Search This Blog

Wednesday, June 26, 2019

Gamma ray

From Wikipedia, the free encyclopedia

Illustration of an emission of a gamma ray (γ) from an atomic nucleus
 
Gamma rays are emitted during nuclear fission in nuclear explosions.
 
NASA guide to electromagnetic spectrum showing overlap of frequency between X-rays and gamma rays
 
A gamma ray or gamma radiation (symbol γ or ), is a penetrating electromagnetic radiation arising from the radioactive decay of atomic nuclei. It consists of the shortest wavelength electromagnetic waves and so imparts the highest photon energy. Paul Villard, a French chemist and physicist, discovered gamma radiation in 1900 while studying radiation emitted by radium. In 1903, Ernest Rutherford named this radiation gamma rays based on their relatively strong penetration of matter; he had previously discovered two less penetrating types of decay radiation, which he named alpha rays and beta rays in ascending order of penetrating power.

Gamma rays from radioactive decay are in the energy range from a few kiloelectron volts (keV) to approximately 8 Megaelectronvolts (~8 MeV), corresponding to the typical energy levels in nuclei with reasonably long lifetimes. The energy spectrum of gamma rays can be used to identify the decaying radionuclides using gamma spectroscopy. Very-high-energy gamma rays in the 100–1000 teraelectron volt (TeV) range have been observed from sources such as the Cygnus X-3 microquasar.

Natural sources of gamma rays originating on Earth are mostly as a result of radioactive decay and secondary radiation from atmospheric interactions with cosmic ray particles. However, there are other rare natural sources, such as terrestrial gamma-ray flashes, which produce gamma rays from electron action upon the nucleus. Notable artificial sources of gamma rays include fission, such as that which occurs in nuclear reactors, and high energy physics experiments, such as neutral pion decay and nuclear fusion

Gamma rays and X-rays are both electromagnetic radiation, and since they overlap in the electromagnetic spectrum, the terminology varies between scientific disciplines. In some fields of physics, they are distinguished by their origin: Gamma rays are created by nuclear decay, while in the case of X-rays, the origin is outside the nucleus. In astrophysics, gamma rays are conventionally defined as having photon energies above 100 keV and are the subject of gamma ray astronomy, while radiation below 100 keV is classified as X-rays and is the subject of X-ray astronomy. This convention stems from the early man-made X-rays, which had energies only up to 100 keV, whereas many gamma rays could go to higher energies. A large fraction of astronomical gamma rays are screened by Earth's atmosphere. 

Gamma rays are ionizing radiation and are thus biologically hazardous. Due to their high penetration power, they can damage bone marrow and internal organs. Unlike alpha and beta rays, they pass easily through the body and thus pose a formidable radiation protection challenge, requiring shielding made from dense materials such as lead or concrete.

History of discovery

The first gamma ray source to be discovered was the radioactive decay process called gamma decay. In this type of decay, an excited nucleus emits a gamma ray almost immediately upon formation. Paul Villard, a French chemist and physicist, discovered gamma radiation in 1900, while studying radiation emitted from radium. Villard knew that his described radiation was more powerful than previously described types of rays from radium, which included beta rays, first noted as "radioactivity" by Henri Becquerel in 1896, and alpha rays, discovered as a less penetrating form of radiation by Rutherford, in 1899. However, Villard did not consider naming them as a different fundamental type. Later, in 1903, Villard's radiation was recognized as being of a type fundamentally different from previously named rays by Ernest Rutherford, who named Villard's rays "gamma rays" by analogy with the beta and alpha rays that Rutherford had differentiated in 1899. The "rays" emitted by radioactive elements were named in order of their power to penetrate various materials, using the first three letters of the Greek alphabet: alpha rays as the least penetrating, followed by beta rays, followed by gamma rays as the most penetrating. Rutherford also noted that gamma rays were not deflected (or at least, not easily deflected) by a magnetic field, another property making them unlike alpha and beta rays. 

Gamma rays were first thought to be particles with mass, like alpha and beta rays. Rutherford initially believed that they might be extremely fast beta particles, but their failure to be deflected by a magnetic field indicated that they had no charge. In 1914, gamma rays were observed to be reflected from crystal surfaces, proving that they were electromagnetic radiation. Rutherford and his co-worker Edward Andrade measured the wavelengths of gamma rays from radium, and found that they were similar to X-rays, but with shorter wavelengths and (thus) higher frequency. This was eventually recognized as giving them more energy per photon, as soon as the latter term became generally accepted. A gamma decay was then understood to usually emit a gamma photon.

Sources

Natural sources of gamma rays on Earth include gamma decay from naturally occurring radioisotopes such as potassium-40, and also as a secondary radiation from various atmospheric interactions with cosmic ray particles. Some rare terrestrial natural sources that produce gamma rays that are not of a nuclear origin, are lightning strikes and terrestrial gamma-ray flashes, which produce high energy emissions from natural high-energy voltages. Gamma rays are produced by a number of astronomical processes in which very high-energy electrons are produced. Such electrons produce secondary gamma rays by the mechanisms of bremsstrahlung, inverse Compton scattering and synchrotron radiation. A large fraction of such astronomical gamma rays are screened by Earth's atmosphere. Notable artificial sources of gamma rays include fission, such as occurs in nuclear reactors, as well as high energy physics experiments, such as neutral pion decay and nuclear fusion

A sample of gamma ray-emitting material that is used for irradiating or imaging is known as a gamma source. It is also called a radioactive source, isotope source, or radiation source, though these more general terms also apply to alpha- and beta-emitting devices. Gamma sources are usually sealed to prevent radioactive contamination, and transported in heavy shielding.

Radioactive decay (gamma decay)

Gamma rays are produced during gamma decay, which normally occurs after other forms of decay occur, such as alpha or beta decay. An excited nucleus can decay by the emission of an
α
or
β
particle. The daughter nucleus that results is usually left in an excited state. It can then decay to a lower energy state by emitting a gamma ray photon, in a process called gamma decay. 

