Search This Blog

Tuesday, February 18, 2020

Natural satellite

From Wikipedia, the free encyclopedia
https://en.wikipedia.org/wiki/Natural_satellite
 
Most of the 194 known natural satellites of the planets are irregular moons. Ganymede, followed by Titan, Callisto, Io and Earth's Moon are the largest natural satellites in the Solar System. Venus has no moons, while Neptune has 14.
 
A natural satellite, or moon, is, in the most common usage, an astronomical body that orbits a planet or minor planet (or sometimes another small Solar System body).

In the Solar System there are six planetary satellite systems containing 205 known natural satellites. Four IAU-listed dwarf planets are also known to have natural satellites: Pluto, Haumea, Makemake, and Eris. As of September 2018, there are 334 other minor planets known to have moons.

The Earth–Moon system is unique among planetary systems in that the ratio of the mass of the Moon to the mass of Earth is much greater than that of any other natural-satellite–planet ratio in the Solar System. At 3,474 km (2,158 miles) across, the Moon is 0.273 times the diameter of Earth. This is five times greater than the next largest moon-to-planet diameter ratio (with Neptune's largest moon at 0.055, Saturn's at 0.044, Jupiter's at 0.038 and Uranus' as 0.031). For the category of planetoids, among the five that are known in the Solar System, Charon has the largest ratio, being half (0.52) the diameter of Pluto.

Terminology

The first known natural satellite was the Moon, but it was considered a "planet" until Copernicus' introduction of De revolutionibus orbium coelestium in 1543. Until the discovery of the Galilean satellites in 1610 there was no opportunity for referring to such objects as a class. Galileo chose to refer to his discoveries as Planetæ ("planets"), but later discoverers chose other terms to distinguish them from the objects they orbited.

The first to use the term satellite to describe orbiting bodies was the German astronomer Johannes Kepler in his pamphlet Narratio de Observatis a se quatuor Iouis satellitibus erronibus ("Narration About Four Satellites of Jupiter Observed") in 1610. He derived the term from the Latin word satelles, meaning "guard", "attendant", or "companion", because the satellites accompanied their primary planet in their journey through the heavens.

The term satellite thus became the normal one for referring to an object orbiting a planet, as it avoided the ambiguity of "moon". In 1957, however, the launching of the artificial object Sputnik created a need for new terminology. The terms man-made satellite and artificial moon were very quickly abandoned in favor of the simpler satellite, and as a consequence, the term has become linked primarily with artificial objects flown in space – including, sometimes, even those not in orbit around a planet.

Because of this shift in meaning, the term moon, which had continued to be used in a generic sense in works of popular science and in fiction, has regained respectability and is now used interchangeably with natural satellite, even in scientific articles. When it is necessary to avoid both the ambiguity of confusion with Earth's natural satellite the Moon and the natural satellites of the other planets on the one hand, and artificial satellites on the other, the term natural satellite (using "natural" in a sense opposed to "artificial") is used. To further avoid ambiguity, the convention is to capitalize the word Moon when referring to Earth's natural satellite, but not when referring to other natural satellites.

Many authors define "satellite" or "natural satellite" as orbiting some planet or minor planet, synonymous with "moon" – by such a definition all natural satellites are moons, but Earth and other planets are not satellites. A few recent authors define "moon" as "a satellite of a planet or minor planet", and "planet" as "a satellite of a star" – such authors consider Earth as a "natural satellite of the Sun".

Definition of a moon

Size comparison of Earth and the Moon
 
There is no established lower limit on what is considered a "moon". Every natural celestial body with an identified orbit around a planet of the Solar System, some as small as a kilometer across, has been considered a moon, though objects a tenth that size within Saturn's rings, which have not been directly observed, have been called moonlets. Small asteroid moons (natural satellites of asteroids), such as Dactyl, have also been called moonlets.

The upper limit is also vague. Two orbiting bodies are sometimes described as a double planet rather than primary and satellite. Asteroids such as 90 Antiope are considered double asteroids, but they have not forced a clear definition of what constitutes a moon. Some authors consider the Pluto–Charon system to be a double (dwarf) planet. The most common dividing line on what is considered a moon rests upon whether the barycentre is below the surface of the larger body, though this is somewhat arbitrary, because it depends on distance as well as relative mass. 

