Search This Blog

Sunday, December 29, 2019

Desert

From Wikipedia, the free encyclopedia
https://en.wikipedia.org/wiki/Desert
 
view of high desert through a mountain crevasse
Valle de la Luna ("Valley of the Moon") in the Atacama Desert of Chile, the world's driest non-polar desert
 
see caption
Sand dunes in the Rub' al Khali ("Empty quarter") in the United Arab Emirates
 
A desert is a barren area of landscape where little precipitation occurs and, consequently, living conditions are hostile for plant and animal life. The lack of vegetation exposes the unprotected surface of the ground to the processes of denudation. About one-third of the land surface of the world is arid or semi-arid. This includes much of the polar regions where little precipitation occurs and which are sometimes called polar deserts or "cold deserts". Deserts can be classified by the amount of precipitation that falls, by the temperature that prevails, by the causes of desertification or by their geographical location. 

Deserts are formed by weathering processes as large variations in temperature between day and night put strains on the rocks which consequently break in pieces. Although rain seldom occurs in deserts, there are occasional downpours that can result in flash floods. Rain falling on hot rocks can cause them to shatter and the resulting fragments and rubble strewn over the desert floor are further eroded by the wind. This picks up particles of sand and dust and wafts them aloft in sand or dust storms. Wind-blown sand grains striking any solid object in their path can abrade the surface. Rocks are smoothed down, and the wind sorts sand into uniform deposits. The grains end up as level sheets of sand or are piled high in billowing sand dunes. Other deserts are flat, stony plains where all the fine material has been blown away and the surface consists of a mosaic of smooth stones. These areas are known as desert pavements and little further erosion takes place. Other desert features include rock outcrops, exposed bedrock and clays once deposited by flowing water. Temporary lakes may form and salt pans may be left when waters evaporate. There may be underground sources of water in the form of springs and seepages from aquifers. Where these are found, oases can occur.

Plants and animals living in the desert need special adaptations to survive in the harsh environment. Plants tend to be tough and wiry with small or no leaves, water-resistant cuticles and often spines to deter herbivory. Some annual plants germinate, bloom and die in the course of a few weeks after rainfall while other long-lived plants survive for years and have deep root systems able to tap underground moisture. Animals need to keep cool and find enough food and water to survive. Many are nocturnal and stay in the shade or underground during the heat of the day. They tend to be efficient at conserving water, extracting most of their needs from their food and concentrating their urine. Some animals remain in a state of dormancy for long periods, ready to become active again during the rare rainfall. They then reproduce rapidly while conditions are favorable before returning to dormancy. 

People have struggled to live in deserts and the surrounding semi-arid lands for millennia. Nomads have moved their flocks and herds to wherever grazing is available and oases have provided opportunities for a more settled way of life. The cultivation of semi-arid regions encourages erosion of soil and is one of the causes of increased desertification. Desert farming is possible with the aid of irrigation, and the Imperial Valley in California provides an example of how previously barren land can be made productive by the import of water from an outside source. Many trade routes have been forged across deserts, especially across the Sahara Desert, and traditionally were used by caravans of camels carrying salt, gold, ivory and other goods. Large numbers of slaves were also taken northwards across the Sahara. Some mineral extraction also takes place in deserts, and the uninterrupted sunlight gives potential for the capture of large quantities of solar energy

Etymology

English desert and its Romance cognates (including Italian and Portuguese deserto, French désert and Spanish desierto) all come from the ecclesiastical Latin dēsertum (originally "an abandoned place"), a participle of dēserere, "to abandon". The correlation between aridity and sparse population is complex and dynamic, varying by culture, era, and technologies; thus the use of the word desert can cause confusion. In English before the 20th century, desert was often used in the sense of "unpopulated area", without specific reference to aridity; but today the word is most often used in its climate-science sense (an area of low precipitation). Phrases such as "desert island" and "Great American Desert", or Shakespeare's "deserts of Bohemia" (The Winter's Tale) in previous centuries did not necessarily imply sand or aridity; their focus was the sparse population.

Physical geography

A desert is a region of land that is very dry because it receives low amounts of precipitation (usually in the form of rain, but it may be snow, mist or fog), often has little coverage by plants, and in which streams dry up unless they are supplied by water from outside the area. Deserts generally receive less than 250 mm (10 in) of precipitation each year. The potential evapotranspiration may be large but (in the absence of available water) the actual evapotranspiration may be close to zero. Semideserts are regions which receive between 250 and 500 mm (10 and 20 in) and when clad in grass, these are known as steppes.

Classification

The Sahara is the largest hot desert in the world
 
Deserts have been defined and classified in a number of ways, generally combining total precipitation, number of days on which this falls, temperature, and humidity, and sometimes additional factors. For example, Phoenix, Arizona, receives less than 250 mm (9.8 in) of precipitation per year, and is immediately recognized as being located in a desert because of its aridity-adapted plants. The North Slope of Alaska's Brooks Range also receives less than 250 mm (9.8 in) of precipitation per year and is often classified as a cold desert. Other regions of the world have cold deserts, including areas of the Himalayas and other high-altitude areas in other parts of the world. Polar deserts cover much of the ice-free areas of the Arctic and Antarctic. A non-technical definition is that deserts are those parts of the Earth's surface that have insufficient vegetation cover to support a human population.

Potential evapotranspiration supplements the measurement of precipitation in providing a scientific measurement-based definition of a desert. The water budget of an area can be calculated using the formula PPE ± S, wherein P is precipitation, PE is potential evapotranspiration rates and S is the amount of surface storage of water. Evapotranspiration is the combination of water loss through atmospheric evaporation and through the life processes of plants. Potential evapotranspiration, then, is the amount of water that could evaporate in any given region. As an example, Tucson, Arizona receives about 300 mm (12 in) of rain per year, however about 2,500 mm (98 in) of water could evaporate over the course of a year. In other words, about eight times more water could evaporate from the region than actually falls as rain. Rates of evapotranspiration in cold regions such as Alaska are much lower because of the lack of heat to aid in the evaporation process.

Deserts are sometimes classified as "hot" or "cold", "semiarid" or "coastal". The characteristics of hot deserts include high temperatures in summer; greater evaporation than precipitation usually exacerbated by high temperatures, strong winds and lack of cloud cover; considerable variation in the occurrence of precipitation, its intensity and distribution; and low humidity. Winter temperatures vary considerably between different deserts and are often related to the location of the desert on the continental landmass and the latitude. Daily variations in temperature can be as great as 22 °C (40 °F) or more, with heat loss by radiation at night being increased by the clear skies.

aerial view of ice sheet covered in snow Antartica
Cold desert: snow surface at Dome C Station, Antarctica
 
Cold deserts, sometimes known as temperate deserts, occur at higher latitudes than hot deserts, and the aridity is caused by the dryness of the air. Some cold deserts are far from the ocean and others are separated by mountain ranges from the sea, and in both cases, there is insufficient moisture in the air to cause much precipitation. The largest of these deserts are found in Central Asia. Others occur on the eastern side of the Rocky Mountains, the eastern side of the southern Andes and in southern Australia. Polar deserts are a particular class of cold desert. The air is very cold and carries little moisture so little precipitation occurs and what does fall, usually snow, is carried along in the often strong wind and may form blizzards, drifts and dunes similar to those caused by dust and sand in other desert regions. In Antarctica, for example, the annual precipitation is about 50 mm (2 in) on the central plateau and some ten times that amount on some major peninsulas.

Based on precipitation alone, hyperarid deserts receive less than 25 mm (1 in) of rainfall a year; they have no annual seasonal cycle of precipitation and experience twelve-month periods with no rainfall at all. Arid deserts receive between 25 and 200 mm (1 and 8 in) in a year and semiarid deserts between 200 and 500 mm (8 and 20 in). However, such factors as the temperature, humidity, rate of evaporation and evapotranspiration, and the moisture storage capacity of the ground have a marked effect on the degree of aridity and the plant and animal life that can be sustained. Rain falling in the cold season may be more effective at promoting plant growth, and defining the boundaries of deserts and the semiarid regions that surround them on the grounds of precipitation alone is problematic.

A semi-arid desert or a steppe is a version of the arid desert with much more rainfall, vegetation and higher humidity. These regions feature a semi-arid climate and are less extreme than regular deserts. Like arid deserts, temperatures can vary greatly in semi deserts. They share some characteristics of a true desert and are usually located at the edge of deserts and continental dry areas. They usually receive precipitation from 250 mm (10 in) to 500 mm (20 in) but this can vary due to evapotranspiration and soil nutrition. Semi deserts can be found in the Tabernas Desert (and some of the Spanish Plateau), The Sahel, The Eurasian Steppe, most of Central Asia, the Western US, most of Northern Mexico, portions of South America (especially in Argentina) and the Australian Outback. They usually feature BSh (hot steppe) or BSk (temperate steppe) in the Köppen climate classification

Coastal deserts are mostly found on the western edges of continental land masses in regions where cold currents approach the land or cold water upwellings rise from the ocean depths. The cool winds crossing this water pick up little moisture and the coastal regions have low temperatures and very low rainfall, the main precipitation being in the form of fog and dew. The range of temperatures on a daily and annual scale is relatively low, being 11 °C (20 °F) and 5 °C (9 °F) respectively in the Atacama Desert. Deserts of this type are often long and narrow and bounded to the east by mountain ranges. They occur in Namibia, Chile, southern California and Baja California. Other coastal deserts influenced by cold currents are found in Western Australia, the Arabian Peninsula and Horn of Africa, and the western fringes of the Sahara.