The emission of a gamma ray from an excited nucleus typically requires only 10−12 seconds. Gamma decay may also follow nuclear reactions such as neutron capture, nuclear fission, or nuclear fusion. Gamma decay is also a mode of relaxation of many excited states of atomic nuclei following other types of radioactive decay, such as beta decay, so long as these states possess the necessary component of nuclear spin. When high-energy gamma rays, electrons, or protons bombard materials, the excited atoms emit characteristic "secondary" gamma rays, which are products of the creation of excited nuclear states in the bombarded atoms. Such transitions, a form of nuclear gamma fluorescence, form a topic in nuclear physics called gamma spectroscopy. Formation of fluorescent gamma rays are a rapid subtype of radioactive gamma decay.

In certain cases, the excited nuclear state that follows the emission of a beta particle or other type of excitation, may be more stable than average, and is termed a metastable excited state, if its decay takes (at least) 100 to 1000 times longer than the average 10−12 seconds. Such relatively long-lived excited nuclei are termed nuclear isomers, and their decays are termed isomeric transitions. Such nuclei have half-lifes that are more easily measurable, and rare nuclear isomers are able to stay in their excited state for minutes, hours, days, or occasionally far longer, before emitting a gamma ray. The process of isomeric transition is therefore similar to any gamma emission, but differs in that it involves the intermediate metastable excited state(s) of the nuclei. Metastable states are often characterized by high nuclear spin, requiring a change in spin of several units or more with gamma decay, instead of a single unit transition that occurs in only 10−12 seconds. The rate of gamma decay is also slowed when the energy of excitation of the nucleus is small.

An emitted gamma ray from any type of excited state may transfer its energy directly to any electrons, but most probably to one of the K shell electrons of the atom, causing it to be ejected from that atom, in a process generally termed the photoelectric effect (external gamma rays and ultraviolet rays may also cause this effect). The photoelectric effect should not be confused with the internal conversion process, in which a gamma ray photon is not produced as an intermediate particle (rather, a "virtual gamma ray" may be thought to mediate the process).

Decay schemes

Radioactive decay scheme of 60Co

Gamma emission spectrum of cobalt-60
 
One example of gamma ray production due to radionuclide decay is the decay scheme for Cobalt 60, as illustrated in the accompanying diagram. First, 60Co
decays to excited 60Ni
by beta decay emission of an electron of 0.31 MeV. Then the excited 60Ni
decays to the ground state (see nuclear shell model) by emitting gamma rays in succession of 1.17 MeV followed by 1.33 MeV. This path is followed 99.88% of the time:
60
27
Co
 
→  60
28
Ni*
 

e
 

ν
e
 

γ
 
1.17 MeV
60
28
Ni*
 
→  60
28
Ni
 
       
γ
 
1.33 MeV
Another example is the alpha decay of 241Am
to form 237Np
; which is followed by gamma emission. In some cases, the gamma emission spectrum of the daughter nucleus is quite simple, (e.g. 60Co
/60Ni
) while in other cases, such as with (241Am
/237Np
and 192Ir
/192Pt
), the gamma emission spectrum is complex, revealing that a series of nuclear energy levels exist.

Particle physics

Gamma rays are produced in many processes of particle physics. Typically, gamma rays are the products of neutral systems which decay through electromagnetic interactions (rather than a weak or strong interaction). For example, in an electron–positron annihilation, the usual products are two gamma ray photons. If the annihilating electron and positron are at rest, each of the resulting gamma rays has an energy of ~ 511 keV and frequency of ~ 1.24×1020 Hz. Similarly, a neutral pion most often decays into two photons. Many other hadrons and massive bosons also decay electromagnetically. High energy physics experiments, such as the Large Hadron Collider, accordingly employ substantial radiation shielding. Because subatomic particles mostly have far shorter wavelengths than atomic nuclei, particle physics gamma rays are generally several orders of magnitude more energetic than nuclear decay gamma rays. Since gamma rays are at the top of the electromagnetic spectrum in terms of energy, all extremely high-energy photons are gamma rays; for example, a photon having the Planck energy would be a gamma ray.

Gamma rays from sources other than radioactive decay

A few gamma rays in astronomy are known to arise from gamma decay (see discussion of SN1987A), but most do not. 

Photons from astrophysical sources that carry energy in the gamma radiation range are often explicitly called gamma-radiation. In addition to nuclear emissions, they are often produced by sub-atomic particle and particle-photon interactions. Those include electron-positron annihilation, neutral pion decay, bremsstrahlung, inverse Compton scattering, and synchrotron radiation.

Laboratory sources

In October 2017, scientists from various European universities proposed a means for sources of GeV photons using lasers as exciters through a controlled interplay between the cascade and anomalous radiative trapping.

Terrestrial thunderstorms

Thunderstorms can produce a brief pulse of gamma radiation called a terrestrial gamma-ray flash. These gamma rays are thought to be produced by high intensity static electric fields accelerating electrons, which then produce gamma rays by bremsstrahlung as they collide with and are slowed by atoms in the atmosphere. Gamma rays up to 100 MeV can be emitted by terrestrial thunderstorms, and were discovered by space-borne observatories. This raises the possibility of health risks to passengers and crew on aircraft flying in or near thunderclouds.

Solar flares

The most effusive solar flares emit across the entire EM spectrum, including γ-rays. The first confident observation occurred in 1972.

Cosmic rays

Extraterrestrial, high energy gamma rays include the gamma ray background produced when cosmic rays (either high speed electrons or protons) collide with ordinary matter, producing pair-production gamma rays at 511 keV. Alternatively, bremsstrahlung are produced at energies of tens of MeV or more when cosmic ray electrons interact with nuclei of sufficiently high atomic number (see gamma ray image of the Moon at the beginning of this article, for illustration).

Image of entire sky in 100 MeV or greater gamma rays as seen by the EGRET instrument aboard the CGRO spacecraft. Bright spots within the galactic plane are pulsars while those above and below the plane are thought to be quasars.

Pulsars and magnetars

The gamma ray sky (see illustration at right) is dominated by the more common and longer-term production of gamma rays that emanate from pulsars within the Milky Way. Sources from the rest of the sky are mostly quasars. Pulsars are thought to be neutron stars with magnetic fields that produce focused beams of radiation, and are far less energetic, more common, and much nearer sources (typically seen only in our own galaxy) than are quasars or the rarer gamma-ray burst sources of gamma rays. Pulsars have relatively long-lived magnetic fields that produce focused beams of relativistic speed charged particles, which emit gamma rays (bremsstrahlung) when those strike gas or dust in their nearby medium, and are decelerated. This is a similar mechanism to the production of high-energy photons in megavoltage radiation therapy machines (see bremsstrahlung). Inverse Compton scattering, in which charged particles (usually electrons) impart energy to low-energy photons boosting them to higher energy photons. Such impacts of photons on relativistic charged particle beams is another possible mechanism of gamma ray production. Neutron stars with a very high magnetic field (magnetars), thought to produce astronomical soft gamma repeaters, are another relatively long-lived star-powered source of gamma radiation.