Origin and orbital characteristics

Two moons: Saturn's natural satellite Dione occults Enceladus
 
The natural satellites orbiting relatively close to the planet on prograde, uninclined circular orbits (regular satellites) are generally thought to have been formed out of the same collapsing region of the protoplanetary disk that created its primary. In contrast, irregular satellites (generally orbiting on distant, inclined, eccentric and/or retrograde orbits) are thought to be captured asteroids possibly further fragmented by collisions. Most of the major natural satellites of the Solar System have regular orbits, while most of the small natural satellites have irregular orbits. The Moon and possibly Charon are exceptions among large bodies in that they are thought to have originated by the collision of two large proto-planetary objects. The material that would have been placed in orbit around the central body is predicted to have reaccreted to form one or more orbiting natural satellites. As opposed to planetary-sized bodies, asteroid moons are thought to commonly form by this process. Triton is another exception; although large and in a close, circular orbit, its motion is retrograde and it is thought to be a captured dwarf planet.

Temporary satellites

The capture of an asteroid from a heliocentric orbit is not always permanent. According to simulations, temporary satellites should be a common phenomenon. The only observed example is 2006 RH120, which was a temporary satellite of Earth for nine months in 2006 and 2007.

Tidal locking

Most regular moons (natural satellites following relatively close and prograde orbits with small orbital inclination and eccentricity) in the Solar System are tidally locked to their respective primaries, meaning that the same side of the natural satellite always faces its planet. The only known exception is Saturn's natural satellite Hyperion, which rotates chaotically because of the gravitational influence of Titan

In contrast, the outer natural satellites of the giant planets (irregular satellites) are too far away to have become locked. For example, Jupiter's Himalia, Saturn's Phoebe, and Neptune's Nereid have rotation periods in the range of ten hours, whereas their orbital periods are hundreds of days. 

Satellites of satellites

Artist impression of Rhea's proposed rings
 
No "moons of moons" or subsatellites (natural satellites that orbit a natural satellite of a planet) are currently known as of 2020. In most cases, the tidal effects of the planet would make such a system unstable. 

However, calculations performed after the recent detection of a possible ring system around Saturn's moon Rhea indicate that satellites orbiting Rhea could have stable orbits. Furthermore, the suspected rings are thought to be narrow, a phenomenon normally associated with shepherd moons. However, targeted images taken by the Cassini spacecraft failed to detect rings around Rhea.

It has also been proposed that Saturn's moon Iapetus had a satellite in the past; this is one of several hypotheses that have been put forward to account for its equatorial ridge.

Trojan satellites

Two natural satellites are known to have small companions at both their L4 and L5 Lagrangian points, sixty degrees ahead and behind the body in its orbit. These companions are called trojan moons, as their orbits are analogous to the trojan asteroids of Jupiter. The trojan moons are Telesto and Calypso, which are the leading and following companions, respectively, of the Saturnian moon Tethys; and Helene and Polydeuces, the leading and following companions of the Saturnian moon Dione

Asteroid satellites

The discovery of 243 Ida's natural satellite Dactyl in the early 1990s confirmed that some asteroids have natural satellites; indeed, 87 Sylvia has two. Some, such as 90 Antiope, are double asteroids with two comparably sized components. 

Shape

The relative masses of the natural satellites of the Solar System. Mimas, Enceladus, and Miranda are too small to be visible at this scale. All the irregularly shaped natural satellites, even added together, would also be too small to be visible.

Neptune's moon Proteus is the largest irregularly shaped natural satellite. All other known natural satellites that are at least the size of Uranus's Miranda have lapsed into rounded ellipsoids under hydrostatic equilibrium, i.e. are "round/rounded satellites". The larger natural satellites, being tidally locked, tend toward ovoid (egg-like) shapes: squat at their poles and with longer equatorial axes in the direction of their primaries (their planets) than in the direction of their motion. Saturn's moon Mimas, for example, has a major axis 9% greater than its polar axis and 5% greater than its other equatorial axis. Methone, another of Saturn's moons, is only around 3 km in diameter and visibly egg-shaped. The effect is smaller on the largest natural satellites, where their own gravity is greater relative to the effects of tidal distortion, especially those that orbit less massive planets or, as in the case of the Moon, at greater distances. 

