Search This Blog

Wednesday, June 10, 2020

Biological pest control

From Wikipedia, the free encyclopedia
 
Syrphus hoverfly larva (below) feed on aphids (above), making them natural biological control agents.
 
A parasitoid wasp (Cotesia congregata) adult with pupal cocoons on its host, a tobacco hornworm (Manduca sexta, green background), an example of a hymenopteran biological control agent

Biological control or biocontrol is a method of controlling pests such as insects, mites, weeds and plant diseases using other organisms. It relies on predation, parasitism, herbivory, or other natural mechanisms, but typically also involves an active human management role. It can be an important component of integrated pest management (IPM) programs.

There are three basic strategies for biological pest control: classical (importation), where a natural enemy of a pest is introduced in the hope of achieving control; inductive (augmentation), in which a large population of natural enemies are administered for quick pest control; and inoculative (conservation), in which measures are taken to maintain natural enemies through regular reestablishment.

Natural enemies of insect pests, also known as biological control agents, include predators, parasitoids, pathogens, and competitors. Biological control agents of plant diseases are most often referred to as antagonists. Biological control agents of weeds include seed predators, herbivores and plant pathogens. 

Biological control can have side-effects on biodiversity through attacks on non-target species by any of the same mechanisms, especially when a species is introduced without thorough understanding of the possible consequences.

History

The term "biological control" was first used by Harry Scott Smith at the 1919 meeting of the Pacific Slope Branch of the American Association of Economic Entomologists, in Riverside, California. It was brought into more widespread use by the entomologist Paul H. DeBach (1914–1993) who worked on citrus crop pests throughout his life. However, the practice has previously been used for centuries. The first report of the use of an insect species to control an insect pest comes from "Nanfang Caomu Zhuang" (南方草木狀 Plants of the Southern Regions) (c. 304 AD), attributed to Western Jin dynasty botanist Ji Han (嵇含, 263–307), in which it is mentioned that "Jiaozhi people sell ants and their nests attached to twigs looking like thin cotton envelopes, the reddish-yellow ant being larger than normal. Without such ants, southern citrus fruits will be severely insect-damaged". The ants used are known as huang gan (huang = yellow, gan = citrus) ants (Oecophylla smaragdina). The practice was later reported by Ling Biao Lu Yi (late Tang Dynasty or Early Five Dynasties), in Ji Le Pian by Zhuang Jisu (Southern Song Dynasty), in the Book of Tree Planting by Yu Zhen Mu (Ming Dynasty), in the book Guangdong Xing Yu (17th century), Lingnan by Wu Zhen Fang (Qing Dynasty), in Nanyue Miscellanies by Li Diao Yuan, and others.

Biological control techniques as we know them today started to emerge in the 1870s. During this decade, in the US, the Missouri State Entomologist C. V. Riley and the Illinois State Entomologist W. LeBaron began within-state redistribution of parasitoids to control crop pests. The first international shipment of an insect as biological control agent was made by Charles V. Riley in 1873, shipping to France the predatory mites Tyroglyphus phylloxera to help fight the grapevine phylloxera (Daktulosphaira vitifoliae) that was destroying grapevines in France. The United States Department of Agriculture (USDA) initiated research in classical biological control following the establishment of the Division of Entomology in 1881, with C. V. Riley as Chief. The first importation of a parasitoidal wasp into the United States was that of the braconid Cotesia glomerata in 1883–1884, imported from Europe to control the invasive cabbage white butterfly, Pieris rapae. In 1888–1889 the vedalia beetle, Rodolia cardinalis, a lady beetle, was introduced from Australia to California to control the cottony cushion scale, Icerya purchasi. This had become a major problem for the newly developed citrus industry in California, but by the end of 1889 the cottony cushion scale population had already declined. This great success led to further introductions of beneficial insects into the US.