Quasars and active galaxies

More powerful gamma rays from very distant quasars and closer active galaxies are thought to have a gamma ray production source similar to a particle accelerator. High energy electrons produced by the quasar, and subjected to inverse Compton scattering, synchrotron radiation, or bremsstrahlung, are the likely source of the gamma rays from those objects. It is thought that a supermassive black hole at the center of such galaxies provides the power source that intermittently destroys stars and focuses the resulting charged particles into beams that emerge from their rotational poles. When those beams interact with gas, dust, and lower energy photons they produce X-rays and gamma rays. These sources are known to fluctuate with durations of a few weeks, suggesting their relatively small size (less than a few light-weeks across). Such sources of gamma and X-rays are the most commonly visible high intensity sources outside our galaxy. They shine not in bursts (see illustration), but relatively continuously when viewed with gamma ray telescopes. The power of a typical quasar is about 1040 watts, a small fraction of which is gamma radiation. Much of the rest is emitted as electromagnetic waves of all frequencies, including radio waves. 

A hypernova. Artist's illustration showing the life of a massive star as nuclear fusion converts lighter elements into heavier ones. When fusion no longer generates enough pressure to counteract gravity, the star rapidly collapses to form a black hole. Theoretically, energy may be released during the collapse along the axis of rotation to form a long duration gamma-ray burst.

Gamma-ray bursts

The most intense sources of gamma rays, are also the most intense sources of any type of electromagnetic radiation presently known. They are the "long duration burst" sources of gamma rays in astronomy ("long" in this context, meaning a few tens of seconds), and they are rare compared with the sources discussed above. By contrast, "short" gamma-ray bursts of two seconds or less, which are not associated with supernovae, are thought to produce gamma rays during the collision of pairs of neutron stars, or a neutron star and a black hole.

The so-called long-duration gamma-ray bursts produce a total energy output of about 1044 joules (as much energy as our Sun will produce in its entire life-time) but in a period of only 20 to 40 seconds. Gamma rays are approximately 50% of the total energy output. The leading hypotheses for the mechanism of production of these highest-known intensity beams of radiation, are inverse Compton scattering and synchrotron radiation from high-energy charged particles. These processes occur as relativistic charged particles leave the region of the event horizon of a newly formed black hole created during supernova explosion. The beam of particles moving at relativistic speeds are focused for a few tens of seconds by the magnetic field of the exploding hypernova. The fusion explosion of the hypernova drives the energetics of the process. If the narrowly directed beam happens to be pointed toward the Earth, it shines at gamma ray frequencies with such intensity, that it can be detected even at distances of up to 10 billion light years, which is close to the edge of the visible universe.

Properties

Penetration of matter

Alpha radiation consists of helium nuclei and is readily stopped by a sheet of paper. Beta radiation, consisting of electrons or positrons, is stopped by an aluminum plate, but gamma radiation requires shielding by dense material such as lead or concrete.
 
Due to their penetrating nature, gamma rays require large amounts of shielding mass to reduce them to levels which are not harmful to living cells, in contrast to alpha particles, which can be stopped by paper or skin, and beta particles, which can be shielded by thin aluminium. Gamma rays are best absorbed by materials with high atomic numbers and high density, which contribute to the total stopping power. Because of this, a lead (high Z) shield is 20–30% better as a gamma shield than an equal mass of another low-Z shielding material, such as aluminium, concrete, water, or soil; lead's major advantage is not in lower weight, but rather its compactness due to its higher density. Protective clothing, goggles and respirators can protect from internal contact with or ingestion of alpha or beta emitting particles, but provide no protection from gamma radiation from external sources. 

The higher the energy of the gamma rays, the thicker the shielding made from the same shielding material is required. Materials for shielding gamma rays are typically measured by the thickness required to reduce the intensity of the gamma rays by one half (the half value layer or HVL). For example, gamma rays that require 1 cm (0.4″) of lead to reduce their intensity by 50% will also have their intensity reduced in half by 4.1 cm of granite rock, 6 cm (2½″) of concrete, or 9 cm (3½″) of packed soil. However, the mass of this much concrete or soil is only 20–30% greater than that of lead with the same absorption capability. Depleted uranium is used for shielding in portable gamma ray sources, but here the savings in weight over lead are larger, as portable sources' shape resembles a sphere to some extent, and the volume of a sphere is dependent on the cube of the radius; so a source with its radius cut in half will have its volume reduced by a factor of eight, which will more than compensate uranium's greater density (as well as reducing bulk). In a nuclear power plant, shielding can be provided by steel and concrete in the pressure and particle containment vessel, while water provides a radiation shielding of fuel rods during storage or transport into the reactor core. The loss of water or removal of a "hot" fuel assembly into the air would result in much higher radiation levels than when kept under water.

Matter interaction

The total absorption coefficient of aluminium (atomic number 13) for gamma rays, plotted versus gamma energy, and the contributions by the three effects. As is usual, the photoelectric effect is largest at low energies, Compton scattering dominates at intermediate energies, and pair production dominates at high energies.
 
The total absorption coefficient of lead (atomic number 82) for gamma rays, plotted versus gamma energy, and the contributions by the three effects. Here, the photoelectric effect dominates at low energy. Above 5 MeV, pair production starts to dominate.
 