Name Satellite of Difference in axes
km
% of mean
diameter
Mimas Saturn 33.4 (20.4 / 13.0) 8.4 (5.1 / 3.3)
Enceladus Saturn 16.6 3.3
Miranda Uranus 14.2 3.0
Tethys Saturn 25.8 2.4
Io Jupiter 29.4 0.8
The Moon Earth 4.3 0.1

Geological activity

Of the nineteen known natural satellites in the Solar System that are large enough to have lapsed into hydrostatic equilibrium, several remain geologically active today. Io is the most volcanically active body in the Solar System, while Europa, Enceladus, Titan and Triton display evidence of ongoing tectonic activity and cryovolcanism. In the first three cases, the geological activity is powered by the tidal heating resulting from having eccentric orbits close to their giant-planet primaries. (This mechanism would have also operated on Triton in the past, before its orbit was circularized.) Many other natural satellites, such as Earth's Moon, Ganymede, Tethys and Miranda, show evidence of past geological activity, resulting from energy sources such as the decay of their primordial radioisotopes, greater past orbital eccentricities (due in some cases to past orbital resonances), or the differentiation or freezing of their interiors. Enceladus and Triton both have active features resembling geysers, although in the case of Triton solar heating appears to provide the energy. Titan and Triton have significant atmospheres; Titan also has hydrocarbon lakes. Also Io and Callisto have atmospheres, even if they are extremely thin. Four of the largest natural satellites, Europa, Ganymede, Callisto, and Titan, are thought to have subsurface oceans of liquid water, while smaller Enceladus may have localized subsurface liquid water.

Natural satellites of the Solar System

Euler diagram showing the types of bodies in the Solar System.
 
Of the objects within our Solar System known to have natural satellites, there are 76 in the asteroid belt (five with two each), four Jupiter trojans, 39 near-Earth objects (two with two satellites each), nd 14 Mars-crossers. There are also 84 known natural satellites of trans-Neptunian objects. Some 150 additional small bodies have been observed within the rings of Saturn, but only a few were tracked long enough to establish orbits. Planets around other stars are likely to have satellites as well, and although numerous candidates have been detected to date, none have yet been confirmed.

Of the inner planets, Mercury and Venus have no natural satellites; Earth has one large natural satellite, known as the Moon; and Mars has two tiny natural satellites, Phobos and Deimos. The giant planets have extensive systems of natural satellites, including half a dozen comparable in size to Earth's Moon: the four Galilean moons, Saturn's Titan, and Neptune's Triton. Saturn has an additional six mid-sized natural satellites massive enough to have achieved hydrostatic equilibrium, and Uranus has five. It has been suggested that some satellites may potentially harbour life.

Among the identified dwarf planets, Ceres has no known natural satellites. Pluto has the relatively large natural satellite Charon and four smaller natural satellites; Styx, Nix, Kerberos, and Hydra. Haumea has two natural satellites, and Eris and Makemake have one each. The Pluto–Charon system is unusual in that the center of mass lies in open space between the two, a characteristic sometimes associated with a double-planet system. 

The seven largest natural satellites in the Solar System (those bigger than 2,500 km across) are Jupiter's Galilean moons (Ganymede, Callisto, Io, and Europa), Saturn's moon Titan, Earth's moon, and Neptune's captured natural satellite Triton. Triton, the smallest of these, has more mass than all smaller natural satellites together. Similarly in the next size group of nine mid-sized natural satellites, between 1,000 km and 1,600 km across, Titania, Oberon, Rhea, Iapetus, Charon, Ariel, Umbriel, Dione, and Tethys, the smallest, Tethys, has more mass than all smaller natural satellites together. As well as the natural satellites of the various planets, there are also over 80 known natural satellites of the dwarf planets, minor planets and other small Solar System bodies. Some studies estimate that up to 15% of all trans-Neptunian objects could have satellites.