In 1905 the USDA initiated its first large-scale biological control program, sending entomologists to Europe and Japan to look for natural enemies of the gypsy moth, Lymantria dispar dispar, and brown-tail moth, Euproctis chrysorrhoea, invasive pests of trees and shrubs. As a result, nine parasitoids (solitary wasps) of gypsy moth, seven of brown-tail moth, and two predators of both moths became established in the US. Although the gypsy moth was not fully controlled by these natural enemies, the frequency, duration, and severity of its outbreaks were reduced and the program was regarded as successful. This program also led to the development of many concepts, principles, and procedures for the implementation of biological control programs.

Cactoblastis cactorum larvae feeding on Opuntia prickly pear cacti

Prickly pear cacti were introduced into Queensland, Australia as ornamental plants, starting in 1788. They quickly spread to cover over 25 million hectares of Australia by 1920, increasing by 1 million hectares per year. Digging, burning and crushing all proved ineffective. Two control agents were introduced to help control the spread of the plant, the cactus moth Cactoblastis cactorum, and the scale insect Dactylopius. Between 1926 and 1931, tens of millions of cactus moth eggs were distributed around Queensland with great success, and by 1932, most areas of prickly pear had been destroyed.

The first reported case of a classical biological control attempt in Canada involves the parasitoidal wasp Trichogramma minutum. Individuals were caught in New York State and released in Ontario gardens in 1882 by William Saunders, trained chemist and first Director of the Dominion Experimental Farms, for controlling the invasive currantworm Nematus ribesii. Between 1884 and 1908, the first Dominion Entomologist, James Fletcher, continued introductions of other parasitoids and pathogens for the control of pests in Canada.

Types of biological pest control

There are three basic biological pest control strategies: importation (classical biological control), augmentation and conservation.

Importation

Rodolia cardinalis, the vedalia beetle, was imported from Australia to California in the 19th century, successfully controlling cottony cushion scale.
 
Importation or classical biological control involves the introduction of a pest's natural enemies to a new locale where they do not occur naturally. Early instances were often unofficial and not based on research, and some introduced species became serious pests themselves.

To be most effective at controlling a pest, a biological control agent requires a colonizing ability which allows it to keep pace with changes to the habitat in space and time. Control is greatest if the agent has temporal persistence, so that it can maintain its population even in the temporary absence of the target species, and if it is an opportunistic forager, enabling it to rapidly exploit a pest population.

One of the earliest successes was in controlling Icerya purchasi (cottony cushion scale) in Australia, using a predatory insect Rodolia cardinalis (the vedalia beetle). This success was repeated in California using the beetle and a parasitoidal fly, Cryptochaetum iceryae. Other successful cases include the control of Antonina graminis in Texas by Neodusmetia sangwani in the 1960s.

Damage from Hypera postica, the alfalfa weevil, a serious introduced pest of forage, was substantially reduced by the introduction of natural enemies. 20 years after their introduction the population of weevils in the alfalfa area treated for alfalfa weevil in the Northeastern United States remained 75 percent down.

The invasive species Alternanthera philoxeroides (alligator weed) was controlled in Florida (U.S.) by introducing alligator weed flea beetle.
 
Alligator weed was introduced to the United States from South America. It takes root in shallow water, interfering with navigation, irrigation, and flood control. The alligator weed flea beetle and two other biological controls were released in Florida, greatly reducing the amount of land covered by the plant. Another aquatic weed, the giant salvinia (Salvinia molesta) is a serious pest, covering waterways, reducing water flow and harming native species. Control with the salvinia weevil (Cyrtobagous salviniae) and the salvinia stem-borer moth (Samea multiplicalis) is effective in warm climates, and in Zimbabwe, a 99% control of the weed was obtained over a two-year period.

Small commercially reared parasitoidal wasps, Trichogramma ostriniae, provide limited and erratic control of the European corn borer (Ostrinia nubilalis), a serious pest. Careful formulations of the bacterium Bacillus thuringiensis are more effective.