When a gamma ray passes through matter, the probability for absorption is proportional to the thickness of the layer, the density of the material, and the absorption cross section of the material. The total absorption shows an exponential decrease of intensity with distance from the incident surface:
where x is the thickness of the material from the incident surface, μ= nσ is the absorption coefficient, measured in cm−1, n the number of atoms per cm3 of the material (atomic density) and σ the absorption cross section in cm2

As it passes through matter, gamma radiation ionizes via three processes: the photoelectric effect, Compton scattering, and pair production.
  • Photoelectric effect: This describes the case in which a gamma photon interacts with and transfers its energy to an atomic electron, causing the ejection of that electron from the atom. The kinetic energy of the resulting photoelectron is equal to the energy of the incident gamma photon minus the energy that originally bound the electron to the atom (binding energy). The photoelectric effect is the dominant energy transfer mechanism for X-ray and gamma ray photons with energies below 50 keV (thousand electron volts), but it is much less important at higher energies.
  • Compton scattering: This is an interaction in which an incident gamma photon loses enough energy to an atomic electron to cause its ejection, with the remainder of the original photon's energy emitted as a new, lower energy gamma photon whose emission direction is different from that of the incident gamma photon, hence the term "scattering". The probability of Compton scattering decreases with increasing photon energy. Compton scattering is thought to be the principal absorption mechanism for gamma rays in the intermediate energy range 100 keV to 10 MeV. Compton scattering is relatively independent of the atomic number of the absorbing material, which is why very dense materials like lead are only modestly better shields, on a per weight basis, than are less dense materials.
  • Pair production: This becomes possible with gamma energies exceeding 1.02 MeV, and becomes important as an absorption mechanism at energies over 5 MeV (see illustration at right, for lead). By interaction with the electric field of a nucleus, the energy of the incident photon is converted into the mass of an electron-positron pair. Any gamma energy in excess of the equivalent rest mass of the two particles (totaling at least 1.02 MeV) appears as the kinetic energy of the pair and in the recoil of the emitting nucleus. At the end of the positron's range, it combines with a free electron, and the two annihilate, and the entire mass of these two is then converted into two gamma photons of at least 0.51 MeV energy each (or higher according to the kinetic energy of the annihilated particles).
The secondary electrons (and/or positrons) produced in any of these three processes frequently have enough energy to produce much ionization themselves. 

Additionally, gamma rays, particularly high energy ones, can interact with atomic nuclei resulting in ejection of particles in photodisintegration, or in some cases, even nuclear fission (photofission).

Light interaction

High-energy (from 80 GeV to ~10 TeV) gamma rays arriving from far-distant quasars are used to estimate the extragalactic background light in the universe: The highest-energy rays interact more readily with the background light photons and thus the density of the background light may be estimated by analyzing the incoming gamma ray spectra.

Gamma spectroscopy

Gamma spectroscopy is the study of the energetic transitions in atomic nuclei, which are generally associated with the absorption or emission of gamma rays. As in optical spectroscopy (see Franck–Condon effect) the absorption of gamma rays by a nucleus is especially likely (i.e., peaks in a "resonance") when the energy of the gamma ray is the same as that of an energy transition in the nucleus. In the case of gamma rays, such a resonance is seen in the technique of Mössbauer spectroscopy. In the Mössbauer effect the narrow resonance absorption for nuclear gamma absorption can be successfully attained by physically immobilizing atomic nuclei in a crystal. The immobilization of nuclei at both ends of a gamma resonance interaction is required so that no gamma energy is lost to the kinetic energy of recoiling nuclei at either the emitting or absorbing end of a gamma transition. Such loss of energy causes gamma ray resonance absorption to fail. However, when emitted gamma rays carry essentially all of the energy of the atomic nuclear de-excitation that produces them, this energy is also sufficient to excite the same energy state in a second immobilized nucleus of the same type.

Uses

Gamma-ray image of a truck with two stowaways taken with a VACIS (vehicle and container imaging system)
 
Gamma rays provide information about some of the most energetic phenomena in the universe; however, they are largely absorbed by the Earth's atmosphere. Instruments aboard high-altitude balloons and satellites missions, such as the Fermi Gamma-ray Space Telescope, provide our only view of the universe in gamma rays. 

Gamma-induced molecular changes can also be used to alter the properties of semi-precious stones, and is often used to change white topaz into blue topaz

Non-contact industrial sensors commonly use sources of gamma radiation in refining, mining, chemicals, food, soaps and detergents, and pulp and paper industries, for the measurement of levels, density, and thicknesses. Typically, these use Co-60 or Cs-137 isotopes as the radiation source. 

In the US, gamma ray detectors are beginning to be used as part of the Container Security Initiative (CSI). These machines are advertised to be able to scan 30 containers per hour. 

Gamma radiation is often used to kill living organisms, in a process called irradiation. Applications of this include the sterilization of medical equipment (as an alternative to autoclaves or chemical means), the removal of decay-causing bacteria from many foods and the prevention of the sprouting of fruit and vegetables to maintain freshness and flavor. 

Despite their cancer-causing properties, gamma rays are also used to treat some types of cancer, since the rays also kill cancer cells. In the procedure called gamma-knife surgery, multiple concentrated beams of gamma rays are directed to the growth in order to kill the cancerous cells. The beams are aimed from different angles to concentrate the radiation on the growth while minimizing damage to surrounding tissues. 

Gamma rays are also used for diagnostic purposes in nuclear medicine in imaging techniques. A number of different gamma-emitting radioisotopes are used. For example, in a PET scan a radiolabeled sugar called fludeoxyglucose emits positrons that are annihilated by electrons, producing pairs of gamma rays that highlight cancer as the cancer often has a higher metabolic rate than the surrounding tissues. The most common gamma emitter used in medical applications is the nuclear isomer technetium-99m which emits gamma rays in the same energy range as diagnostic X-rays. When this radionuclide tracer is administered to a patient, a gamma camera can be used to form an image of the radioisotope's distribution by detecting the gamma radiation emitted (see also SPECT). Depending on which molecule has been labeled with the tracer, such techniques can be employed to diagnose a wide range of conditions (for example, the spread of cancer to the bones via bone scan).

Health effects

Gamma rays cause damage at a cellular level and are penetrating, causing diffuse damage throughout the body. However, they are less ionising than alpha or beta particles, which are less penetrating. 

Low levels of gamma rays cause a stochastic health risk, which for radiation dose assessment is defined as the probability of cancer induction and genetic damage. High doses produce deterministic effects, which is the severity of acute tissue damage that is certain to happen. These effects are compared to the physical quantity absorbed dose measured by the unit gray (Gy).

Body response

When gamma radiation breaks DNA molecules, a cell may be able to repair the damaged genetic material, within limits. However, a study of Rothkamm and Lobrich has shown that this repair process works well after high-dose exposure but is much slower in the case of a low-dose exposure.