Monday, February 17, 2020

Gliese 581g

From Wikipedia, the free encyclopedia
 
Gliese 581g
Exoplanet Comparison Gliese 581 g.png
Size comparison of Gliese 581g with Earth and Neptune.
(Based on selected hypothetical modeled compositions)
Discovery
Discovered bySteven S. Vogt et al.
Discovery siteKeck Observatory, Hawaii
Discovery dateSeptember 29, 2010
Radial velocity
Orbital characteristics
Epoch JD 2451409.762
0.13 AU (19,000,000 km)
Eccentricity0
32 d
271 ± 48
Semi-amplitude1.29 ± 0.19
StarGliese 581
Physical characteristics
Temperature242 K (−31 °C; −24 °F) to 261 K (−12 °C; 10 °F)

Gliese 581g /ˈɡlzə/, unofficially known as Zarmina (or Zarmina's World), is an unconfirmed (and frequently disputed) exoplanet claimed to orbit within the Gliese 581 system, twenty light-years from Earth. It was discovered by the Lick–Carnegie Exoplanet Survey, and is the sixth planet orbiting the star;[10] however, its existence could not be confirmed by the European Southern Observatory (ESO) / High Accuracy Radial Velocity Planet Searcher (HARPS) survey team, and its existence remains controversial. It is thought to be near the middle of the habitable zone of its star. That means it could sustain liquid water—a necessity for all known life—on its surface, if there are favorable atmospheric conditions on the planet.

Gliese 581g was claimed to be detected by astronomers of the Lick–Carnegie Exoplanet Survey. The authors stated that data sets from both the High Resolution Echelle Spectrometer (HIRES) and HARPS were needed to sense the planet; however, the ESO/HARPS survey team could not confirm its existence. The planet remained unconfirmed as consensus for its existence could not be reached. Additional reanalysis only found evidence for four planets, but the discoverer, Steven S. Vogt, did not agree with those conclusions; another study by Guillem Anglada-Escudé later supported the planet's existence. In 2012, a reanalysis by Vogt supported its existence. A new study in 2014 concluded that it was a false positive; however, in 2015, a reanalysis of the data suggested that it could still exist. The planet is thought to be tidally locked to its star. If the planet has a dense atmosphere, it may be able to circulate heat. The actual habitability of the planet depends on the composition of its surface and the atmosphere. It is thought to have temperatures around −37 to −11 °C (−35 to 10 °F). By comparison, Earth has an average surface temperature of 15 °C (59 °F)—while Mars has an average surface temperature of about −63 °C (−81 °F). The planet has, according to Vogt, a "100%" chance of supporting life, but this is disputed. The supposed detection of Gliese 581g foreshadows what Vogt calls "a second Age of Discovery".

History


Discovery

The W. M. Keck Observatory at twilight, where Gliese 581g was discovered
 
The six-planet model of the Gliese 581 system with circular orbits.

The planet was claimed, in September 2010, to have been detected by astronomers in the Lick–Carnegie Exoplanet Survey, led by principal investigator Steven Vogt, professor of astronomy and astrophysics at the University of California, Santa Cruz, and co-investigator R. Paul Butler of the Carnegie Institution of Washington. The discovery was made using radial velocity measurements, combining 122 observations obtained over 11 years from the HIRES instrument of the W. M. Keck Observatory with 119 measurements obtained over 4.3 years from the HARPS instrument of the ESO 3.6 m Telescope at La Silla Observatory. In addition, brightness measurements of the star were confirmed with a robotic telescope from Tennessee State University.

After subtracting the signals of the previously known Gliese 581 planets, b, c, d and e, the signals of two additional planets were apparent: a 445-day signal from a newly recognized outermost planet designated f, and the 37-day signal from Gliese 581g. The probability that the detection of the latter was spurious was estimated at only 2.7 in a million. The authors stated that while the 37-day signal is "clearly visible in the HIRES data set alone", "the HARPS data set alone is not able to reliably sense this planet" and concluded, "It is really necessary to combine both data sets to sense all these planets reliably". The Lick–Carnegie team explained the results of their research in a paper published in the Astrophysical Journal, which were also made available in preprint version on arXiv. Although not sanctioned by the IAU's naming conventions, Vogt's team informally refers to the planet as "Zarmina's World" after his wife, and in some cases simply as Zarmina. 

During a press release announcing the discovery, Vogt et al. acknowledged that the "Gliese 581 system has a somewhat checkered history of habitable planet claims," as two previously discovered planets in the same system, Gliese 581c and d, were also regarded as potentially habitable, but later evaluated as being outside the conservatively defined habitable zone.