The population of Levuana iridescens, the Levuana moth, a serious coconut pest in Fiji, was brought under control by a classical biological control program in the 1920s.

Augmentation

Hippodamia convergens, the convergent lady beetle, is commonly sold for biological control of aphids.

Augmentation involves the supplemental release of natural enemies that occur in a particular area, boosting the naturally occurring populations there. In inoculative release, small numbers of the control agents are released at intervals to allow them to reproduce, in the hope of setting up longer-term control, and thus keeping the pest down to a low level, constituting prevention rather than cure. In inundative release, in contrast, large numbers are released in the hope of rapidly reducing a damaging pest population, correcting a problem that has already arisen. Augmentation can be effective, but is not guaranteed to work, and depends on the precise details of the interactions between each pest and control agent.

An example of inoculative release occurs in the horticultural production of several crops in greenhouses. Periodic releases of the parasitoidal wasp, Encarsia formosa, are used to control greenhouse whitefly, while the predatory mite Phytoseiulus persimilis is used for control of the two-spotted spider mite.

The egg parasite Trichogramma is frequently released inundatively to control harmful moths. Similarly, Bacillus thuringiensis and other microbial insecticides are used in large enough quantities for a rapid effect. Recommended release rates for Trichogramma in vegetable or field crops range from 5,000 to 200,000 per acre (1 to 50 per square metre) per week according to the level of pest infestation. Similarly, nematodes that kill insects (that are entomopathogenic) are released at rates of millions and even billions per acre for control of certain soil-dwelling insect pests.

Conservation

The conservation of existing natural enemies in an environment is the third method of biological pest control. Natural enemies are already adapted to the habitat and to the target pest, and their conservation can be simple and cost-effective, as when nectar-producing crop plants are grown in the borders of rice fields. These provide nectar to support parasitoids and predators of planthopper pests and have been demonstrated to be so effective (reducing pest densities by 10- or even 100-fold) that farmers sprayed 70% less insecticides and enjoyed yields boosted by 5%. Predators of aphids were similarly found to be present in tussock grasses by field boundary hedges in England, but they spread too slowly to reach the centres of fields. Control was improved by planting a metre-wide strip of tussock grasses in field centres, enabling aphid predators to overwinter there.

An inverted flowerpot filled with straw to attract earwigs

Cropping systems can be modified to favor natural enemies, a practice sometimes referred to as habitat manipulation. Providing a suitable habitat, such as a shelterbelt, hedgerow, or beetle bank where beneficial insects such as parasitoidal wasps can live and reproduce, can help ensure the survival of populations of natural enemies. Things as simple as leaving a layer of fallen leaves or mulch in place provides a suitable food source for worms and provides a shelter for insects, in turn being a food source for such beneficial mammals as hedgehogs and shrews. Compost piles and stacks of wood can provide shelter for invertebrates and small mammals. Long grass and ponds support amphibians. Not removing dead annuals and non-hardy plants in the autumn allows insects to make use of their hollow stems during winter. In California, prune trees are sometimes planted in grape vineyards to provide an improved overwintering habitat or refuge for a key grape pest parasitoid. The providing of artificial shelters in the form of wooden caskets, boxes or flowerpots is also sometimes undertaken, particularly in gardens, to make a cropped area more attractive to natural enemies. For example, earwigs are natural predators which can be encouraged in gardens by hanging upside-down flowerpots filled with straw or wood wool. Green lacewings can be encouraged by using plastic bottles with an open bottom and a roll of cardboard inside. Birdhouses enable insectivorous birds to nest; the most useful birds can be attracted by choosing an opening just large enough for the desired species.

In cotton production, the replacement of broad-spectrum insecticides with selective control measures such as Bt cotton can create a more favorable environment for natural enemies of cotton pests due to reduced insecticide exposure risk. Such predators or parasitoids can control pests not affected by the Bt protein. Reduced prey quality and abundance associated increased control from Bt cotton can also indirectly decrease natural enemy populations in some cases, but the percentage of pests eaten or parasitized in Bt and non-Bt cotton are often similar.