Risk assessment

The natural outdoor exposure in the United Kingdom ranges from 0.1 to 0.5 µSv/h with significant increase around known nuclear and contaminated sites. Natural exposure to gamma rays is about 1 to 2 mSv per year, and the average total amount of radiation received in one year per inhabitant in the USA is 3.6 mSv. There is a small increase in the dose, due to naturally occurring gamma radiation, around small particles of high atomic number materials in the human body caused by the photoelectric effect.

By comparison, the radiation dose from chest radiography (about 0.06 mSv) is a fraction of the annual naturally occurring background radiation dose. A chest CT delivers 5 to 8 mSv. A whole-body PET/CT scan can deliver 14 to 32 mSv depending on the protocol. The dose from fluoroscopy of the stomach is much higher, approximately 50 mSv (14 times the annual background). 

An acute full-body equivalent single exposure dose of 1 Sv (1000 mSv) causes slight blood changes, but 2.0–3.5 Sv (2.0–3.5 Gy) causes very severe syndrome of nausea, hair loss, and hemorrhaging, and will cause death in a sizable number of cases—-about 10% to 35% without medical treatment. A dose of 5 Sv (5 Gy) is considered approximately the LD50 (lethal dose for 50% of exposed population) for an acute exposure to radiation even with standard medical treatment. A dose higher than 5 Sv (5 Gy) brings an increasing chance of death above 50%. Above 7.5–10 Sv (7.5–10 Gy) to the entire body, even extraordinary treatment, such as bone-marrow transplants, will not prevent the death of the individual exposed. (Doses much larger than this may, however, be delivered to selected parts of the body in the course of radiation therapy.)

For low-dose exposure, for example among nuclear workers, who receive an average yearly radiation dose of 19 mSv, the risk of dying from cancer (excluding leukemia) increases by 2 percent. For a dose of 100 mSv, the risk increase is 10 percent. By comparison, risk of dying from cancer was increased by 32 percent for the survivors of the atomic bombing of Hiroshima and Nagasaki.

Units of measurement and exposure

The following table shows radiation quantities in SI and non-SI units: 

Ionising radiation related quantities
Quantity Unit Symbol Derivation Year SI equivalence
Activity (A) becquerel Bq s−1 1974 SI unit
curie Ci 3.7 × 1010 s−1 1953 3.7×1010 Bq
rutherford Rd 106 s−1 1946 1,000,000 Bq
Exposure (X) coulomb per kilogram C/kg C⋅kg−1 of air 1974 SI unit
röntgen R esu / 0.001293 g of air 1928 2.58 × 10−4 C/kg
Absorbed dose (D) gray Gy J⋅kg−1 1974 SI unit
erg per gram erg/g erg⋅g−1 1950 1.0 × 10−4 Gy
rad rad 100 erg⋅g−1 1953 0.010 Gy
Dose equivalent (H) sievert Sv J⋅kg−1 × WR 1977 SI unit
röntgen equivalent man rem 100 erg⋅g−1 1971 0.010 Sv

The measure of the ionizing effect of gamma and X-rays in dry air is called the exposure, for which a legacy unit, the röntgen was used from 1928. This has been replaced by kerma, now mainly used for instrument calibration purposes but not for received dose effect. The effect of gamma and other ionizing radiation on living tissue is more closely related to the amount of energy deposited in tissue rather than the ionisation of air, and replacement radiometric units and quantities for radiation protection have been defined and developed from 1953 onwards. These are:
  • The gray (Gy), is the SI unit of absorbed dose, which is the amount of radiation energy deposited in the irradiated material. For gamma radiation this is numerically equivalent to equivalent dose measured by the sievert, which indicates the stochastic biological effect of low levels of radiation on human tissue. The radiation weighting conversion factor from absorbed dose to equivalent dose is 1 for gamma, whereas alpha particles have a factor of 20, reflecting their greater ionising effect on tissue.
  • The rad is the deprecated CGS unit for absorbed dose and the rem is the deprecated CGS unit of equivalent dose, used mainly in the USA.

Distinction from X-rays

In practice, gamma ray energies overlap with the range of X-rays, especially in the higher-frequency region referred to as "hard" X-rays. This depiction follows the older convention of distinguishing by wavelength.
 
The conventional distinction between X-rays and gamma rays has changed over time. Originally, the electromagnetic radiation emitted by X-ray tubes almost invariably had a longer wavelength than the radiation (gamma rays) emitted by radioactive nuclei. Older literature distinguished between X- and gamma radiation on the basis of wavelength, with radiation shorter than some arbitrary wavelength, such as 10−11 m, defined as gamma rays. Since the energy of photons is proportional to their frequency and inversely proportional to wavelength, this past distinction between X-rays and gamma rays can also be thought of in terms of its energy, with gamma rays considered to be higher energy electromagnetic radiation than are X-rays. 

However, since current artificial sources are now able to duplicate any electromagnetic radiation that originates in the nucleus, as well as far higher energies, the wavelengths characteristic of radioactive gamma ray sources vs. other types now completely overlap. Thus, gamma rays are now usually distinguished by their origin: X-rays are emitted by definition by electrons outside the nucleus, while gamma rays are emitted by the nucleus. Exceptions to this convention occur in astronomy, where gamma decay is seen in the afterglow of certain supernovas, but radiation from high energy processes known to involve other radiation sources than radioactive decay is still classed as gamma radiation. 

The Moon as seen by the Compton Gamma Ray Observatory, in gamma rays of greater than 20 MeV. These are produced by cosmic ray bombardment of its surface. The Sun, which has no similar surface of high atomic number to act as target for cosmic rays, cannot usually be seen at all at these energies, which are too high to emerge from primary nuclear reactions, such as solar nuclear fusion (though occasionally the Sun produces gamma rays by cyclotron-type mechanisms, during solar flares). Gamma rays typically have higher energy than X-rays.
 
For example, modern high-energy X-rays produced by linear accelerators for megavoltage treatment in cancer often have higher energy (4 to 25 MeV) than do most classical gamma rays produced by nuclear gamma decay. One of the most common gamma ray emitting isotopes used in diagnostic nuclear medicine, technetium-99m, produces gamma radiation of the same energy (140 keV) as that produced by diagnostic X-ray machines, but of significantly lower energy than therapeutic photons from linear particle accelerators. In the medical community today, the convention that radiation produced by nuclear decay is the only type referred to as "gamma" radiation is still respected. 