Nondetection in new HARPS data analysis

Two weeks after the announcement of the discovery of Gliese 581g, another team—led by Michael Mayor of the Geneva Observatory—reported that in a new analysis of 179 measurements taken by the HARPS spectrograph over 6.5 years, neither planet g nor planet f was detectable. An astronomer who works on HARPS data at the Geneva Observatory, Francesco Pepe, said in an email for an Astrobiology Magazine article republished on Space.com, "The reason for that is that, despite the extreme accuracy of the instrument and the many data points, the signal amplitude of this potential fifth planet is very low and basically at the level of the measurement noise". The Geneva team had also published their paper on arXiv, but it appeared to not have been accepted for publication. 

Vogt responded to the latest concerns by saying, "I am not overly surprised by this as these are very weak signals, and adding 60 points onto 119 does not necessarily translate to big gains in sensitivity." More recently, Vogt added, "I feel confident that we have accurately and honestly reported our uncertainties and done a thorough and responsible job extracting what information this data set has to offer. I feel confident that anyone independently analyzing this data set will come to the same conclusions."

Differences in the two groups' results may involve the planetary orbital characteristics assumed in calculations. According to Massachusetts Institute of Technology astronomer Sara Seager, Vogt postulated the planets around Gliese 581 had perfectly circular orbits whereas the Swiss group thought the orbits were more eccentric. This difference in approach may be the reason for the disagreement, according to Alan Boss. Butler remarked that with additional observations, "I would expect that on the time scale of a year or two this should be settled." Other astronomers also supported a deliberate evaluation: Seager stated, "We will have consensus at some point; I don't think we need to vote right now." Ray Jayawardhana noted, "Given the extremely interesting implications of such a discovery, it's important to have independent confirmation." Gliese 581g is listed as "unconfirmed" in the Extrasolar Planets Encyclopaedia.

Further analyses of HIRES/HARPS data

In December 2010, a claimed methodological error was reported—by a group led by Rene Andrae of the Max Planck Institute for Astronomy—in the data analysis that led to the discovery of Gliese 581f and g.

In 2011, another reanalysis—performed by a group led by Philip Gregory of the University of British Columbia—found no clear evidence for a fifth planetary signal in the combined HIRES/HARPS data set. The claim was made that the HARPS data provided only some evidence for 5 planet signals, while incorporation of both data sets actually degraded the evidence for more than four planets (i.e., none for 581f or 581g). Mikko Tuomi of the University of Hertfordshire performed a Bayesian reanalysis of the HARPS and HIRES data with the result that they "do not imply the conclusion that there are two additional companions orbiting GJ 581".

"I have studied [the paper] in detail and do not agree with his conclusions," Steven Vogt said in reply, concerned that Gregory has considered the HIRES data as more uncertain. "The question of Gliese 581g's existence won't be settled definitively until researchers gather more high-precision radial velocity data", Vogt said. However Vogt expects further analysis to strengthen the case for the planet.

By performing a number of statistical tests, Guillem Anglada-Escudé of the Carnegie Institute of Washington concluded that the existence of Gl 581g was well supported by the available data, despite the presence of a statistical degeneracy that derives from an alias of the first eccentric harmonic of another planet in the system. In a forthcoming paper, Anglada-Escudé and Rebekah Dawson claimed that, "with the data we have, the most likely explanation is that this planet is still there."

2012 reanalysis of HARPS data

In July 2012, Vogt reanalyzed the 2011 data proposed by Forveille et al., noting that there were five objects (Gliese 581b, e, c, g, d, with no evidence for f). Planet g was orbiting around 0.13 AU with an orbital period of thirty-two days, placing it inside the habitable zone. Vogt concluded that the object had a minimum mass of 2.2 M and had a false positive probability of less than 4%. Vogt also said that they couldn't come to same conclusion as the Geneva team, without removing data points, "I don't know whether this omission was intentional or a mistake," he said, "I can only say that, if it was a mistake, they've been making that same mistake more than once now, not only in this paper, but in other papers as well." Vogt then said that the planet was there as long as all of the planets had circular orbits, and that the circular orbits work because “of dynamic stability, goodness-of-fit, and principle of parsimony (Occam's Razor)."

