, but were unable to do so. Thus it is plausible that there exist self-consistent extensions for every possible initial trajectory, although this has not been proven. This only applies to initial conditions outside of the chronology-violating region of spacetime, which is bounded by a Cauchy horizon. This could mean that the Novikov self-consistency principle does not actually place any constraints on systems outside of the region of space-time where time travel is possible, only inside it. 

Even if self-consistent extensions can be found for arbitrary initial conditions outside the Cauchy Horizon, the finding that there can be multiple distinct self-consistent extensions for the same initial condition—indeed, Echeverria et al. found an infinite number of consistent extensions for every initial trajectory they analyzed—can be seen as problematic, since classically there seems to be no way to decide which extension the laws of physics will choose. To get around this difficulty, Thorne and Klinkhammer analyzed the billiard ball scenario using quantum mechanics, performing a quantum-mechanical sum over histories (path integral) using only the consistent extensions, and found that this resulted in a well-defined probability for each consistent extension. The authors of Cauchy problem in spacetimes with closed timelike curves write:
The simplest way to impose the principle of self-consistency in quantum mechanics (in a classical space-time) is by a sum-over-histories formulation in which one includes all those, and only those, histories that are self-consistent. It turns out that, at least formally (modulo such issues as the convergence of the sum), for every choice of the billiard ball's initial, nonrelativistic wave function before the Cauchy horizon, such a sum over histories produces unique, self-consistent probabilities for the outcomes of all sets of subsequent measurements. ... We suspect, more generally, that for any quantum system in a classical wormhole spacetime with a stable Cauchy horizon, the sum over all self-consistent histories will give unique, self-consistent probabilities for the outcomes of all sets of measurements that one might choose to make.

Assumptions

The Novikov consistency principle assumes certain conditions about what sort of time travel is possible. Specifically, it assumes either that there is only one timeline, or that any alternative timelines (such as those postulated by the many-worlds interpretation of quantum mechanics) are not accessible. 

Given these assumptions, the constraint that time travel must not lead to inconsistent outcomes could be seen merely as a tautology, a self-evident truth that can not possibly be false. However, the Novikov self-consistency principle is intended to go beyond just the statement that history must be consistent, making the additional nontrivial assumption that the universe obeys the same local laws of physics in situations involving time travel that it does in regions of space-time that lack closed timelike curves. This is clarified in the above-mentioned "Cauchy problem in spacetimes with closed timelike curves", where the authors write:
That the principle of self-consistency is not totally tautological becomes clear when one considers the following alternative: The laws of physics might permit CTCs; and when CTCs occur, they might trigger new kinds of local physics which we have not previously met. ... The principle of self-consistency is intended to rule out such behavior. It insists that local physics is governed by the same types of physical laws as we deal with in the absence of CTCs: the laws that entail self-consistent single valuedness for the fields. In essence, the principle of self-consistency is a principle of no new physics. If one is inclined from the outset to ignore or discount the possibility of new physics, then one will regard self-consistency as a trivial principle.

Implications for time travelers

The assumptions of the self-consistency principle can be extended to hypothetical scenarios involving intelligent time travelers as well as unintelligent objects such as billiard balls. The authors of "Cauchy problem in spacetimes with closed timelike curves" commented on the issue in the paper's conclusion, writing:
If CTCs are allowed, and if the above vision of theoretical physics' accommodation with them turns out to be more or less correct, then what will this imply about the philosophical notion of free will for humans and other intelligent beings? It certainly will imply that intelligent beings cannot change the past. Such change is incompatible with the principle of self-consistency. Consequently, any being who went through a wormhole and tried to change the past would be prevented by physical law from making the change; i.e., the "free will" of the being would be constrained. Although this constraint has a more global character than constraints on free will that follow from the standard, local laws of physics, it is not obvious to us that this constraint is more severe than those imposed by standard physical law.
Similarly, physicist and astronomer J. Craig Wheeler concludes that:
According to the consistency conjecture, any complex interpersonal interactions must work themselves out self-consistently so that there is no paradox. That is the resolution. This means, if taken literally, that if time machines exist, there can be no free will. You cannot will yourself to kill your younger self if you travel back in time. You can coexist, take yourself out for a beer, celebrate your birthday together, but somehow circumstances will dictate that you cannot behave in a way that leads to a paradox in time. Novikov supports this point of view with another argument: physics already restricts your free will every day. You may will yourself to fly or to walk through a concrete wall, but gravity and condensed-matter physics dictate that you cannot. Why, Novikov asks, is the consistency restriction placed on a time traveler any different?