Due to this broad overlap in energy ranges, in physics the two types of electromagnetic radiation are now often defined by their origin: X-rays are emitted by electrons (either in orbitals outside of the nucleus, or while being accelerated to produce bremsstrahlung-type radiation), while gamma rays are emitted by the nucleus or by means of other particle decays or annihilation events. There is no lower limit to the energy of photons produced by nuclear reactions, and thus ultraviolet or lower energy photons produced by these processes would also be defined as "gamma rays". The only naming-convention that is still universally respected is the rule that electromagnetic radiation that is known to be of atomic nuclear origin is always referred to as "gamma rays", and never as X-rays. However, in physics and astronomy, the converse convention (that all gamma rays are considered to be of nuclear origin) is frequently violated. 

In astronomy, higher energy gamma and X-rays are defined by energy, since the processes that produce them may be uncertain and photon energy, not origin, determines the required astronomical detectors needed. High-energy photons occur in nature that are known to be produced by processes other than nuclear decay but are still referred to as gamma radiation. An example is "gamma rays" from lightning discharges at 10 to 20 MeV, and known to be produced by the bremsstrahlung mechanism. 

Another example is gamma-ray bursts, now known to be produced from processes too powerful to involve simple collections of atoms undergoing radioactive decay. This is part and parcel of the general realization that many gamma rays produced in astronomical processes result not from radioactive decay or particle annihilation, but rather in non-radioactive processes similar to X-rays.[clarification needed] Although the gamma rays of astronomy often come from non-radioactive events, a few gamma rays in astronomy are specifically known to originate from gamma decay of nuclei (as demonstrated by their spectra and emission half life). A classic example is that of supernova SN 1987A, which emits an "afterglow" of gamma-ray photons from the decay of newly made radioactive nickel-56 and cobalt-56. Most gamma rays in astronomy, however, arise by other mechanisms.

United States Department of Health and Human Services

From Wikipedia, the free encyclopedia

United States Department of Health & Human Services
Seal of the United States Department of Health and Human Services.svg
Seal of the U.S. Department of Health & Human Services
Flag of the United States Department of Health and Human Services.svg
Flag of the U.S. Department of Health & Human Services
DHHS2 by Matthew Bisanz.JPG
Hubert H. Humphrey Building, Department Headquarters
Department overview
FormedApril 11, 1953; 66 years ago (as Department of Health, Education, and Welfare)
May 4, 1980 (as United States Department of Health & Human Services)
Preceding agencies
JurisdictionFederal government of the United States
HeadquartersHubert H. Humphrey Building
Washington, D.C., U.S.
Employees79,540 (2015)
Department executives
Websitewww.hhs.gov

The United States Department of Health & Human Services (HHS), also known as the Health Department, is a cabinet-level department of the U.S. federal government with the goal of protecting the health of all Americans and providing essential human services. Its motto is "Improving the health, safety, and well-being of America". Before the separate federal Department of Education was created in 1979, it was called the Department of Health, Education, and Welfare (HEW).

HHS is administered by the Secretary of Health and Human Services, who is appointed by the President with the advice and consent of the Senate. The United States Public Health Service (PHS) is the main division of the HHS and is led by the Assistant Secretary for Health. The current Secretary, Alex Azar, assumed office on January 29, 2018, upon his appointment by President Trump and confirmation by the Senate.

The United States Public Health Service Commissioned Corps, the uniformed service of the PHS, is led by the Surgeon General who is responsible for addressing matters concerning public health as authorized by the Secretary or by the Assistant Secretary of Health in addition to his or her primary mission of administering the Commissioned Corps.

History

Federal Security Agency

The Federal Security Agency (FSA) was established on July 1, 1939, under the Reorganization Act of 1939, P.L. 76-19. The objective was to bring together in one agency all federal programs in the fields of health, education, and social security. The first Federal Security Administrator was Paul V. McNutt. The new agency originally consisted of the following major components: (1) Office of the Administrator, (2) Public Health Service (PHS), (3) Office of Education, (4) Civilian Conservation Corps, and (5) Social Security Board. 

By 1953, the Federal Security Agency's programs in health, education, and social security had grown to such importance that its annual budget exceeded the combined budgets of the Departments of Commerce, Justice, Labor and Interior and affected the lives of millions of people. Consequently, in accordance with the Reorganization Act of 1949, President Eisenhower submitted to the Congress on March 12, 1953, Reorganization Plan No. 1 of 1953, which called for the dissolution of the Federal Security Agency and elevation of the agency to Cabinet status as the Department of Health, Education, and Welfare. The plan was approved April 1, 1953, and became effective on April 11, 1953.

Unlike statutes authorizing the creation of other executive departments, the contents of Reorganization Plan No. 1 of 1953 were never properly codified within the United States Code, although Congress did codify a later statute ratifying the Plan. Today, the Plan is included as an appendix to Title 5 of the United States Code. The result is that HHS is the only executive department whose statutory foundation today rests on a confusing combination of several codified and uncodified statutes.

Department of Health, Education, and Welfare

Seal of the U.S. Department of Health, Education, and Welfare
Flag of the U.S. Department of Health, Education, and Welfare
The seal and flag of the U.S. Department of Health, Education, and Welfare
 
The Department of Health, Education, and Welfare (HEW) was created on April 11, 1953, when Reorganization Plan No. 1 of 1953 became effective. HEW thus became the first new Cabinet-level department since the Department of Labor was created in 1913. The Reorganization Plan abolished the FSA and transferred all of its functions to the Secretary of HEW and all components of the Agency to the Department. The first Secretary of HEW was Oveta Culp Hobby, a native of Texas, who had served as Commander of the Women's Army Corps in World War II and was editor and publisher of the Houston Post. Sworn in on April 11, 1953, as Secretary, she had been FSA Administrator since January 21, 1953. 

The six major program-operating components of the new Department were the Public Health Service, the Office of Education, the Food and Drug Administration, the Social Security Administration, the Office of Vocational Rehabilitation, and St. Elizabeth's Hospital. The Department was also responsible for three federally aided corporations: Howard University, the American Printing House for the Blind, and the Columbia Institution for the Deaf (Gallaudet College since 1954).