Further studies

A study in 2014—published in Science—led by postdoctoral researcher Paul Robertson concluded that Gliese 581d is "an artifact of stellar activity which, when incompletely corrected, causes the false detection of planet g." "They were very high value targets if they were real," Robertson said, "But unfortunately we found out that they weren't." It was pointed out—during a press release by Penn State University—that sunspots could sometimes masquerade as planetary signals. An additional study concluded that Gliese 581g's existence depends on Gliese 581d's eccentricity. The planet was later delisted from the Habitable Exoplanets Catalog, which is run by the University of Puerto Rico at Arecibo. Later, in October that year, Abel Mendez wrote—in a blog post characterizing "false starts" in exoplanet habitability—that the planet does not exist. 

In 2015, a team of researchers led by Guillem Anglada-Escudé of the University of London reanalyzed the data and suggested planet Gliese 581d really could exist, despite stellar variability, and that last year's claim of the existence of Gliese 581d and g was triggered by poor and inadequate analysis of the data, saying that the statistical method used by Robertson's team was "simply inadequate for identifying small planets like Gliese 581d", urging that the data be reanalyzed using a "more accurate model."

Physical characteristics

Tidal locking

Because of Gliese 581g's proximity to its parent star, it is predicted to be tidally locked to Gliese 581. Just as Earth's Moon always presents the same face to the Earth, the length of Gliese 581g's sidereal day would then precisely match the length of its year, meaning it would be permanently light on one half and permanently dark on the other half of its surface.

Atmosphere

Planetary orbits in the Gliese 581 system compared to those of the Solar System ("g" designates Gliese 581g)

An atmosphere that is dense will circulate heat, potentially allowing a wide area on the surface to be habitable. For example, Venus has a solar rotation rate approximately 117 times slower than Earth's, producing prolonged days and nights. Despite the uneven distribution of sunlight over time intervals shorter than several months, unilluminated areas of Venus are kept almost as hot as the day side by globally circulating winds. Simulations have shown that an atmosphere containing appropriate levels of CO2 and H2O need only be a tenth the pressure of Earth's atmosphere (100 mbar) to effectively distribute heat to the night side. Current technology cannot determine the atmospheric or surface composition of the planet due to the overpowering light of its parent star.

Whether or not a tidally locked planet with the orbital characteristics of Gliese 581g is actually habitable depends on the composition of the atmosphere and the nature of the planetary surface. A comprehensive modeling study including atmospheric dynamics, realistic radiative transfer and the physics of formation of sea ice (if the planet has an ocean) indicates that the planet can become as hot as Venus if it is dry and allows carbon dioxide to accumulate in its atmosphere. The same study identified two habitable states for a water-rich planet. If the planet has a very thin atmosphere, a thick ice crust forms over most of the surface, but the substellar point remains hot enough to yield a region of thin ice or even episodically open water. If the planet has an atmosphere with Earthlike pressures, containing approximately 20% (molar) carbon dioxide, then the greenhouse effect is sufficiently strong to maintain a pool of open water under the substellar point with temperatures comparable to the Earth's tropics. This state has been dubbed "Eyeball Earth" by the author. Modeling of the effect of tidal locking on Gliese 581g's possible atmosphere, using a general circulation model employing an atmosphere with Earthlike surface pressure but a highly idealized representation of radiative processes, indicates that for a solid-surface planet the locations of maximum warmth would be distributed in a sideways chevron-shaped pattern centered near the substellar point.

Climate

The habitable zone of Gliese 581 compared with the Solar System's habitable zone, showing Gliese 581g near the center
 
It is estimated that the average global equilibrium temperature (the temperature in the absence of atmospheric effects) of Gliese 581g would range from 209 to 228 K (−64 to −45 °C, or −84 to −49 °F) for Bond albedos (reflectivities) from 0.5 to 0.3 (with the latter being more characteristic of the inner Solar System). Adding an Earthlike greenhouse effect would yield an average surface temperature in the range of 236 to 261 K (−37 to −12 °C, or −35 to 10 °F). Gliese 581g would be in an orbit where a silicate weathering thermostat could operate, and this could lead to accumulation of sufficient carbon dioxide in the atmosphere to permit liquid water to exist at the surface, provided the planet's composition and tectonic behavior could support sustained outgassing.