Time-loop logic

Time-loop logic, coined by roboticist and futurist Hans Moravec, is a hypothetical system of computation that exploits the Novikov self-consistency principle to compute answers much faster than possible with the standard model of computational complexity using Turing machines. In this system, a computer sends a result of a computation backwards through time and relies upon the self-consistency principle to force the sent result to be correct, provided the machine can reliably receive information from the future and provided the algorithm and the underlying mechanism are formally correct. An incorrect result or no result can still be produced if the time travel mechanism or algorithm are not guaranteed to be accurate. 

A simple example is an iterative method algorithm. Moravec states:
Make a computing box that accepts an input, which represents an approximate solution to some problem, and produces an output that is an improved approximation. Conventionally you would apply such a computation repeatedly a finite number of times, and then settle for the better, but still approximate, result. Given an appropriate negative delay something else is possible: [...] the result of each iteration of the function is brought back in time to serve as the "first" approximation. As soon as the machine is activated, a so-called "fixed-point" of F, an input which produces an identical output, usually signaling a perfect answer, appears (by an extraordinary coincidence!) immediately and steadily. [...] If the iteration does not converge, that is, if F has no fixed point, the computer outputs and inputs will shut down or hover in an unlikely intermediate state.

Quantum computation with a negative delay

Physicist David Deutsch showed in 1991 that this model of computation could solve NP problems in polynomial time, and Scott Aaronson later extended this result to show that the model could also be used to solve PSPACE problems in polynomial time. Deutsch shows that quantum computation with a negative delay—backwards time travel—produces only self-consistent solutions, and the chronology-violating region imposes constraints that are not apparent through classical reasoning. Researchers published in 2014 a simulation in which they claim to have validated Deutsch's model with photons. However, it was shown in an article by Tolksdorf and Verch that Deutsch's self-consistency condition can be fulfilled to arbitrary precision in any quantum system described according to relativistic quantum field theory even on spacetimes which do not admit closed timelike curves, casting doubts on whether Deutsch's model is really characteristic of quantum processes simulating closed timelike curves in the sense of general relativity.

Scientific acceptance

General relativity researcher Matt Visser views causal loops and Novikov's self-consistency principle as an ad hoc solution and supposes that there are far more damaging implications of time travel. Time-travel researcher Serguei Krasnikov similarly finds no inherent fault in causal loops, but finds other problems with time travel in general relativity.

Myasthenia gravis

From Wikipedia, the free encyclopedia

Myasthenia gravis
DiplopiaMG1.jpg
Eye deviation and a drooping eyelid in a person with myasthenia gravis trying to open her eyes
SpecialtyNeurology
SymptomsVarying degrees muscle weakness, double vision, drooping eyelids, trouble talking, trouble walking
Usual onsetWomen under 40, men over 60
DurationLong term
CausesAutoimmune disease
Diagnostic methodBlood tests for specific antibodies, edrophonium test, nerve conduction studies
Differential diagnosisGuillain-Barre syndrome, botulism, organophosphate poisoning, brainstem stroke
TreatmentMedications, surgical removal of the thymus, plasmapheresis
MedicationAcetylcholinesterase inhibitors (neostigmine, pyridostigmine), immunosuppressants
Frequency50 to 200 per million

Myasthenia gravis (MG) is a long-term neuromuscular disease that leads to varying degrees of skeletal muscle weakness. The most commonly affected muscles are those of the eyes, face, and swallowing. It can result in double vision, drooping eyelids, trouble talking, and trouble walking. Onset can be sudden. Those affected often have a large thymus or develop a thymoma.