In 1961, Peveril Meigs divided desert regions on Earth into three categories according to the amount of precipitation they received. In this now widely accepted system, extremely arid lands have at least twelve consecutive months without precipitation, arid lands have less than 250 mm (10 in) of annual precipitation, and semiarid lands have a mean annual precipitation of between 250 and 500 mm (10–20 in). Both extremely arid and arid lands are considered to be deserts while semiarid lands are generally referred to as steppes when they are grasslands.

desert behind mountains because of the rain shadow effect
The Agasthiyamalai hills cut off Tirunelveli in India from the monsoons, creating a rainshadow region.
 
Deserts are also classified, according to their geographical location and dominant weather pattern, as trade wind, mid-latitude, rain shadow, coastal, monsoon, or polar deserts. Trade wind deserts occur either side of the horse latitudes at 30° to 35° North and South. These belts are associated with the subtropical anticyclone and the large-scale descent of dry air moving from high-altitudes toward the poles. The Sahara Desert is of this type. Mid-latitude deserts occur between 30° and 50° North and South. They are mostly in areas remote from the sea where most of the moisture has already precipitated from the prevailing winds. They include the Tengger and Sonoran Deserts. Monsoon deserts are similar. They occur in regions where large temperature differences occur between sea and land. Moist warm air rises over the land, deposits its water content and circulates back to sea. Further inland, areas receive very little precipitation. The Thar Desert near the India/Pakistan border is of this type.

In some parts of the world, deserts are created by a rain shadow effect. Orographic lift occurs as air masses rise to pass over high ground. In the process they cool and lose much of their moisture by precipitation on the windward slope of the mountain range. When they descend on the leeward side, they warm and their capacity to hold moisture increases so an area with relatively little precipitation occurs. The Taklamakan Desert is an example, lying in the rain shadow of the Himalayas and receiving less than 38 mm (1.5 in) precipitation annually. Other areas are arid by virtue of being a very long way from the nearest available sources of moisture.

Montane deserts are arid places with a very high altitude; the most prominent example is found north of the Himalayas, in the Kunlun Mountains and the Tibetan Plateau. Many locations within this category have elevations exceeding 3,000 m (9,800 ft) and the thermal regime can be hemiboreal. These places owe their profound aridity (the average annual precipitation is often less than 40 mm or 1.5 in) to being very far from the nearest available sources of moisture and are often in the lee of mountain ranges. Montane deserts are normally cold, or may be scorchingly hot by day and very cold by night as is true of the northeastern slopes of Mount Kilimanjaro.

Polar deserts such as McMurdo Dry Valleys remain ice-free because of the dry katabatic winds that flow downhill from the surrounding mountains. Former desert areas presently in non-arid environments, such as the Sandhills in Nebraska, are known as paleodeserts. In the Köppen climate classification system, deserts are classed as BWh (hot desert) or BWk (temperate desert). In the Thornthwaite climate classification system, deserts would be classified as arid megathermal climates.

Weathering processes

granite rock with weathered exfoliation Enchanted Rock State Natural Area, Texas
Exfoliation of weathering rocks in Texas, USA.
 
Deserts usually have a large diurnal and seasonal temperature range, with high daytime temperatures falling sharply at night. The diurnal range may be as much as 20 to 30 °C (36 to 54 °F) and the rock surface experiences even greater temperature differentials. During the day the sky is usually clear and most of the sun's radiation reaches the ground, but as soon as the sun sets, the desert cools quickly by radiating heat into space. In hot deserts, the temperature during daytime can exceed 45 °C (113 °F) in summer and plunge below freezing point at night during winter.

multicolor grains of sand in a centimeter sample
One square centimeter (0.16 sq in) of windblown sand from the Gobi Desert
 
Such large temperature variations have a destructive effect on the exposed rocky surfaces. The repeated fluctuations put a strain on exposed rock and the flanks of mountains crack and shatter. Fragmented strata slide down into the valleys where they continue to break into pieces due to the relentless sun by day and chill by night. Successive strata are exposed to further weathering. The relief of the internal pressure that has built up in rocks that have been underground for aeons can cause them to shatter. Exfoliation also occurs when the outer surfaces of rocks split off in flat flakes. This is believed to be caused by the stresses put on the rock by repeated expansions and contractions which induces fracturing parallel to the original surface. Chemical weathering processes probably play a more important role in deserts than was previously thought. The necessary moisture may be present in the form of dew or mist. Ground water may be drawn to the surface by evaporation and the formation of salt crystals may dislodge rock particles as sand or disintegrate rocks by exfoliation. Shallow caves are sometimes formed at the base of cliffs by this means.

As the desert mountains decay, large areas of shattered rock and rubble occur. The process continues and the end products are either dust or sand. Dust is formed from solidified clay or volcanic deposits whereas sand results from the fragmentation of harder granites, limestone and sandstone. There is a certain critical size (about 0.5 mm) below which further temperature-induced weathering of rocks does not occur and this provides a minimum size for sand grains.

As the mountains are eroded, more and more sand is created. At high wind speeds, sand grains are picked up off the surface and blown along, a process known as saltation. The whirling airborne grains act as a sand blasting mechanism which grinds away solid objects in its path as the kinetic energy of the wind is transferred to the ground. The sand eventually ends up deposited in level areas known as sand-fields or sand-seas, or piled up in dunes.

Dust storms and sandstorms

dark brown sand storm about to engulf a motor pool
Dust storm about to engulf a military camp in Iraq, 2005
 
Sand and dust storms are natural events that occur in arid regions where the land is not protected by a covering of vegetation. Dust storms usually start in desert margins rather than the deserts themselves where the finer materials have already been blown away. As a steady wind begins to blow, fine particles lying on the exposed ground begin to vibrate. At greater wind speeds, some particles are lifted into the air stream. When they land, they strike other particles which may be jerked into the air in their turn, starting a chain reaction. Once ejected, these particles move in one of three possible ways, depending on their size, shape and density; suspension, saltation or creep. Suspension is only possible for particles less than 0.1 mm (0.004 in) in diameter. In a dust storm, these fine particles are lifted up and wafted aloft to heights of up to 6 km (3.7 mi). They reduce visibility and can remain in the atmosphere for days on end, conveyed by the trade winds for distances of up to 6,000 km (3,700 mi). Denser clouds of dust can be formed in stronger winds, moving across the land with a billowing leading edge. The sunlight can be obliterated and it may become as dark as night at ground level. In a study of a dust storm in China in 2001, it was estimated that 6.5 million tons of dust were involved, covering an area of 134,000,000 km2 (52,000,000 sq mi). The mean particle size was 1.44 μm. A much smaller scale, short-lived phenomenon can occur in calm conditions when hot air near the ground rises quickly through a small pocket of cooler, low-pressure air above forming a whirling column of particles, a dust devil.

diagram of sand particles showing wind entrainment
Wind-blown particles: 1=Creep 2=Saltation 3=Suspension 4=Wind current
 
Sandstorms occur with much less frequency than dust storms. They are often preceded by severe dust storms and occur when the wind velocity increases to a point where it can lift heavier particles. These grains of sand, up to about 0.5 mm (0.020 in) in diameter are jerked into the air but soon fall back to earth, ejecting other particles in the process. Their weight prevents them from being airborne for long and most only travel a distance of a few meters (yards). The sand streams along above the surface of the ground like a fluid, often rising to heights of about 30 cm (12 in). In a really severe steady blow, 2 m (6 ft 7 in) is about as high as the sand stream can rise as the largest sand grains do not become airborne at all. They are transported by creep, being rolled along the desert floor or performing short jumps.

During a sandstorm, the wind-blown sand particles become electrically charged. Such electric fields, which range in size up to 80 kV/m, can produce sparks and cause interference with telecommunications equipment. They are also unpleasant for humans and can cause headaches and nausea. The electric fields are caused by the collision between airborne particles and by the impacts of saltating sand grains landing on the ground. The mechanism is little understood but the particles usually have a negative charge when their diameter is under 250 μm and a positive one when they are over 500 μm.