Temperature
comparisons
Mercury Venus Earth Gliese 581g Mars
Global
equilibrium
temperature
431 K
158 °C
316 °F
307 K
34 °C
93 °F
255 K
−18 °C
−0.4 °F
209 K to 228 K
−64 °C to −45 °C
−83 °F to −49 °F
206 K
−67 °C
−88.6 °F
+ Venus'
GHG effect

737 K
464 °C
867 °F



+ Earth's
GHG effect


288 K
15 °C
59 °F
236 K to 261 K
−37 °C to −12 °C
−35 °F to 10 °F

+ Mars'
GHG effect




210 K
−63 °C
−81 °F
Tidally
locked
No Almost No Likely No
Global Bond albedo 0.142 0.9 0.29 0.5 to 0.3 0.25

By comparison, Earth's present global equilibrium temperature is 255 K (−18 °C), which is raised to 288 K (15 °C) by greenhouse effects. However, when life evolved early in Earth's history, the Sun's energy output is thought to have been only about 75% of its current value, which would have correspondingly lowered Earth's equilibrium temperature under the same albedo conditions. Yet Earth maintained equable temperatures in that era, perhaps with a more intense greenhouse effect, or a lower albedo, than at present. 

Current Martian surface temperatures vary from lows of about −87 °C (−125 °F) during polar winter to highs of up to −5 °C (23 °F) in summer. The wide range is due to the rarefied atmosphere, which cannot store much solar heat, and the low thermal inertia of the soil. Early in its history, a denser atmosphere may have permitted the formation of an ocean on Mars.

Habitability

The planet is thought to be located within the habitable zone of its parent star, a red dwarf, which is cooler than the Sun. That means planets need to orbit closer to the star than in the Solar System to maintain liquid water on their surface. While habitability is generally defined by the planets ability to support liquid water, there are many factors that can influence it. This includes the atmosphere of the planet and the variability of its parent star in terms of emitting energy.

In an interview with Lisa-Joy Zgorski of the National Science Foundation, Steven Vogt was asked what he thought about the chances of life existing on Gliese 581g. Vogt was optimistic: "I'm not a biologist, nor do I want to play one on TV. Personally, given the ubiquity and propensity of life to flourish wherever it can, I would say that... the chances of life on this planet are 100%. I have almost no doubt about it." In the same article Dr. Seager is quoted as saying "Everyone is so primed to say here's the next place we're going to find life, but this isn't a good planet for follow-up." According to Vogt, the long lifetime of red dwarfs improves the chances of life being present. "It's pretty hard to stop life once you give it the right conditions", he said. According to the Associated Press interview with Steven Vogt, "Life on other planets doesn't mean E.T. Even a simple single-cell bacteria or the equivalent of shower mold would shake perceptions about the uniqueness of life on Earth."

Implications

Scientists have monitored only a relatively small number of stars in the search for exoplanets. The discovery of a potentially habitable planet like Gliese 581g so early in the search might mean that habitable planets are more widely distributed than had been previously believed. According to Vogt, the discovery "implies an interesting lower limit on η as there are only ~116 known solar-type or later stars ... out to the 6.3 parsec distance of GJ 581". This finding foreshadows what Vogt calls a new, second Age of Discovery in exoplanetology:
Confirmation by other teams through additional high-precision RVs would be most welcome. But if GJ 581g is confirmed by further RV scrutiny, the mere fact that a habitable planet has been detected this soon, around such a nearby star, suggests that η could well be on the order of a few tens of percent, and thus that either we have just been incredibly lucky in this early detection, or we are truly on the threshold of a second Age of Discovery.
If the fraction of stars with potentially habitable planets (η, "eta-Earth") is on the order of a few tens of percent as Vogt proposes, and the Sun's stellar neighborhood is a typical sample of the galaxy, then the discovery of Gliese 581g in the habitable zone of its star points to the potential of billions of Earthlike planets in our Milky Way galaxy alone.

Type Ib and Ic supernovae

From Wikipedia, the free encyclopedia
 
The Type Ib supernova SN 2008D in galaxy NGC 2770, shown in X-ray (left) and visible light (right), at the corresponding positions of the images. (NASA image.)
 