Myasthenia gravis is an autoimmune disease which results from antibodies that block or destroy nicotinic acetylcholine receptors at the junction between the nerve and muscle. This prevents nerve impulses from triggering muscle contractions. Rarely, an inherited genetic defect in the neuromuscular junction results in a similar condition known as congenital myasthenia. Babies of mothers with myasthenia may have symptoms during their first few months of life, known as neonatal myasthenia. Diagnosis can be supported by blood tests for specific antibodies, the edrophonium test, or a nerve conduction study.

Myasthenia gravis is generally treated with medications known as acetylcholinesterase inhibitors such as neostigmine and pyridostigmine. Immunosuppressants, such as prednisone or azathioprine, may also be used. The surgical removal of the thymus may improve symptoms in certain cases. Plasmapheresis and high dose intravenous immunoglobulin may be used during sudden flares of the condition. If the breathing muscles become significantly weak, mechanical ventilation may be required.

MG affects 50 to 200 per million people. It is newly diagnosed in three to 30 per million people each year. Diagnosis is becoming more common due to increased awareness. It most commonly occurs in women under the age of 40 and in men over the age of 60. It is uncommon in children. With treatment, most of those affected lead relatively normal lives and have a normal life expectancy. The word is from the Greek mys "muscle" and astheneia "weakness", and the Latin: gravis "serious".

Signs and symptoms

The initial, main symptom in MG is painless weakness of specific muscles, not fatigue. The muscle weakness becomes progressively worse during periods of physical activity and improves after periods of rest. Typically, the weakness and fatigue are worse toward the end of the day. MG generally starts with ocular (eye) weakness; it might then progress to a more severe generalized form, characterized by weakness in the extremities or in muscles that govern basic life functions.

Eyes

In about two-thirds of individuals, the initial symptom of MG is related to the muscles around the eye. There may be eyelid drooping (ptosis due to weakness of levator palpebrae superioris) and double vision (diplopia, due to weakness of the extraocular muscles). Eye symptoms tend to get worse when watching television, reading, or driving, particularly in bright conditions. Consequently, some affected individuals choose to wear sunglasses. The term "ocular myasthenia gravis" describes a subtype of MG where muscle weakness is confined to the eyes, i.e. extraocular muscles, levator palpebrae superioris, and orbicularis oculi. Typically, this subtype evolves into generalized MG, usually after a few years.

Eating

The weakness of the muscles involved in swallowing may lead to swallowing difficulty (dysphagia). Typically, this means that some food may be left in the mouth after an attempt to swallow, or food and liquids may regurgitate into the nose rather than go down the throat (velopharyngeal insufficiency). Weakness of the muscles that move the jaw (muscles of mastication) may cause difficulty chewing. In individuals with MG, chewing tends to become more tiring when chewing tough, fibrous foods. Difficulty in swallowing, chewing, and speaking is the first symptom in about one-sixth of individuals.

Speaking

Weakness of the muscles involved in speaking may lead to dysarthria and hypophonia. Speech may be slow and slurred, or have a nasal quality. In some cases, a singing hobby or profession must be abandoned.

Head and neck

Due to weakness of the muscles of facial expression and muscles of mastication, facial weakness may manifest as the inability to hold the mouth closed (the "hanging jaw sign") and as a snarling expression when attempting to smile. With drooping eyelids, facial weakness may make the individual appear sleepy or sad. Difficulty in holding the head upright may occur.

Other

The muscles that control breathing (dyspnea) and limb movements can also be affected; rarely do these present as the first symptoms of MG, but develop over months to years. In a myasthenic crisis, a paralysis of the respiratory muscles occurs, necessitating assisted ventilation to sustain life. Crises may be triggered by various biological stressors such as infection, fever, an adverse reaction to medication, or emotional stress.

Pathophysiology

Neuromuscular junction: 1. Axon 2. Muscle cell membrane 3. Synaptic vesicle 4. Nicotinic acetylcholine receptor 5. Mitochondrion
 
A juvenile thymus shrinks with age.
 