Biological control agents

Predators

Predatory lacewings are available from biocontrol dealers.

Predators are mainly free-living species that directly consume a large number of prey during their whole lifetime. Given that many major crop pests are insects, many of the predators used in biological control are insectivorous species. Lady beetles, and in particular their larvae which are active between May and July in the northern hemisphere, are voracious predators of aphids, and also consume mites, scale insects and small caterpillars. The spotted lady beetle (Coleomegilla maculata) is also able to feed on the eggs and larvae of the Colorado potato beetle (Leptinotarsa decemlineata).

The larvae of many hoverfly species principally feed upon aphids, one larva devouring up to 400 in its lifetime. Their effectiveness in commercial crops has not been studied.

Predatory Polistes wasp searching for bollworms or other caterpillars on a cotton plant
 
Several species of entomopathogenic nematode are important predators of insect and other invertebrate pests. Entomopathogenic nematodes form a stress–resistant stage known as the infective juvenile. These spread in the soil and infect suitable insect hosts. Upon entering the insect they move to the hemolymph where they recover from their stagnated state of development and release their bacterial symbionts. The bacterial symbionts reproduce and release toxins, which then kill the host insect. Phasmarhabditis hermaphrodita is a microscopic nematode that kills slugs. Its complex life cycle includes a free-living, infective stage in the soil where it becomes associated with a pathogenic bacteria such as Moraxella osloensis. The nematode enters the slug through the posterior mantle region, thereafter feeding and reproducing inside, but it is the bacteria that kill the slug. The nematode is available commercially in Europe and is applied by watering onto moist soil. Entomopathogenic nematodes have a limited shelf life because of their limited resistance to high temperature and dry conditions. The type of soil they are applied to may also limit their effectiveness.

Generalized life cycle of entomopathogenic nematodes and their bacterial symbionts.

Species used to control spider mites include the predatory mites Phytoseiulus persimilis, Neoseilus californicus, and Amblyseius cucumeris, the predatory midge Feltiella acarisuga, and a ladybird Stethorus punctillum. The bug Orius insidiosus has been successfully used against the two-spotted spider mite and the western flower thrips (Frankliniella occidentalis).

Predators including Cactoblastis cactorum (mentioned above) can also be used to destroy invasive plant species. As another example, the poison hemlock moth (Agonopterix alstroemeriana) can be used to control poison hemlock (Conium maculatum). During its larval stage, the moth strictly consumes its host plant, poison hemlock, and can exist at hundreds of larvae per individual host plant, destroying large swathes of the hemlock.

The parasitoid wasp Aleiodes indiscretus parasitizing a gypsy moth caterpillar, a serious pest of forestry
 
For rodent pests, cats are effective biological control when used in conjunction with reduction of "harborage"/hiding locations. While cats are effective at preventing rodent "population explosions", they are not effective for eliminating pre-existing severe infestations. Barn owls are also sometimes used as biological rodent control. Although there are no quantitative studies of the effectiveness of barn owls for this purpose, they are known rodent predators that can be used in addition to or instead of cats; they can be encouraged into an area with nest boxes.

In Honduras, where the mosquito Aedes aegypti was transmitting dengue fever and other infectious diseases, biological control was attempted by a community action plan; copepods, baby turtles, and juvenile tilapia were added to the wells and tanks where the mosquito breeds, and the mosquito larvae were eliminated.

Parasitoids

Parasitoids lay their eggs on or in the body of an insect host, which is then used as a food for developing larvae. The host is ultimately killed. Most insect parasitoids are wasps or flies, and many have a very narrow host range. The most important groups are the ichneumonid wasps, which mainly use caterpillars as hosts; braconid wasps, which attack caterpillars and a wide range of other insects including aphids; chalcid wasps, which parasitize eggs and larvae of many insect species; and tachinid flies, which parasitize a wide range of insects including caterpillars, beetle adults and larvae, and true bugs. Parasitoids are most effective at reducing pest populations when their host organisms have limited refuges to hide from them.