Major deserts

global map of deserts
The world's largest non-polar deserts
 
Deserts take up about one third of the Earth's land surface. Bottomlands may be salt-covered flats. Eolian processes are major factors in shaping desert landscapes. Polar deserts (also seen as "cold deserts") have similar features, except the main form of precipitation is snow rather than rain. Antarctica is the world's largest cold desert (composed of about 98% thick continental ice sheet and 2% barren rock). Some of the barren rock is to be found in the so-called Dry Valleys of Antarctica that almost never get snow, which can have ice-encrusted saline lakes that suggest evaporation far greater than the rare snowfall due to the strong katabatic winds that even evaporate ice.

The ten largest deserts
Rank Desert Area (km2) Area (mi²)
1 Antarctic Desert (Antarctica) 14,200,000 5,500,000
2 Arctic Desert (Arctic) 13,900,000 5,400,000
3 Sahara Desert (Africa) 9,100,000 3,500,000
4 Arabian Desert (Middle East) 2,600,000 1,000,000
5 Gobi Desert (Asia) 1,300,000 500,000
6 Patagonian Desert (South America) 670,000 260,000
7 Great Victoria Desert (Australia) 647,000 250,000
8 Kalahari Desert (Africa) 570,000 220,000
9 Great Basin Desert (North America) 490,000 190,000
10 Syrian Desert (Middle East) 490,000 190,000

Deserts, both hot and cold, play a part in moderating the Earth's temperature. This is because they reflect more of the incoming light and their albedo is higher than that of forests or the sea.

Features

see caption
Aerial view of Makhtesh Ramon, an erosion cirque of a type unique to the Negev
 
Many people think of deserts as consisting of extensive areas of billowing sand dunes because that is the way they are often depicted on TV and in films, but deserts do not always look like this. Across the world, around 20% of desert is sand, varying from only 2% in North America to 30% in Australia and over 45% in Central Asia. Where sand does occur, it is usually in large quantities in the form of sand sheets or extensive areas of dunes.

A sand sheet is a near-level, firm expanse of partially consolidated particles in a layer that varies from a few centimeters to a few meters thick. The structure of the sheet consists of thin horizontal layers of coarse silt and very fine to medium grain sand, separated by layers of coarse sand and pea-gravel which are a single grain thick. These larger particles anchor the other particles in place and may also be packed together on the surface so as to form a miniature desert pavement. Small ripples form on the sand sheet when the wind exceeds 24 km/h (15 mph). They form perpendicular to the wind direction and gradually move across the surface as the wind continues to blow. The distance between their crests corresponds to the average length of jumps made by particles during saltation. The ripples are ephemeral and a change in wind direction causes them to reorganise.

diagram showing movement of sand dune in relation to wind direction
Diagram showing barchan dune formation, with the wind blowing from the left
 
Sand dunes are accumulations of windblown sand piled up in mounds or ridges. They form downwind of copious sources of dry, loose sand and occur when topographic and climatic conditions cause airborne particles to settle. As the wind blows, saltation and creep take place on the windward side of the dune and individual grains of sand move uphill. When they reach the crest, they cascade down the far side. The upwind slope typically has a gradient of 10° to 20° while the lee slope is around 32°, the angle at which loose dry sand will slip. As this wind-induced movement of sand grains takes place, the dune moves slowly across the surface of the ground. Dunes are sometimes solitary, but they are more often grouped together in dune fields. When these are extensive, they are known as sand seas or ergs.

The shape of the dune depends on the characteristics of the prevailing wind. Barchan dunes are produced by strong winds blowing across a level surface and are crescent-shaped with the concave side away from the wind. When there are two directions from which winds regularly blow, a series of long, linear dunes known as seif dunes may form. These also occur parallel to a strong wind that blows in one general direction. Transverse dunes run at a right angle to the prevailing wind direction. Star dunes are formed by variable winds, and have several ridges and slip faces radiating from a central point. They tend to grow vertically; they can reach a height of 500 m (1,600 ft), making them the tallest type of dune. Rounded mounds of sand without a slip face are the rare dome dunes, found on the upwind edges of sand seas.

photograph of desert pavement, small stones left behind by wind
Windswept desert pavement of small, smooth, closely packed stones in the Mojave desert
 
A large part of the surface area of the world's deserts consists of flat, stone-covered plains dominated by wind erosion. In "eolian deflation", the wind continually removes fine-grained material, which becomes wind-blown sand. This exposes coarser-grained material, mainly pebbles with some larger stones or cobbles, leaving a desert pavement, an area of land overlaid by closely packed smooth stones forming a tessellated mosaic. Different theories exist as to how exactly the pavement is formed. It may be that after the sand and dust is blown away by the wind the stones jiggle themselves into place; alternatively, stones previously below ground may in some way work themselves to the surface. Very little further erosion takes place after the formation of a pavement, and the ground becomes stable. Evaporation brings moisture to the surface by capillary action and calcium salts may be precipitated, binding particles together to form a desert conglomerate. In time, bacteria that live on the surface of the stones accumulate a film of minerals and clay particles, forming a shiny brown coating known as desert varnish.

Other non-sandy deserts consist of exposed outcrops of bedrock, dry soils or aridisols, and a variety of landforms affected by flowing water, such as alluvial fans, sinks or playas, temporary or permanent lakes, and oases. A hamada is a type of desert landscape consisting of a high rocky plateau where the sand has been removed by aeolian processes. Other landforms include plains largely covered by gravels and angular boulders, from which the finer particles have been stripped by the wind. These are called "reg" in the western Sahara, "serir" in the eastern Sahara, "gibber plains" in Australia and "saï" in central Asia. The Tassili Plateau in Algeria is an impressive jumble of eroded sandstone outcrops, canyons, blocks, pinnacles, fissures, slabs and ravines. In some places the wind has carved holes or arches, and in others, it has created mushroom-like pillars narrower at the base than the top. In the Colorado Plateau it is water that has been the eroding force. Here the Colorado River has cut its way over the millennia through the high desert floor creating a canyon that is over a mile (6,000 feet or 1,800 meters) deep in places, exposing strata that are over two billion years old.

Water

Atacama Desert in foreground with Andes mountains in distance
Atacama, the world's driest non-polar desert, part of the Arid Diagonal of South America.
 
One of the driest places on Earth is the Atacama Desert. It is virtually devoid of life because it is blocked from receiving precipitation by the Andes mountains to the east and the Chilean Coast Range to the west. The cold Humboldt Current and the anticyclone of the Pacific are essential to keep the dry climate of the Atacama. The average precipitation in the Chilean region of Antofagasta is just 1 mm (0.039 in) per year. Some weather stations in the Atacama have never received rain. Evidence suggests that the Atacama may not have had any significant rainfall from 1570 to 1971. It is so arid that mountains that reach as high as 6,885 m (22,589 ft) are completely free of glaciers and, in the southern part from 25°S to 27°S, may have been glacier-free throughout the Quaternary, though permafrost extends down to an altitude of 4,400 m (14,400 ft) and is continuous above 5,600 m (18,400 ft). Nevertheless, there is some plant life in the Atacama, in the form of specialist plants that obtain moisture from dew and the fogs that blow in from the Pacific.

muddy stream in Gobi desert with grass in foreground and desert in background
Flash flood in the Gobi
 
When rain falls in deserts, as it occasionally does, it is often with great violence. The desert surface is evidence of this with dry stream channels known as arroyos or wadis meandering across its surface. These can experience flash floods, becoming raging torrents with surprising rapidity after a storm that may be many kilometers away. Most deserts are in basins with no drainage to the sea but some are crossed by exotic rivers sourced in mountain ranges or other high rainfall areas beyond their borders. The River Nile, the Colorado River and the Yellow River do this, losing much of their water through evaporation as they pass through the desert and raising groundwater levels nearby. There may also be underground sources of water in deserts in the form of springs, aquifers, underground rivers or lakes. Where these lie close to the surface, wells can be dug and oases may form where plant and animal life can flourish. The Nubian Sandstone Aquifer System under the Sahara Desert is the largest known accumulation of fossil water. The Great Man-Made River is a scheme launched by Libya's Colonel Gadaffi to tap this aquifer and supply water to coastal cities. Kharga Oasis in Egypt is 150 km (93 mi) long and is the largest oasis in the Libyan Desert. A lake occupied this depression in ancient times and thick deposits of sandy-clay resulted. Wells are dug to extract water from the porous sandstone that lies underneath. Seepages may occur in the walls of canyons and pools may survive in deep shade near the dried up watercourse below.

Lakes may form in basins where there is sufficient precipitation or meltwater from glaciers above. They are usually shallow and saline, and wind blowing over their surface can cause stress, moving the water over nearby low-lying areas. When the lakes dry up, they leave a crust or hardpan behind. This area of deposited clay, silt or sand is known as a playa. The deserts of North America have more than one hundred playas, many of them relics of Lake Bonneville which covered parts of Utah, Nevada and Idaho during the last ice age when the climate was colder and wetter. These include the Great Salt Lake, Utah Lake, Sevier Lake and many dry lake beds. The smooth flat surfaces of playas have been used for attempted vehicle speed records at Black Rock Desert and Bonneville Speedway and the United States Air Force uses Rogers Dry Lake in the Mojave Desert as runways for aircraft and the space shuttle.