MG is an autoimmune synaptopathy. The disorder occurs when the immune system malfunctions and generates antibodies that attack the body's tissues. The antibodies in MG attack a normal human protein, the nicotinic acetylcholine receptor, or a related protein called MuSK a muscle-specific kinase. Other less frequent antibodies are found against LRP4, Agrin and titin proteins.

Human leukocyte antigen (HLA) haplotypes are associated with increased susceptibility to myasthenia gravis and other autoimmune disorders. Relatives of MG patients have a higher percentage of other immune disorders.

The thymus gland cells form part of the body's immune system. In those with myasthenia gravis, the thymus gland is large and abnormal. It sometimes contains clusters of immune cells which indicate lymphoid hyperplasia, and the thymus gland may give wrong instructions to immune cells.

In pregnancy

For women who are pregnant and already have MG, in a third of cases, they have been known to experience an exacerbation of their symptoms, and in those cases it usually occurs in the first trimester of pregnancy. Signs and symptoms in pregnant mothers tend to improve during the second and third trimesters. Complete remission can occur in some mothers. Immunosuppressive therapy should be maintained throughout pregnancy, as this reduces the chance of neonatal muscle weakness, and controls the mother's myasthenia.

About 10–20% of infants with mothers affected by the condition are born with transient neonatal myasthenia (TNM), which generally produces feeding and respiratory difficulties that develop about 12 hours to several days after birth. A child with TNM typically responds very well to acetylcholinesterase inhibitors, and the condition generally resolves over a period of three weeks as the antibodies diminish and generally does not result in any complications. Very rarely, an infant can be born with arthrogryposis multiplex congenita, secondary to profound intrauterine weakness. This is due to maternal antibodies that target an infant's acetylcholine receptors. In some cases, the mother remains asymptomatic.

Diagnosis

MG can be difficult to diagnose, as the symptoms can be subtle and hard to distinguish from both normal variants and other neurological disorders.

Three types of myasthenic symptoms in children can be distinguished:
  1. Transient neonatal myasthenia occurs in 10 to 15% of babies born to mothers afflicted with the disorder, and disappears after a few weeks.
  2. Congenitalmyasthenia, the rarest form, occurs when genes are present from both parents.
  3. Juvenile myasthenia gravis is most common in females.
Congenital myasthenias cause muscle weakness and fatigability similar to those of MG. The signs of congenital myasthenia usually are present in the first years of childhood, although they may not be recognized until adulthood.

Classification

When diagnosed with MG, a person is assessed for his or her neurological status and the level of illness is established. This is usually done using the accepted Myasthenia Gravis Foundation of America Clinical Classification scale, which is: 

Myasthenia Gravis Foundation of America Clinical Classification
Class Description
I Any eye muscle weakness, possible ptosis, no other evidence of muscle weakness elsewhere
II Eye muscle weakness of any severity, mild weakness of other muscles
IIa Predominantly limb or axial muscles
IIb Predominantly bulbar and/or respiratory muscles
III Eye muscle weakness of any severity, moderate weakness of other muscles
IIIa Predominantly limb or axial muscles
IIIb Predominantly bulbar and/or respiratory muscles
IV Eye muscle weakness of any severity, severe weakness of other muscles
IVa Predominantly limb or axial muscles
IVb Predominantly bulbar and/or respiratory muscles
V Intubation needed to maintain airway

Physical examination

During a physical examination to check for MG, a doctor might ask the person to perform repetitive movements. For instance, the doctor may ask one to look at a fixed point for 30 seconds and to relax the muscles of the forehead. This is done because a person with MG and ptosis of the eyes might be involuntarily using the forehead muscles to compensate for the weakness in the eyelids. The clinical examiner might also try to elicit the "curtain sign" in a patient by holding one of the person's eyes open, which in the case of MG will lead the other eye to close.