Department of Health & Human Services

The Department of Health, Education, and Welfare was renamed the Department of Health & Human Services (HHS) in 1979, when its education functions were transferred to the newly created United States Department of Education under the Department of Education Organization Act. HHS was left in charge of the Social Security Administration, agencies constituting the Public Health Service, and Family Support Administration. 

In 1995, the Social Security Administration was removed from the Department of Health & Human Services, and established as an independent agency of the executive branch of the United States Government. 

The 2010 United States federal budget established a reserve fund of more than $630 billion over 10 years to finance fundamental reform of the health care system.

Organization

The Department of Health & Human Services is led by the United States Secretary of Health and Human Services, a member of the United States Cabinet appointed by the President of the United States with the consent of the United States Senate. The Secretary is assisted in managing the Department by the Deputy Secretary of Health and Human Services, who is also appointed by the President. The Secretary and Deputy Secretary are further assisted by seven Assistant Secretaries, who serve as top Departmental administrators.

As of Jan. 20, 2018, this is the top level of the organizational chart. HHS provides further organizational detail on its website.

Several agencies within HHS are components of the USPHS or Public Health Service (PHS), as noted below.

Office of Inspector General

The Office of the Inspector General (OIG) investigates criminal activity for HHS. The special agents who work for OIG have the same title series "1811", training and authority as other federal criminal investigators, such as the FBI, ATF, DEA and Secret Service. However, OIG Special Agents have special skills in investigating white collar crime related to Medicare and Medicaid fraud and abuse. Organized crime has dominated the criminal activity relative to this type of fraud. 

HHS-OIG investigates tens of millions of dollars in Medicare fraud each year. In addition, OIG will continue its coverage of all 50 states and the District of Columbia by its multi-agency task forces (PSOC Task Forces) that identify, investigate, and prosecute individuals who willfully avoid payment of their child support obligations under the Child Support Recovery Act. 

HHS-OIG agents also provide protective services to the Secretary of HHS, and other department executives as necessary. 

In 2002, the department released Healthy People 2010, a national strategic initiative for improving the health of Americans. 

With the passage of the Fraud Enforcement and Recovery Act of 2009, and the Affordable Care Act of 2010, the Office of the Inspector General has taken an emboldened stance against healthcare related non-compliance, most notably for violations of Stark Law and the Anti-Kickback Statute.

In 2015, the OIG issued a fraud alert as a warning to hospitals and healthcare systems to monitor and comply with their physician compensation arrangements.

Recent years have seen dramatic increases in both the number and the amounts of Stark Law violation settlements, prompting healthcare experts to identify a need for automated solutions that manage physician arrangements by centralizing necessary information with regard to physician-hospital integration. Contract management software companies such as Meditract provide options for health systems to organize and store physician contracts. Ludi Inc introduced DocTime Log®, an SaaS solution that specifically addresses this growing concern, automating physician time logging in compliance with contract terms to eliminate Stark Law and Anti-Kickback Statute violations.

Former operating divisions and agencies

Relationship with state and local health departments

There are three tiers of health departments, the federal health department, state health department and local health department. In relation with state and local government, the federal government provides states with funding to ensure that states are able to retain current programs and are able to implement new programs. The coordination between all three health departments is critical to ensure the programs being implemented are well structured and suited to the corresponding level of health department. The health department at state level needs to safeguard good relations with legislators as well as governors in order to acquire legal and financial aid to guarantee the development and enhancements of the programs. Assemblies are set up to guide the relationships between state and local health departments. The state sets up the regulations and health policies whereas the local health departments are the ones implementing the health policies and services.

As of 2018, there are ten regional offices that have separated the states in groups of four to eight. These offices directly work with the state departments, local governments, and tribal councils. The directors from each regional office are appointed directly by the active president. The follow is a list of who runs each regional office: 

Region 1: John McGough Region 6: Mervin Turner
Region 2: Dennis González Region 7: Jeff Kahrs
Region 3: Matt Baker Region 8: Brian Shiozawa
Region 4: Renee Ellmers Region 9: Unknown
Region 5: Douglas O' Brien Region 10: John R. Graham

Budget and finances

The Department of Health & Human Services was authorized a budget for fiscal year 2015 of $1.020 trillion. The budget authorization is broken down as follows:

Program Funding (in billions)
Management and Finance
Departmental Management $1.4
Public Health and Social Services Emergency Fund $1.4
Operating Divisions
Food and Drug Administration $2.6
Health Resources and Services Administration $10.4
Indian Health Service $4.8
Centers for Disease Control and Prevention $6.7
National Institutes of Health $30.4
Substance Abuse and Mental Health Services Administration $3.4
Agency for Healthcare Research and Quality $0.4
Centers for Medicare and Medicaid Services $906.8
Administration for Children and Families $51.3
Administration for Community Living $2.1
TOTAL 1,020.3

Programs

The Department of Health & Human Services' administers 115 programs across its 11 operating divisions. The United States Department of Health & Human Services (HHS) aims to "protect the health of all Americans and provide essential human services, especially for those who are least able to help themselves." These federal programs consist of social service programs, civil rights and healthcare privacy programs, disaster preparedness programs, and health related research. HHS offers a variety of social service programs geared toward persons with low income, disabilities, military families, and senior citizens. Healthcare rights are defined under HHS in the Health Insurance Portability and Accountability Act (HIPAA) which protect patient's privacy in regards to medical information, protects workers health insurance when unemployed, and sets guidelines surrounding some health insurance. HHS collaborates with the Office of the Assistant Secretary for Preparedness and Response and Office of Emergency Management to prepare and respond to health emergencies. A broad array of health related research is supported or completed under the HHS; secondarily under HHS, the Health Resources & Service Administration houses data warehouses and makes health data available surrounding a multitude of topics. HHS also has vast offering of health related resources and tools to help educate the public on health policies and pertinent population health information. Some examples of available resources include disease prevention, wellness, health insurance information, as well as links to healthcare providers and facilities, meaningful health related materials, public health and safety information.