Biogeography


Flora

xeroscape of cacti in Baja
Xerophytes: Cardón cacti in the Baja California Desert, Cataviña region, Mexico
 
Plants face severe challenges in arid environments. Problems they need to solve include how to obtain enough water, how to avoid being eaten and how to reproduce. Photosynthesis is the key to plant growth. It can only take place during the day as energy from the sun is required, but during the day, many deserts become very hot. Opening stomata to allow in the carbon dioxide necessary for the process causes evapotranspiration, and conservation of water is a top priority for desert vegetation. Some plants have resolved this problem by adopting crassulacean acid metabolism, allowing them to open their stomata during the night to allow CO2 to enter, and close them during the day, or by using C4 carbon fixation.

Many desert plants have reduced the size of their leaves or abandoned them altogether. Cacti are desert specialists, and in most species, the leaves have been dispensed with and the chlorophyll displaced into the trunks, the cellular structure of which has been modified to allow them to store water. When rain falls, the water is rapidly absorbed by the shallow roots and retained to allow them to survive until the next downpour, which may be months or years away. The giant saguaro cacti of the Sonoran Desert form "forests", providing shade for other plants and nesting places for desert birds. Saguaro grows slowly but may live for up to two hundred years. The surface of the trunk is folded like a concertina, allowing it to expand, and a large specimen can hold eight tons of water after a good downpour.

Cacti are present in both North and South America with a post-Gondwana origin. Other xerophytic plants have developed similar strategies by a process known as convergent evolution. They limit water loss by reducing the size and number of stomata, by having waxy coatings and hairy or tiny leaves. Some are deciduous, shedding their leaves in the driest season, and others curl their leaves up to reduce transpiration. Others store water in succulent leaves or stems or in fleshy tubers. Desert plants maximize water uptake by having shallow roots that spread widely, or by developing long taproots that reach down to deep rock strata for ground water. The saltbush in Australia has succulent leaves and secretes salt crystals, enabling it to live in saline areas. In common with cacti, many have developed spines to ward off browsing animals.

camel thorn tree, Acacia erioloba in the Namib Desert in Namibia
The camel thorn tree (Acacia erioloba) in the Namib Desert is nearly leafless in dry periods.
 
Some desert plants produce seed which lies dormant in the soil until sparked into growth by rainfall. With annuals, such plants grow with great rapidity and may flower and set seed within weeks, aiming to complete their development before the last vestige of water dries up. For perennial plants, reproduction is more likely to be successful if the seed germinates in a shaded position, but not so close to the parent plant as to be in competition with it. Some seed will not germinate until it has been blown about on the desert floor to scarify the seed coat. The seed of the mesquite tree, which grows in deserts in the Americas, is hard and fails to sprout even when planted carefully. When it has passed through the gut of a pronghorn it germinates readily, and the little pile of moist dung provides an excellent start to life well away from the parent tree. The stems and leaves of some plants lower the surface velocity of sand-carrying winds and protect the ground from erosion. Even small fungi and microscopic plant organisms found on the soil surface (so-called cryptobiotic soil) can be a vital link in preventing erosion and providing support for other living organisms. Cold deserts often have high concentrations of salt in the soil. Grasses and low shrubs are the dominant vegetation here and the ground may be covered with lichens. Most shrubs have spiny leaves and shed them in the coldest part of the year.

Fauna

Animals adapted to live in deserts are called xerocoles. There is no evidence that body temperature of mammals and birds is adaptive to the different climates, either of great heat or cold. In fact, with a very few exceptions, their basal metabolic rate is determined by body size, irrespective of the climate in which they live. Many desert animals (and plants) show especially clear evolutionary adaptations for water conservation or heat tolerance and so are often studied in comparative physiology, ecophysiology, and evolutionary physiology. One well-studied example is the specializations of mammalian kidneys shown by desert-inhabiting species. Many examples of convergent evolution have been identified in desert organisms, including between cacti and Euphorbia, kangaroo rats and jerboas, Phrynosoma and Moloch lizards.

cream-colored courser camouflaged for the desert
The cream-colored courser, Cursorius cursor, is a well-camouflaged desert resident with its dusty coloration, countershading, and disruptive head markings.
 
Deserts present a very challenging environment for animals. Not only do they require food and water but they also need to keep their body temperature at a tolerable level. In many ways, birds are the ablest to do this of the higher animals. They can move to areas of greater food availability as the desert blooms after local rainfall and can fly to faraway waterholes. In hot deserts, gliding birds can remove themselves from the over-heated desert floor by using thermals to soar in the cooler air at great heights. In order to conserve energy, other desert birds run rather than fly. The cream-colored courser flits gracefully across the ground on its long legs, stopping periodically to snatch up insects. Like other desert birds, it is well-camouflaged by its coloring and can merge into the landscape when stationary. The sandgrouse is an expert at this and nests on the open desert floor dozens of kilometers (miles) away from the waterhole it needs to visit daily. Some small diurnal birds are found in very restricted localities where their plumage matches the color of the underlying surface. The desert lark takes frequent dust baths which ensures that it matches its environment.

Water and carbon dioxide are metabolic end products of oxidation of fats, proteins, and carbohydrates. Oxidising a gram of carbohydrate produces 0.60 grams of water; a gram of protein produces 0.41 grams of water; and a gram of fat produces 1.07 grams of water, making it possible for xerocoles to live with little or no access to drinking water. The kangaroo rat for example makes use of this water of metabolism and conserves water both by having a low basal metabolic rate and by remaining underground during the heat of the day, reducing loss of water through its skin and respiratory system when at rest. Herbivorous mammals obtain moisture from the plants they eat. Species such as the addax antelope, dik-dik, Grant's gazelle and oryx are so efficient at doing this that they apparently never need to drink. The camel is a superb example of a mammal adapted to desert life. It minimizes its water loss by producing concentrated urine and dry dung, and is able to lose 40% of its body weight through water loss without dying of dehydration. Carnivores can obtain much of their water needs from the body fluids of their prey. Many other hot desert animals are nocturnal, seeking out shade during the day or dwelling underground in burrows. At depths of more than 50 cm (20 in), these remain at between 30 to 32 °C (86 to 90 °F) regardless of the external temperature. Jerboas, desert rats, kangaroo rats and other small rodents emerge from their burrows at night and so do the foxes, coyotes, jackals and snakes that prey on them. Kangaroos keep cool by increasing their respiration rate, panting, sweating and moistening the skin of their forelegs with saliva. Mammals living in cold deserts have developed greater insulation through warmer body fur and insulating layers of fat beneath the skin. The arctic weasel has a metabolic rate that is two or three times as high as would be expected for an animal of its size. Birds have avoided the problem of losing heat through their feet by not attempting to maintain them at the same temperature as the rest of their bodies, a form of adaptive insulation. The emperor penguin has dense plumage, a downy under layer, an air insulation layer next the skin and various thermoregulatory strategies to maintain its body temperature in one of the harshest environments on Earth.

desert iguana sunning on a rock
The desert iguana (Dipsosaurus dorsalis) is well-adapted to desert life.
 
Being ectotherms, reptiles are unable to live in cold deserts but are well-suited to hot ones. In the heat of the day in the Sahara, the temperature can rise to 50 °C (122 °F). Reptiles cannot survive at this temperature and lizards will be prostrated by heat at 45 °C (113 °F). They have few adaptations to desert life and are unable to cool themselves by sweating so they shelter during the heat of the day. In the first part of the night, as the ground radiates the heat absorbed during the day, they emerge and search for prey. Lizards and snakes are the most numerous in arid regions and certain snakes have developed a novel method of locomotion that enables them to move sidewards and navigate high sand-dunes. These include the horned viper of Africa and the sidewinder of North America, evolutionarily distinct but with similar behavioural patterns because of convergent evolution. Many desert reptiles are ambush predators and often bury themselves in the sand, waiting for prey to come within range.

Amphibians might seem unlikely desert-dwellers, because of their need to keep their skins moist and their dependence on water for reproductive purposes. In fact, the few species that are found in this habitat have made some remarkable adaptations. Most of them are fossorial, spending the hot dry months aestivating in deep burrows. While there they shed their skins a number of times and retain the remnants around them as a waterproof cocoon to retain moisture. In the Sonoran Desert, Couch's spadefoot toad spends most of the year dormant in its burrow. Heavy rain is the trigger for emergence and the first male to find a suitable pool calls to attract others. Eggs are laid and the tadpoles grow rapidly as they must reach metamorphosis before the water evaporates. As the desert dries out, the adult toads rebury themselves. The juveniles stay on the surface for a while, feeding and growing, but soon dig themselves burrows. Few make it to adulthood. The water holding frog in Australia has a similar life cycle and may aestivate for as long as five years if no rain falls. The Desert rain frog of Namibia is nocturnal and survives because of the damp sea fogs that roll in from the Atlantic.