Blood tests

If the diagnosis is suspected, serology can be performed:
  • One test is for antibodies against the acetylcholine receptor; the test has a reasonable sensitivity of 80–96%, but in ocular myasthenia, the sensitivity falls to 50%.
  • A proportion of the patients without antibodies against the acetylcholine receptor have antibodies against the MuSK protein.
  • In specific situations, testing is performed for Lambert-Eaton syndrome.

Electrodiagnostics

A chest CT-scan showing a thymoma (red circle)
 
Photograph of a patient showing right partial ptosis (left picture), the left lid shows compensatory pseudo lid retraction because of equal innervation of the levator palpabrae superioris (Hering's law of equal innervation): Right picture: after an edrophonium test, note the improvement in ptosis.
 
Muscle fibers of people with MG are easily fatigued, which the repetitive nerve stimulation test can help diagnose. In single-fiber electromyography, which is considered to be the most sensitive (although not the most specific) test for MG, a thin needle electrode is inserted into different areas of a particular muscle to record the action potentials from several samplings of different individual muscle fibers. Two muscle fibers belonging to the same motor unit are identified, and the temporal variability in their firing patterns is measured. Frequency and proportion of particular abnormal action potential patterns, called "jitter" and "blocking", are diagnostic. Jitter refers to the abnormal variation in the time interval between action potentials of adjacent muscle fibers in the same motor unit. Blocking refers to the failure of nerve impulses to elicit action potentials in adjacent muscle fibers of the same motor unit.

Ice test

Applying ice for two to five minutes to the muscles reportedly has a sensitivity and specificity of 76.9% and 98.3%, respectively, for the identification of MG. Acetylcholinesterase is thought to be inhibited at the lower temperature, and this is the basis for this diagnostic test. This generally is performed on the eyelids when a ptosis is present, and is deemed positive if a ≥2 mm rise in the eyelid occurs after the ice is removed.

Edrophonium test

This test requires the intravenous administration of edrophonium chloride or neostigmine, drugs that block the breakdown of acetylcholine by cholinesterase (acetylcholinesterase inhibitors). This test is no longer typically performed, as its use can lead to life-threatening bradycardia (slow heart rate) which requires immediate emergency attention. Production of edrophonium was discontinued in 2008.

Imaging

A chest X-ray may identify widening of the mediastinum suggestive of thymoma, but computed tomography or magnetic resonance imaging (MRI) are more sensitive ways to identify thymomas and are generally done for this reason. MRI of the cranium and orbits may also be performed to exclude compressive and inflammatory lesions of the cranial nerves and ocular muscles.

Pulmonary function test

The forced vital capacity may be monitored at intervals to detect increasing muscular weakness. Acutely, negative inspiratory force may be used to determine adequacy of ventilation; it is performed on those individuals with MG.

Management

Treatment is by medication and/or surgery. Medication consists mainly of acetylcholinesterase inhibitors to directly improve muscle function and immunosuppressant drugs to reduce the autoimmune process. Thymectomy is a surgical method to treat MG.

Medication

Neostigmine, chemical structure
 
Azathioprine, chemical structure
 
Acetylcholinesterase inhibitors can provide symptomatic benefit and may not fully remove a person's weakness from MG. While they might not fully remove all symptoms of MG, they still may allow a person the ability to perform normal daily activities. Usually, acetylcholinesterase inhibitors are started at a low dose and increased until the desired result is achieved. If taken 30 minutes before a meal, symptoms will be mild during eating, which is helpful for those who have difficulty swallowing due to their illness. Another medication used for MG, atropine, can reduce the muscarinic side effects of acetylcholinesterase inhibitors. Pyridostigmine is a relatively long-acting drug (when compared to other cholinergic agonists), with a half-life around four hours with relatively few side effects. Generally, it is discontinued in those who are being mechanically ventilated as it is known to increase the amount of salivary secretions. A few high-quality studies have directly compared cholinesterase inhibitors with other treatments (or placebo); their practical benefit may be such that it would be difficult to conduct studies in which they would be withheld from some people. The steroid prednisone might also be used to achieve a better result, but it can lead to the worsening of symptoms for 14 days and takes 6–8 weeks to achieve its maximal effectiveness. Due to the myriad symptoms that steroid treatments can cause, it is not the preferred method of treatment. Other immune suppressing medications may also be used including rituximab. About 10% of people with generalized MG are considered treatment-refractory.