Some highlights include:
  • Health and social science research
  • Preventing disease, including immunization services
  • Assuring food and drug safety
  • Medicare (health insurance for elderly and disabled Americans) and Medicaid (health insurance for low-income people)
  • Health information technology
  • Financial assistance and services for low-income families
  • Improving maternal and infant health, including a Nurse Home Visitation to support first-time mothers
  • Head Start (pre-school education and services)
  • Faith-based and community initiatives
  • Preventing child abuse and domestic violence
  • Substance abuse treatment and prevention
  • Services for older Americans, including home-delivered meals
  • Comprehensive health services for Native Americans
  • Assets for Independence
  • Medical preparedness for emergencies, including potential terrorism
  • Child support enforcement

The Health Insurance Portability and Accountability Act (HIPAA)

This program is to ensure the act and accountability of medical professionals to respect and carry-out basic human health rights. In the United States, the government feels that it is essential for the American people to understand their civil duty and rights to all of their medical information. That includes: health insurance policies or medical records from every doctor or emergency visit in one's life. Through Health & Human services one is able to file a complaint that their HIPAA rights have been violated or a consultant that will be able to decide if their rights were violated.

Social Services

This branch has everything to do with the social justice, wellness, and care of all people throughout the United States. This includes but is not limited to people who need government assistance, foster care, unaccompanied alien children, daycares (headstart included), adoption, senior citizens, and disability programs. Social services is one of it not the largest branch of programs underneath it that has a wide variety throughout the United States at a state and local level.

Prevention and Wellness

The prevention and wellness program's main idea is to give the American people the ability to live the healthiest and best lifestyle physically that they can. They are the ones who deal with vaccines and immunizations, which fight from common diseases to deadly ones. The nutrition & fitness program that are the basics of healthy eating and regular exercise. Health screenings & family health history which are crucial in the knowledge of each individual's health and body. A severely important one especially in today's society is mental health & substance abuse in where they help people with mental illness and drug abuse. Lastly, they help with environmental health where people are researching and studying how our environments both physical and metaphorically have a short and long term effect on our health and wellness.

Strengthening Communities Fund

In June 2010, the Department of Health & Human Services created the Strengthening Communities Fund as part of the American Recovery and Reinvestment Act. The fund was appropriated $50 million to be given as grants to organizations in the United States who were engaged in Capacity Building programs. The grants were given to two different types of capacity builders:
  • State, Local and Tribal governments engaged in capacity building: grants will go to state local and tribal governments to equip them with the capacity to more effectively partner with faith-based or non-faith based nonprofit organizations. Capacity building in this program will involve education and outreach that catalyzes more involvement of nonprofit organizations in economic recovery and building up nonprofit organization's abilities to tackle economic problems. State, Local and Tribal governments can receive up to $250,000 in two year grants
  • Nonprofit Social Service Providers engaged in capacity building: they will make grants available to nonprofit organizations who can assist other nonprofit organizations in organizational development, program development, leadership, and evaluations. Nonprofits can receive up to $1 million in two year grants

Biodefense

HHS plays a role in protecting the United States against bioterrorism events. In 2018, HHS released a new National Biodefense Strategy required by passage of the 2016 Biodefense Strategy Act. The Biodefense Strategy required implementation of a biodefense strategy after a 2015 Blue Ribbon Study Panel on Biodefense report found that the 2009 National Strategy for Countering Biological Threats was inadequate in protecting the U.S. The strategy adopted these five central recommendations: creating a single centralized approach to biodefense; implementing an interdisciplinary approach to biodefense that brings together policy makers, scientists, health experts, and academics; drawing up a comprehensive strategy to address human, plant, and animal health; creating a defense against global and domestic biological threats; and creating a proactive policy to combat the misuse and abuse of advanced biotechnology.

HHS also runs the Biodefense Steering Committee, which works with other federal agencies including the Department of State, Department of Defense (DOD), U.S. Food and Drug Administration, Department of Homeland Security (DHS), and the Environmental Protection Agency. HHS specifically oversees Project BioShield, established in 2003 and operating since 2004, and its development and production of genetically based bio-weapons and vaccines. HHS together with DHS are authorized under the Homeland Security Act of 2002 to deploy the weapons and vaccines produced by Project BioShield on the US general public under martial law during "emerging terrorist threats" or public health emergencies. Both HHS and DHS have similar authorities through state-based legislation adopted from Model State Emergency Health Powers Act provisions.

Criticisms and controversies

In 2016, a published US Senate report revealed that several dozen unaccompanied children from Central America, some as young as fourteen years old, were released from custody to traffickers where they were sexually assaulted, starved or forced to work for little or no pay. The HHS sub agency Office of Refugee Resettlement (ORR) released approximately 90,000 unaccompanied children during 2013–2015 but did not track their whereabouts or properly screen families accepting these children.

To prevent similar episodes, the Homeland Security and Health & Human Services Departments signed a memorandum of understanding in 2016, and agreed to establish joint procedures within one year for dealing with unaccompanied migrant children. As of 2018 they have failed to do so. Between October and December 2017, officials from ORR tried to contact 7,635 children and their sponsors. From these calls, officials learned that 6,075 children remained with their sponsors. Twenty-eight had run away, five had been removed from the United States and fifty-two had relocated to live with a non sponsor. However, officials have lost track of 1,475 children. ORR claims it is not legally liable for the safety and status of the children once released from custody.

DHS claims the migrating children are "terror threats", despite all evidence to the contrary. After falsely categorizing people as terror threats, a range of unconstitutional activities can be undertaken by HHS and DHS.

Beyond trafficking and disappearing migrating children, HHS is evidenced to be actively coercing and forcing bio-substances such as antipsychotics on migrating children without consent, and under questionable medical supervision. Medical professionals state that wrongly prescribed antipsychotics are especially dangerous for children, and can cause permanent psychological damage. Medical professionals also state DHS and HHS incarceration and separation policies are likewise causing irreparable mental harm to the children.

Children are also dying in HHS custody. The forced drugging, deaths, and disappearances of migrating Mexican and Central American children might be related to DHS falsely labeling them and their families as 'terror threats' before HHS manages their incarcerations. Despite a federal court order, the DHS separation practices mandated by the Trump administration's "zero-tolerance" policy have not been halted, and HHS has not stopped forcing drugs on the children it incarcerates.

Freedom of Information Act processing performance

In the latest Center for Effective Government analysis of 15 federal agencies which receive the most Freedom of Information Act (United States) (FOIA) requests published in 2015 (using 2012 and 2013 data, the most recent years available), the DHHS ranked second to last, earning an F by scoring 57 out of a possible 100 points, largely due to a low score on its particular disclosure rules. It had deteriorated from a D- in 2013.

Education

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Education Education is the transmissio...