Tadpole shrimp facing left on desert sand
Tadpole shrimp survive dry periods as eggs, which rapidly hatch and develop after rain.
 
Invertebrates, particularly arthropods, have successfully made their homes in the desert. Flies, beetles, ants, termites, locusts, millipedes, scorpions and spiders have hard cuticles which are impervious to water and many of them lay their eggs underground and their young develop away from the temperature extremes at the surface. The Saharan silver ant (Cataglyphis bombycina) uses a heat shock protein in a novel way and forages in the open during brief forays in the heat of the day. The long-legged darkling beetle in Namibia stands on its front legs and raises its carapace to catch the morning mist as condensate, funnelling the water into its mouth. Some arthropods make use of the ephemeral pools that form after rain and complete their life cycle in a matter of days. The desert shrimp does this, appearing "miraculously" in new-formed puddles as the dormant eggs hatch. Others, such as brine shrimps, fairy shrimps and tadpole shrimps, are cryptobiotic and can lose up to 92% of their bodyweight, rehydrating as soon as it rains and their temporary pools reappear.

Human relations

Humans have long made use of deserts as places to live, and more recently have started to exploit them for minerals and energy capture. Deserts play a significant role in human culture with an extensive literature.

History

shepherd leaving his sheep outside of Marrakech, Morocco
Shepherd near Marrakech leading his flock to new pasture
 
Middle Paleolithic hunter-gatherers in a desert environment, south of Iran
 
People have been living in deserts for millennia. Many, such as the Bushmen in the Kalahari, the Aborigines in Australia and various tribes of North American Indians, were originally hunter-gatherers. They developed skills in the manufacture and use of weapons, animal tracking, finding water, foraging for edible plants and using the things they found in their natural environment to supply their everyday needs. Their self-sufficient skills and knowledge were passed down through the generations by word of mouth. Other cultures developed a nomadic way of life as herders of sheep, goats, cattle, camels, yaks, llamas or reindeer. They travelled over large areas with their herds, moving to new pastures as seasonal and erratic rainfall encouraged new plant growth. They took with them their tents made of cloth or skins draped over poles and their diet included milk, blood and sometimes meat.

Salt caravan of heavy laden camels in desert
Salt caravan travelling between Agadez and the Bilma salt mines
 
The desert nomads were also traders. The Sahara is a very large expanse of land stretching from the Atlantic rim to Egypt. Trade routes were developed linking the Sahel in the south with the fertile Mediterranean region to the north and large numbers of camels were used to carry valuable goods across the desert interior. The Tuareg were traders and the goods transported traditionally included slaves, ivory and gold going northwards and salt going southwards. Berbers with knowledge of the region were employed to guide the caravans between the various oases and wells. Several million slaves may have been taken northwards across the Sahara between the 8th and 18th centuries. Traditional means of overland transport declined with the advent of motor vehicles, shipping and air freight, but caravans still travel along routes between Agadez and Bilma and between Timbuktu and Taoudenni carrying salt from the interior to desert-edge communities.

Round the rims of deserts, where more precipitation occurred and conditions were more suitable, some groups took to cultivating crops. This may have happened when drought caused the death of herd animals, forcing herdsmen to turn to cultivation. With few inputs, they were at the mercy of the weather and may have lived at bare subsistence level. The land they cultivated reduced the area available to nomadic herders, causing disputes over land. The semi-arid fringes of the desert have fragile soils which are at risk of erosion when exposed, as happened in the American Dust Bowl in the 1930s. The grasses that held the soil in place were ploughed under, and a series of dry years caused crop failures, while enormous dust storms blew the topsoil away. Half a million Americans were forced to leave their land in this catastrophe.

Similar damage is being done today to the semi-arid areas that rim deserts and about twelve million hectares of land are being turned to desert each year. Desertification is caused by such factors as drought, climatic shifts, tillage for agriculture, overgrazing and deforestation. Vegetation plays a major role in determining the composition of the soil. In many environments, the rate of erosion and run off increases dramatically with reduced vegetation cover.

Natural resource extraction

see description
A mining plant near Jodhpur, India
 
Deserts contain substantial mineral resources, sometimes over their entire surface, giving them their characteristic colors. For example, the red of many sand deserts comes from laterite minerals. Geological processes in a desert climate can concentrate minerals into valuable deposits. Leaching by ground water can extract ore minerals and redeposit them, according to the water table, in concentrated form. Similarly, evaporation tends to concentrate minerals in desert lakes, creating dry lake beds or playas rich in minerals. Evaporation can concentrate minerals as a variety of evaporite deposits, including gypsum, sodium nitrate, sodium chloride and borates. Evaporites are found in the USA's Great Basin Desert, historically exploited by the "20-mule teams" pulling carts of borax from Death Valley to the nearest railway. A desert especially rich in mineral salts is the Atacama Desert, Chile, where sodium nitrate has been mined for explosives and fertilizer since around 1850. Other desert minerals are copper from Chile, Peru, and Iran, and iron and uranium in Australia. Many other metals, salts and commercially valuable types of rock such as pumice are extracted from deserts around the world.

Oil and gas form on the bottom of shallow seas when micro-organisms decompose under anoxic conditions and later become covered with sediment. Many deserts were at one time the sites of shallow seas and others have had underlying hydrocarbon deposits transported to them by the movement of tectonic plates. Some major oilfields such as Ghawar are found under the sands of Saudi Arabia. Geologists believe that other oil deposits were formed by aeolian processes in ancient deserts as may be the case with some of the major American oil fields.

Farming

aerial view of the Imperial valley showing the pattern of irrigation
Mosaic of fields in Imperial Valley
 
Traditional desert farming systems have long been established in North Africa, irrigation being the key to success in an area where water stress is a limiting factor to growth. Techniques that can be used include drip irrigation, the use of organic residues or animal manures as fertilisers and other traditional agricultural management practices. Once fertility has been built up, further crop production preserves the soil from destruction by wind and other forms of erosion. It has been found that plant growth-promoting bacteria play a role in increasing the resistance of plants to stress conditions and these rhizobacterial suspensions could be inoculated into the soil in the vicinity of the plants. A study of these microbes found that desert farming hampers desertification by establishing islands of fertility allowing farmers to achieve increased yields despite the adverse environmental conditions. A field trial in the Sonoran Desert which exposed the roots of different species of tree to rhizobacteria and the nitrogen fixing bacterium Azospirillum brasilense with the aim of restoring degraded lands was only partially successful.

The Judean Desert was farmed in the 7th century BC during the Iron Age to supply food for desert forts. Native Americans in the south western United States became agriculturalists around 600 AD when seeds and technologies became available from Mexico. They used terracing techniques and grew gardens beside seeps, in moist areas at the foot of dunes, near streams providing flood irrigation and in areas irrigated by extensive specially built canals. The Hohokam tribe constructed over 500 miles (800 km) of large canals and maintained them for centuries, an impressive feat of engineering. They grew maize, beans, squash and peppers.

A modern example of desert farming is the Imperial Valley in California, which has high temperatures and average rainfall of just 3 in (76 mm) per year. The economy is heavily based on agriculture and the land is irrigated through a network of canals and pipelines sourced entirely from the Colorado River via the All-American Canal. The soil is deep and fertile, being part of the river's flood plains, and what would otherwise have been desert has been transformed into one of the most productive farming regions in California. Other water from the river is piped to urban communities but all this has been at the expense of the river, which below the extraction sites no longer has any above-ground flow during most of the year. Another problem of growing crops in this way is the build-up of salinity in the soil caused by the evaporation of river water. The greening of the desert remains an aspiration and was at one time viewed as a future means for increasing food production for the world's growing population. This prospect has proved false as it disregarded the environmental damage caused elsewhere by the diversion of water for desert project irrigation.

Solar energy capture

satellite view with solar and renewal energy potential of Sahara and Europe
Desertec proposed using the Saharan and Arabian deserts to produce solar energy to power Europe and the Middle East.
 
Deserts are increasingly seen as sources for solar energy, partly due to low amounts of cloud cover. Many solar power plants have been built in the Mojave Desert such as the Solar Energy Generating Systems and Ivanpah Solar Power Facility. Large swaths of this desert are covered in mirrors.

The potential for generating solar energy from the Sahara Desert is huge, the highest found on the globe. Professor David Faiman of Ben-Gurion University has stated that the technology now exists to supply all of the world's electricity needs from 10% of the Sahara Desert. Desertec Industrial Initiative was a consortium seeking $560 billion to invest in North African solar and wind installations over the next forty years to supply electricity to Europe via cable lines running under the Mediterranean Sea. European interest in the Sahara Desert stems from its two aspects: the almost continual daytime sunshine and plenty of unused land. The Sahara receives more sunshine per acre than any part of Europe. The Sahara Desert also has the empty space totalling hundreds of square miles required to house fields of mirrors for solar plants.