Autologous hematopoietic stem cell transplantation (HSCT) is sometimes used in severe, treatment-refractory MG. Available data provide preliminary evidence that HSCT can be an effective therapeutic option in carefully selected cases.

Plasmapheresis and IVIG

If the myasthenia is serious (myasthenic crisis), plasmapheresis can be used to remove the putative antibodies from the circulation. Also, intravenous immunoglobulins (IVIGs) can be used to bind the circulating antibodies. Both of these treatments have relatively short-lived benefits, typically measured in weeks, and often are associated with high costs which make them prohibitive; they are generally reserved for when MG requires hospitalization.

Surgery

As thymomas are seen in 10% of all people with the MG, people are often given a chest X-ray and CT scan to evaluate their need for surgical removal of their thymus and any cancerous tissue that may be present. Even if surgery is performed to remove a thymoma, it generally does not lead to the remission of MG. Surgery in the case of MG involves the removal of the thymus, although in 2013 there was no clear indication of any benefit except in the presence of a thymoma. A 2016 randomized controlled trial, however, found some benefits.

Physical measures

Patients with MG should be educated regarding the fluctuating nature of their symptoms, including weakness and exercise-induced fatigue. Exercise participation should be encouraged with frequent rest. In people with generalized MG, some evidence indicates a partial home program including training in diaphragmatic breathing, pursed lip breathing, and interval-based muscle therapy may improve respiratory muscle strength, chest wall mobility, respiratory pattern, and respiratory endurance.

Medical imaging

In people with myasthenia gravis, older forms of iodinated contrast used for medical imaging have caused an increased risk of exacerbation of the disease, but modern forms have no immediate increased risk.

Prognosis

The prognosis of MG patients is generally good, as is quality of life, given very good treatment. In the early 1900s, the mortality associated with MG was 70%; now, that number is estimated to be around 3–5%, which is attributed to increased awareness and medications to manage symptoms. Monitoring of a person with MG is very important, as at least 20% of people diagnosed with it will experience a myasthenic crisis within two years of their diagnosis, requiring rapid medical intervention. Generally, the most disabling period of MG might be years after the initial diagnosis.

Epidemiology

Myasthenia gravis occurs in all ethnic groups and both sexes. It most commonly affects women under 40 and people from 50 to 70 years old of either sex, but it has been known to occur at any age. Younger patients rarely have thymoma. The prevalence in the United States is estimated at between 0.5 and 20.4 cases per 100,000, with an estimated 60,000 Americans affected. Within the United Kingdom, an estimated 15 cases of MG occur per 100,000 people.

History

The first to write about MG were Thomas Willis, Samuel Wilks, Erb, and Goldflam. The term "myasthenia gravis pseudo-paralytica" was proposed in 1895 by Jolly, a German physician. Mary Walker treated a person with MG with physostigmine in 1934. Simpson and Nastuck detailed the autoimmune nature of the condition.[12] In 1973, Patrick and Lindstrom used rabbits to show that immunization with purified muscle-like acetylcholine receptors caused the development of MG-like symptoms.

Research

Immunomodulating substances, such as drugs that prevent acetylcholine receptor modulation by the immune system, are currently being researched. Some research recently has been on anti-c5 inhibitors for treatment research as they are safe and used in the treatment of other diseases. Ephedrine seems to benefit some people more than other medications, but it has not been properly studied as of 2014. In the laboratory MG is mostly studied in model organisms, such as rodents. In addition, in 2015, scientists developed an in vitro functional all-human, neuromuscular junction assay from human embryonic stem cells and somatic-muscle stem cells. After the addition of pathogenic antibodies against the acetylcholine receptor and activation of the complement system, the neuromuscular co-culture shows symptoms such as weaker muscle contractions.

Operator (computer programming)

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Operator_(computer_programmin...