Type Ib and Type Ic supernovae are categories of supernovae that are caused by the stellar core collapse of massive stars. These stars have shed or been stripped of their outer envelope of hydrogen, and, when compared to the spectrum of Type Ia supernovae, they lack the absorption line of silicon. Compared to Type Ib, Type Ic supernovae are hypothesized to have lost more of their initial envelope, including most of their helium. The two types are usually referred to as stripped core-collapse supernovae

Spectra

When a supernova is observed, it can be categorized in the MinkowskiZwicky supernova classification scheme based upon the absorption lines that appear in its spectrum. A supernova is first categorized as either a Type I or Type II, then subcategorized based on more specific traits. Supernovae belonging to the general category Type I lack hydrogen lines in their spectra; in contrast to Type II supernovae which do display lines of hydrogen. The Type I category is subdivided into Type Ia, Type Ib and Type Ic.

Type Ib/Ic supernovae are distinguished from Type Ia by the lack of an absorption line of singly ionized silicon at a wavelength of 635.5 nanometres. As Type Ib and Ic supernovae age, they also display lines from elements such as oxygen, calcium and magnesium. In contrast, Type Ia spectra become dominated by lines of iron. Type Ic supernovae are distinguished from Type Ib in that the former also lack lines of helium at 587.6 nm.

Formation

The onion-like layers of an evolved, massive star (not to scale).

Prior to becoming a supernova, an evolved massive star is organized in the manner of an onion, with layers of different elements undergoing fusion. The outermost layer consists of hydrogen, followed by helium, carbon, oxygen, and so forth. Thus when the outer envelope of hydrogen is shed, this exposes the next layer that consists primarily of helium (mixed with other elements). This can occur when a very hot, massive star reaches a point in its evolution when significant mass loss is occurring from its stellar wind. Highly massive stars (with 25 or more times the mass of the Sun) can lose up to 10−5 solar masses (M) each year—the equivalent of 1 M every 100,000 years.

Type Ib and Ic supernovae are hypothesized to have been produced by core collapse of massive stars that have lost their outer layer of hydrogen and helium, either via winds or mass transfer to a companion. The progenitors of Types Ib and Ic have lost most of their outer envelopes due to strong stellar winds or else from interaction with a close companion of about 3–4 M. Rapid mass loss can occur in the case of a Wolf–Rayet star, and these massive objects show a spectrum that is lacking in hydrogen. Type Ib progenitors have ejected most of the hydrogen in their outer atmospheres, while Type Ic progenitors have lost both the hydrogen and helium shells; in other words, Type Ic have lost more of their envelope (i.e., much of the helium layer) than the progenitors of Type Ib. In other respects, however, the underlying mechanism behind Type Ib and Ic supernovae is similar to that of a Type II supernova, thus placing Types Ib and Ic between Type Ia and Type II. Because of their similarity, Type Ib and Ic supernovae are sometimes collectively called Type Ibc supernovae.

There is some evidence that a small fraction of the Type Ic supernovae may be the progenitors of gamma ray bursts (GRBs); in particular, type Ic supernovae that have broad spectral lines corresponding to high-velocity outflows are thought to be strongly associated with GRBs. However, it is also hypothesized that any hydrogen-stripped Type Ib or Ic supernova could be a GRB, dependent upon the geometry of the explosion. In any case, astronomers believe that most Type Ib, and probably Type Ic as well, result from core collapse in stripped, massive stars, rather than from the thermonuclear runaway of white dwarfs.

As they are formed from rare, very massive stars, the rate of Type Ib and Ic supernovae occurrence is much lower than the corresponding rate for Type II supernovae. They normally occur in regions of new star formation, and are extremely rare in elliptical galaxies. Because they share a similar operating mechanism, Type Ibc and the various Type II supernovae are collectively called core-collapse supernovae. In particular, Type Ibc may be referred to as stripped core-collapse supernovae.

Light curves

The light curves (a plot of luminosity versus time) of Type Ib supernovae vary in form, but in some cases can be nearly identical to those of Type Ia supernovae. However, Type Ib light curves may peak at lower luminosity and may be redder. In the infrared portion of the spectrum, the light curve of a Type Ib supernova is similar to a Type II-L light curve. Type Ib supernovae usually have slower decline rates for the spectral curves than Ic.

Type Ia supernovae light curves are useful for measuring distances on a cosmological scale. That is, they serve as standard candles. However, due to the similarity of the spectra of Type Ib and Ic supernovae, the latter can form a source of contamination of supernova surveys and must be carefully removed from the observed samples before making distance estimates.

Internet research

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Internet_...