The Negev Desert, Israel, and the surrounding area, including the Arava Valley, receive plenty of sunshine and are generally not arable. This has resulted in the construction of many solar plants. David Faiman has proposed that "giant" solar plants in the Negev could supply all of Israel's needs for electricity.

Warfare

Battle of El Alamein
War in the desert: Battle of El Alamein, 1942
 
The Arabs were probably the first organized force to conduct successful battles in the desert. By knowing back routes and the locations of oases and by utilizing camels, Muslim Arab forces were able to successfully overcome both Roman and Persian forces in the period 600 to 700 AD during the expansion of the Islamic caliphate.

Many centuries later, both world wars saw fighting in the desert. In the First World War, the Ottoman Turks were engaged with the British regular army in a campaign that spanned the Arabian peninsula. The Turks were defeated by the British, who had the backing of irregular Arab forces that were seeking to revolt against the Turks in the Hejaz, made famous in T.E. Lawrence's book Seven Pillars of Wisdom.

In the Second World War, the Western Desert Campaign began in Italian Libya. Warfare in the desert offered great scope for tacticians to use the large open spaces without the distractions of casualties among civilian populations. Tanks and armoured vehicles were able to travel large distances unimpeded and land mines were laid in large numbers. However, the size and harshness of the terrain meant that all supplies needed to be brought in from great distances. The victors in a battle would advance and their supply chain would necessarily become longer, while the defeated army could retreat, regroup and resupply. For these reasons, the front line moved back and forth through hundreds of kilometers as each side lost and regained momentum. Its most easterly point was at El Alamein in Egypt, where the Allies decisively defeated the Axis forces in 1942.

In culture

drawing of Marco Polo disembarking from ship and entering castle with camels
Marco Polo arriving in a desert land with camels. 14th-century miniature from Il milione.
 
The desert is generally thought of as a barren and empty landscape. It has been portrayed by writers, film-makers, philosophers, artists and critics as a place of extremes, a metaphor for anything from death, war or religion to the primitive past or the desolate future.

There is an extensive literature on the subject of deserts. An early historical account is that of Marco Polo (c. 1254–1324), who travelled through Central Asia to China, crossing a number of deserts in his twenty four year trek. Some accounts give vivid descriptions of desert conditions, though often accounts of journeys across deserts are interwoven with reflection, as is the case in Charles Montagu Doughty's major work, Travels in Arabia Deserta (1888). Antoine de Saint-Exupéry described both his flying and the desert in Wind, Sand and Stars and Gertrude Bell travelled extensively in the Arabian desert in the early part of the 20th century, becoming an expert on the subject, writing books and advising the British government on dealing with the Arabs. Another woman explorer was Freya Stark who travelled alone in the Middle East, visiting Turkey, Arabia, Yemen, Syria, Persia and Afghanistan, writing over twenty books on her experiences. The German naturalist Uwe George spent several years living in deserts, recording his experiences and research in his book, In the Deserts of this Earth.

The American poet Robert Frost expressed his bleak thoughts in his poem, Desert Places, which ends with the stanza "They cannot scare me with their empty spaces / Between stars – on stars where no human race is. / I have it in me so much nearer home / To scare myself with my own desert places."

Deserts on other planets

view of Martian desert showing rock field to the horizon
View of the Martian desert seen by the probe Spirit in 2004.
 
Mars is the only other planet in the Solar System besides earth on which deserts have been identified. Despite its low surface atmospheric pressure (only 1/100 of that of the Earth), the patterns of atmospheric circulation on Mars have formed a sea of circumpolar sand more than 5 million km2 (1.9 million sq mi) in the area, much larger than deserts on Earth. The Martian deserts principally consist of dunes in the form of half-moons in flat areas near the permanent polar ice caps in the north of the planet. The smaller dune fields occupy the bottom of many of the craters situated in the Martian polar regions. Examination of the surface of rocks by laser beamed from the Mars Exploration Rover have shown a surface film that resembles the desert varnish found on Earth although it might just be surface dust. The surface of Titan, a moon of Saturn, also has a desert-like surface with dune seas.

North African climate cycles

From Wikipedia, the free encyclopedia

North African climate cycles have a unique history that can be traced back millions of years. The cyclic climate pattern of the Sahara is characterized by significant shifts in the strength of the North African Monsoon. When the North African Monsoon is at its strongest, annual precipitation and consequently vegetation in the Sahara region increase, resulting in conditions commonly referred to as the "green Sahara". For a relatively weak North African Monsoon, the opposite is true, with decreased annual precipitation and less vegetation resulting in a phase of the Sahara climate cycle known as the "desert Sahara".

Variations in the climate of the Sahara region can, at the simplest level, be attributed to the changes in insolation because of slow shifts in Earth's orbital parameters. The parameters include the precession of the equinoxes, obliquity, and eccentricity as put forth by the Milankovitch theory. The precession of the equinoxes is regarded as the most important orbital parameter in the formation of the "green Sahara" and "desert Sahara" cycle.

A January 2019 MIT paper in Science Advances shows a cycle from wet to dry approximately every 20,000 years.

Orbital Monsoon Hypothesis


Development

The idea that changes in insolation caused by shifts in the Earth's orbital parameters are a controlling factor for the long-term variations in the strength of monsoon patterns across the globe was first suggested by Rudolf Spitaler in the late nineteenth century, The hypothesis was later formally proposed and tested by the meteorologist John Kutzbach in 1981. Kutzbach's ideas about the impacts of insolation on global monsoonal patterns have become widely accepted today as the underlying driver of long term monsoonal cycles. Kutzbach never formally named his hypothesis and as such it is referred to here as the "Orbital Monsoon Hypothesis" as suggested by Ruddiman in 2001.

Insolation

Insolation, which is simply a measure of the amount of solar radiation received on a given surface area in a given time period, is the fundamental factor behind the Orbital Monsoon Hypothesis. Due to variations in heat capacity, continents heat up faster than surrounding oceans during summer months when insolation is at its strongest and cool off faster than the surrounding oceans during winter months when insolation is at its weakest. The wind pattern that results from the continent/ocean insolation temperature gradient is known as a monsoon. Values of summer insolation are more important for a region's climate than winter values. This is because the winter phase of a monsoon is always dry. Thus the flora and fauna of a monsoonal climate are determined by the amount of rain that falls during the summer phase of the monsoon. Over periods of tens to hundreds of thousands of years the amount of insolation changes in a highly complex cycle that is based on orbital parameters. The result of this cycle of insolation is a waxing and waning in the strength of the monsoonal climates across the globe. A wide range of geologic evidence has shown that the North African Monsoon is particularly susceptible to insolation cycles, and long term trends in monsoonal strength can be linked to slow variations in insolation. However, the abrupt shifts back and forth from the "green Sahara" to the "desert Sahara" are not entirely explained by long term changes in the insolation cycle. 

Precession

Precession of the equinoxes on Earth can be divided up into two distinct phases. The first phase is created by a wobbling of the Earth's axis of rotation and is known as axial precession. While the second phase is known as procession of the ellipse and is related to the slow rotation of the Earth's elliptical orbit around the sun. When combined these two phases create a precession of the equinoxes that has a strong 23,000 year cycle and a weak 19,000 year cycle.

Variations in the strength of the North African Monsoon have been found to be strongly related to the stronger 23,000 year processional cycle. The relationship between the precession cycle and the strength of the North African Monsoon exists because procession affects the amount of insolation received in a given hemisphere. The amount of insolation is maximized for the northern hemisphere when the precession cycle is aligned such that the northern hemisphere points toward the sun at perihelion. According to the Orbital Monsoon Hypothesis this maximum in insolation increases the strength of monsoon circulations in the northern hemisphere. On the opposite end of the spectrum, when the Northern Hemisphere is pointed toward the sun during aphelion, there is a minimum in insolation and the North African Monsoon is at its weakest.

Obliquity

Obliquity, otherwise known as tilt, refers to the angle that Earth's axis of rotation makes with a line that is perpendicular to Earth's orbital plane. The current tilt of Earth's axis is roughly 23.5°. However, over long periods of time the tilt of Earth's axis of rotation changes because of the uneven distribution of mass across the planet and gravitational interactions with the Sun, Moon, and planets. Due to these interactions the tilt of Earth's axis of rotation varies between 22.2° and 24.5° on a 41,000 year cycle.

Modulation of the precession driven insolation cycle is the primary impact of obliquity on the North African Monsoon. Evidence for the impact of obliquity on the intensity of the North African Monsoon has been found in records of dust deposits from ocean cores in the Eastern Mediterranean that occur as a result of Aeolian processes. This evidence requires complex feedback mechanisms to explain since the strongest impact of obliquity on insolation is found in the high latitudes. Two possible mechanisms for the existence of an obliquity tracer found in the Eastern Mediterranean Aeolian dust deposits have been proposed. The first of which suggests that at times of higher obliquity the temperature gradient between the poles and the equator in the southern hemisphere is greater during boreal summer (summer in the northern hemisphere). As a result of this gradient the strength of the North African Monsoon increases. A second theory that may explain the existence of an obliquity signature in the North African climate record suggests that obliquity maybe related to changes in the latitude of the tropics. The latitudinal extent of the tropics is roughly defined by the maximum wandering path of the thermal equator. An area that today is located between the Tropic of Capricorn and the Tropic of Cancer. However, as the obliquity changes, the overall wandering path of the thermal equator shifts between 22.2° and 24.5° north and south. This wandering may affect the positioning of the North African Summer Monsoon Front and thus impact the perceived strength of the North African Monsoon. Further confirmation of the impacts of obliquity on the North African Monsoonal have been provided through a global fully coupled atmosphere–ocean–sea ice climate model, which confirmed that precession and obliquity can combine to increase precipitation in North Africa through insolation feedbacks.

Eccentricity

Eccentricity is a measure of the deviation of the Earth's orbit from a perfect circle. If the Earth's orbit is a perfect circle then the eccentricity would have a value of 0, and eccentricity value of 1 would indicate a parabola. The Earth has two cycles of eccentricity that occur on cycles of 100,000 and 400,000 years. Over the years the Earth's eccentricity has varied between 0.005 and 0.0607, today the eccentricity of Earth's orbit is approximately 0.0167. While the value of eccentricity does impact the distance of the Earth from the Sun, its primary impact on insolation comes from its modulating effect on the procession cycle. For example, when the orbit of the Earth is highly elliptical one hemisphere will have hot summers and cold winters, corresponding to a larger than average yearly insolation gradient. At the same time the other hemisphere will have warm summers and cool winters due to a smaller than average yearly insolation gradient.

Like obliquity, eccentricity is not considered to be a primary driver of the strength of the North African Monsoon. Instead eccentricity modulates the amplitude of the insolation maxima and minima that occur due to the precession cycle. Strong support for the modulation of the precession cycle by eccentricity can be found in Aeolian dust deposits in the Eastern Mediterranean. Upon close examination it can be shown that periods of low and high hematite fluxes correspond to both the 100,000 year and 400,000 year eccentricity cycles. It is believed that this evidence for the eccentricity cycles in the dust record of the Eastern Mediterranean indicates a stronger northward progression of the North African Monsoonal Front during times when the eccentricity and precession insolation maxima coincide. The modulating effect of eccentricity on the precession cycle has also been shown using a global fully coupled atmosphere–ocean–sea ice climate model.

Lag

One key issue with the Orbital Monsoon Hypothesis is that a detailed inspection of climate record indicates that there is a 1000 to 2000 year lag in the observed North African Monsoon maximum compared to the predicted maximum. This issue occurs because the Orbital Monsoon Hypothesis assumes that there is an instantaneous response by the climate system to changes in insolation from orbital forcing. However, there are a number of fixes for this problem. The most reasonable fix can be shown through a simple analog to today's climate. Currently the peak in solar radiation occurs on June 21, but the peak of the summer monsoon in North Africa occurs a month later in July. A one-month lag such as this should be represented by roughly a 1500 to 2000 year lag in the monsoonal circulation maximum, because a July insolation maximum in a 19,000 to 23,000 year precession cycle occurs roughly 1500 to 2000 years after the June insolation maximum. Two other possible explanations for the observed lag in the data have been put forward. The first suggest that the development of the monsoons in the subtropics is tempered by the slow melting of polar ice sheets. Thus the full strength of the monsoonal pattern is not observed until the polar ice sheets have become so small that their impact on the development of yearly monsoons is minimal. The second alternative solution proposes that relatively cool tropical oceans left over from glaciation may initially slow the development of monsoons globally, since colder oceans are less potent sources of moisture.

Supporting evidence


Sapropels

Sapropels are dark organic rich marine sediments that contain greater than 2% organic carbon by weight. In the Eastern Mediterranean layers of sapropels can be found in marine sediment cores that align with periods of maximum insolation in the precession cycle over Northern Africa. Such an alignment can be explained by a link to the North African Monsoon. During periods of high insolation the increased strength and northward progression of the North African Monsoonal Front causes very heavy rain along the upper and middle reaches of the Nile River basin. These rains then flow northward and are discharged into the Eastern Mediterranean, where the large influx of nutrient rich fresh water causes a steep vertical salinity gradient. As a result, thermohaline convection is shut off and the water column becomes stably stratified. Once this stable stratification occurs, bottom waters in the Eastern Mediterranean quickly become depleted in oxygen and the large influx of pelagic organic matter from the nutrient rich surface waters is preserved as sapropel formations. One of the key pieces of evidence linking the formation of sapropels to enhance discharge from the Nile River is the fact that they have occurred during both interglacial and glacial periods. Therefore, the formation of sapropels must be linked to fresh water discharge from the Nile River and not melt water from dissipating ice sheets.

Paleolakes

Evidence for the existence of large lakes in the Sahara can be found and interpreted from the geologic record. These lakes fill as the precession cycle approaches the insolation maximum and are then depleted as the precession cycle nears the insolation minimum. The largest of these paleolakes was Lake Megachad, which at its peak was 173 m deep and covered an area of roughly 400,000 km2. Today the remnants of this once massive lake are known as Lake Chad, which has a maximum depth of 11 m and an area of only 1,350 km2. Satellite imagery of the shorelines of ancient Lake Megachad reveal that the lake has existed under two distinctive wind regimes, one northeasterly and southwesterly. The northeasterly wind regime is consistent with today's wind patterns and is characteristic of weak monsoonal flow. Meanwhile, the southwesterly wind regime is characteristic of a stronger monsoonal flow.

Freshwater diatoms

Another key piece of evidence for a processional control on the North African Monsoon can be found in the deposits of freshwater diatoms in the tropical Atlantic. Ocean cores from the tropical Atlantic have been found to have distinct layers of the freshwater diatom Aulacoseira Granulata also known as Melosira Granulata. These layers occur on a 23,000 year cycle that lags the maximum in precession insolation by roughly 5000 to 6000 years. To explain these cyclic freshwater diatom deposits we have to look inland at the Sahara region of Africa. Around the time of the insolation maximum in the precession cycle the North African Monsoon is at its strongest and the Sahara region becomes dominated by large monsoonal lakes. Then as time progress toward the insolation minima, these lakes begin to dry out due to weakening North African Monsoon. As the lakes dry up thin sediment deposits containing freshwater diatoms are exposed. Finally, when the prevailing northeasterly winds arrive during winter, the freshwater diatom deposits in the dried lake beds are picked up as dust and carried thousands of kilometers out into the tropical Atlantic. From this series of events the reason for 5000 to 6000-year delay in the freshwater diatom deposits is evident, since the North African Monsoon must become sufficiently weak before the monsoonal lakes in the Sahara begin to dry up and expose potential freshwater diatom sources. One key factor that must be noted with freshwater diatom deposits is species identification. For instance some ocean cores directly off the western coast of Africa show a mix of freshwater lake and river diatom species. So for a core to accurately represent the diatom cycle of the Sahara it must be recovered from a region of the tropical Atlantic that has sufficient distance from the coast such that the impacts of river outflows are minimized.

Eastern equatorial Atlantic upwelling

Observed variations in the strength of the eastern equatorial Atlantic upwelling zone can also be used to support a cycle of the North African Monsoon that is regulated by the precession cycle. When insolation in North Africa is at its peak during the precession cycle the easterly trade winds over the equatorial Atlantic are strongly diverted toward the Sahara. This diversion weakens the equatorial upwelling zone in the eastern equatorial Atlantic, resulting in warmer waters in the pelagic. On the other end of the spectrum when insolation in North Africa is at a minimum due to the precession cycle, the diversion of the easterly trade winds is relatively weak. Due to this the region of upwelling in the eastern equatorial Atlantic remains strong and the waters in the pelagic zone are cooler. The proof that this pattern of periodic weakening of the eastern equatorial Atlantic upwelling exists is found in deposits of surface dwelling planktic organisms in ocean sediment cores. Such cores show that the relative abundance of warm and cold water planktic species vary with a consistent beat of 23,000 years, matching the 23,000 year precession insolation cycle.

African Humid Period


Climatology

The African Humid Period occurred between 14,800 and 5,500 years ago, and was the last occurrence of a "green Sahara". Conditions in the Sahara during the African Humid Period were dominated by a strong North African Monsoon, resulting in larger annual rainfall totals compared to today's conditions. With the increased rainfall, the vegetation patterns in North Africa were nothing like what we see today. The majority of the Sahara region for instance was characterized by expansive grasslands, also known as steppe. Meanwhile, the Sahel region south of the Sahara was mostly savanna. Today the Sahara region is mostly desert and the Sahel is characterized by savannah grasslands conditions. The African Humid Period was also characterized by a network of vast waterways in the Sahara, consisting of large lakes, rivers, and deltas. The four largest lakes were Lake Megachad, Lake Megafezzan, Ahnet-Mouydir Megalake, and Chotts Megalake. Large rivers in the region included the Senegal River, Nile River, Sahabi River, and Kufra River. These river and lake systems provided corridors that allowed many animal species, including humans, to expand their range across the Sahara.

Onset and termination

Geologic evidence from the beginning and end of the African Humid Period suggests that both the onset and termination of the African Humid Period were abrupt. In fact both events likely occurred on a timescale of decades to centuries. The onset and termination of the African Humid Period both occurred when the insolation cycle reached a value of roughly 4.2% higher than today. However, shifts in the insolation cycle are too gradual to cause abrupt climate transitions like those seen at the onset and termination of the African Humid Period all on their own. So to account for these rapid shifts in the climate of the Sahara, several nonlinear feedback mechanisms have been proposed. One of the most common sets of nonlinear feedback mechanisms considered, are vegetation-atmosphere interactions. Computer models looking at vegetation-atmosphere interactions and insolation across North Africa have shown the ability to simulate the rapid transitions between "green Sahara" and "desert Sahara" regimes. Thus the results from these models suggest the possible existence of a vegetation-insolation threshold, which if reached, allows the Sahara region to rapidly transition from "green Sahara" to "desert Sahara" and vice versa.

Maunder Minimum

From Wikipedia, the free encyclopedia
 
The Maunder Minimum shown in a 400-year history of sunspot numbers
 
The Maunder Minimum, also known as the "prolonged sunspot minimum", is the name used for the period around 1645 to 1715 during which sunspots became exceedingly rare, as was then noted by solar observers. 

The term was introduced after John A. Eddy published a landmark 1976 paper in Science. Astronomers before Eddy had also named the period after the solar astronomers Annie Russell Maunder (1868–1947) and her husband, Edward Walter Maunder (1851–1928), who studied how sunspot latitudes changed with time. The period which the Maunders examined included the second half of the 17th century. 

Two papers were published in Edward Maunder's name in 1890 and 1894, and he cited earlier papers written by Gustav Spörer. Because Annie Maunder had not received a university degree, restrictions at the time caused her contribution not to be publicly recognized. Spörer noted that, during a 28-year period (1672–1699) within the Maunder Minimum, observations revealed fewer than 50 sunspots. This contrasts with the typical 40,000–50,000 sunspots seen in modern times (over similar 25 year sampling).

The Maunder Minimum occurred with a much longer period of lower-than-average European temperatures which is likely to have been primarily caused by volcanic activity. 

Sunspot observations

The Maunder Minimum occurred between 1645 and 1715 when very few sunspots were observed. That was not because of a lack of observations, as during the 17th century, Giovanni Domenico Cassini carried out a systematic program of solar observations at the Observatoire de Paris, thanks to the astronomers Jean Picard and Philippe de La Hire. Johannes Hevelius also performed observations on his own. Here is the total of sunspots recorded, by example, in the decennial years (omitting Wolf numbers):

Year Sunspots
1610 9
1620 6
1630 9
1640 0
1650 3
1660 Some sunspots (20<) reported by Jan Heweliusz in Machina Coelestis
1670 0
1680 1 huge sunspot observed by Giovanni Domenico Cassini

During the Maunder Minimum enough sunspots were sighted so that 11-year cycles could be extrapolated from the count. 

The maxima occurred in 1676–1677, 1684, 1695, 1705 and 1718.

Sunspot activity was then concentrated in the southern hemisphere of the Sun, except for the last cycle when the sunspots appeared in the northern hemisphere, too.

According to Spörer's law, at the start of a cycle, spots appear at ever lower latitudes until they average at about latitude 15° at solar maximum.

The average then continues to drift lower to about 7° and after that, while spots of the old cycle fade, new cycle spots start appearing again at high latitudes.

The visibility of these spots is also affected by the velocity of the Sun's surface rotation at various latitudes: 

Solar latitude Rotation period
(days)
24.7
35° 26.7
40° 28.0
75° 33.0

Visibility is somewhat affected by observations being done from the ecliptic. The ecliptic is inclined 7° from the plane of the Sun's equator (latitude 0°). 

Little Ice Age

Comparison of group sunspot numbers (top), Central England Temperature (CET) observations (middle) and reconstructions and modeling of Northern Hemisphere Temperatures (NHT). The CET in red are summer averages (for June, July and August) and in blue winter averages (for December of previous year, January and February). NHT in grey is the distribution from basket of paleoclimate reconstructions (darker grey showing higher probability values) and in red are from model simulations that account for solar and volcanic variations. By way of comparison, on the same scales the anomaly for modern data (after 31 December 1999) for summer CET is +0.65oC, for winter CET is +1.34oC, and for NHT is +1.08oC. Sunspot data are as in supplementary data to  and Central England Temperature data are as published by the UK Met Office  The NHT data are described in box TS.5, Figure 1 of the IPCC AR5 report of Working Group 1.
 
The Maunder Minimum roughly coincided with the middle part of the Little Ice Age, during which Europe and North America experienced colder than average temperatures. Whether there is a causal relationship, however, is still under evaluation. The current best hypothesis for the cause of the Little Ice Age is that it was the result of volcanic action. The onset of the Little Ice Age also occurred well before the beginning of the Maunder Minimum, and northern-hemisphere temperatures during the Maunder Minimum were not significantly different from the previous 80 years, suggesting a decline in solar activity was not the main causal driver of the Little Ice Age. 

The correlation between low sunspot activity and cold winters in England has recently been analyzed using the longest existing surface temperature record, the Central England Temperature record. They emphasize that this is a regional and seasonal effect relating to European winters, and not a global effect. A potential explanation of this has been offered by observations by NASA's Solar Radiation and Climate Experiment, which suggest that solar UV output is more variable over the course of the solar cycle than scientists had previously thought. In 2011, an article was published in the Nature Geoscience journal that uses a climate model with stratospheric layers and the SORCE data to tie low solar activity to jet stream behavior and mild winters in some places (southern Europe and Canada/Greenland) and colder winters in others (northern Europe and the United States). In Europe, examples of very cold winters are 1683–84, 1694–95, and the winter of 1708–09.

The term "Little Ice Age" applied to the Maunder Minimum is something of a misnomer, as it implies a period of unremitting cold (and on a global scale), which was not the case. For example, the coldest winter in the Central England Temperature record is 1683–1684, but summers during the Maunder Minimum were not significantly different from those seen in subsequent years. The drop in global average temperatures in paleoclimate reconstructions at the start of the Little Ice Age was between about 1560 and 1600, whereas the Maunder Minimum began almost 50 years later.

Other observations

Solar activity events recorded in radiocarbon.
 
Graph showing proxies of solar activity, including changes in sunspot number and cosmogenic isotope production.
 
Past solar activity may be recorded by various proxies, including carbon-14 and beryllium-10. These indicate lower solar activity during the Maunder Minimum. The scale of changes resulting in the production of carbon-14 in one cycle is small (about one percent of medium abundance) and can be taken into account when radiocarbon dating is used to determine the age of archaeological artifacts. The interpretation of the beryllium-10 and carbon-14 cosmogenic isotope abundance records stored in terrestrial reservoirs such as ice sheets and tree rings has been greatly aided by reconstructions of solar and heliospheric magnetic fields based on historic data on Geomagnetic storm activity, which bridge the time gap between the end of the usable cosmogenic isotope data and the start of modern spacecraft data.

Other historical sunspot minima have been detected either directly or by the analysis of the cosmogenic isotopes; these include the Spörer Minimum (1450–1540), and less markedly the Dalton Minimum (1790–1820). In a 2012 study, sunspot minima have been detected by analysis of carbon-14 in lake sediments. In total, there seem to have been 18 periods of sunspot minima in the last 8,000 years, and studies indicate that the Sun currently spends up to a quarter of its time in these minima. 

A paper based on an analysis of a Flamsteed drawing, suggests that the Sun's surface rotation slowed in the deep Maunder minimum (1684).

During the Maunder Minimum aurorae had been observed seemingly normally, with a regular decadal-scale cycle. This is somewhat surprising because the later, and less deep, Dalton sunspot minimum is clearly seen in auroral occurrence frequency, at least at lower geomagnetic latitudes. Because geomagnetic latitude is an important factor in auroral occurrence, (lower-latitude aurorae requiring higher levels of solar-terrestrial activity) it becomes important to allow for population migration and other factors that may have influenced the number of reliable auroral observers at a given magnetic latitude for the earlier dates. Decadal-scale cycles during the Maunder minimum can also be seen in the abundances of the beryllium-10 cosmogenic isotope (which unlike carbon-14 can be studied with annual resolution)  but these appear to be in antiphase with any remnant sunspot activity. An explanation in terms of solar cycles in loss of solar magnetic flux was proposed in 2012.

The fundamental papers on the Maunder minimum have been published in Case studies on the Spörer, Maunder and Dalton Minima.

Inequality (mathematics)

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Inequality...