Encarsia formosa, widely used in greenhouse horticulture, was one of the first biological control agents developed.
 
Life cycles of greenhouse whitefly and its parasitoid wasp Encarsia formosa

Parasitoids are among the most widely used biological control agents. Commercially, there are two types of rearing systems: short-term daily output with high production of parasitoids per day, and long-term, low daily output systems. In most instances, production will need to be matched with the appropriate release dates when susceptible host species at a suitable phase of development will be available. Larger production facilities produce on a yearlong basis, whereas some facilities produce only seasonally. Rearing facilities are usually a significant distance from where the agents are to be used in the field, and transporting the parasitoids from the point of production to the point of use can pose problems. Shipping conditions can be too hot, and even vibrations from planes or trucks can adversely affect parasitoids.

Encarsia formosa is a small predatory chalcid wasp which is a parasitoid of whitefly, a sap-feeding insect which can cause wilting and black sooty moulds in glasshouse vegetable and ornamental crops. It is most effective when dealing with low level infestations, giving protection over a long period of time. The wasp lays its eggs in young whitefly 'scales', turning them black as the parasite larvae pupate. Gonatocerus ashmeadi (Hymenoptera: Mymaridae) has been introduced to control the glassy-winged sharpshooter Homalodisca vitripennis (Hemiptera: Cicadellidae) in French Polynesia and has successfully controlled ~95% of the pest density.

The eastern spruce budworm is an example of a destructive insect in fir and spruce forests. Birds are a natural form of biological control, but the Trichogramma minutum, a species of parasitic wasp, has been investigated as an alternative to more controversial chemical controls.

There are a number of recent studies pursuing sustainable methods for controlling urban cockroaches using parasitic wasps. Since most cockroaches remain in the sewer system and sheltered areas which are inaccessible to insecticides, employing active-hunter wasps is a strategy to try and reduce their populations.

Pathogens

Pathogenic micro-organisms include bacteria, fungi, and viruses. They kill or debilitate their host and are relatively host-specific. Various microbial insect diseases occur naturally, but may also be used as biological pesticides. When naturally occurring, these outbreaks are density-dependent in that they generally only occur as insect populations become denser.

Bacteria

Bacteria used for biological control infect insects via their digestive tracts, so they offer only limited options for controlling insects with sucking mouth parts such as aphids and scale insects. Bacillus thuringiensis, a soil-dwelling bacterium, is the most widely applied species of bacteria used for biological control, with at least four sub-species used against Lepidopteran (moth, butterfly), Coleopteran (beetle) and Dipteran (true fly) insect pests. The bacterium is available to organic farmers in sachets of dried spores which are mixed with water and sprayed onto vulnerable plants such as brassicas and fruit trees. Genes from B. thuringiensis have also been incorporated into transgenic crops, making the plants express some of the bacterium's toxins, which are proteins. These confer resistance to insect pests and thus reduce the necessity for pesticide use. If pests develop resistance to the toxins in these crops, B. thuringiensis will become useless in organic farming also. The bacterium Paenibacillus popilliae which causes milky spore disease has been found useful in the control of Japanese beetle, killing the larvae. It is very specific to its host species and is harmless to vertebrates and other invertebrates.

Fungi

Green peach aphid, a pest in its own right and a vector of plant viruses, killed by the fungus Pandora neoaphidis (Zygomycota: Entomophthorales) Scale bar = 0.3 mm.

Entomopathogenic fungi, which cause disease in insects, include at least 14 species that attack aphids. Beauveria bassiana is mass-produced and used to manage a wide variety of insect pests including whiteflies, thrips, aphids and weevils. Lecanicillium spp. are deployed against white flies, thrips and aphids. Metarhizium spp. are used against pests including beetles, locusts and other grasshoppers, Hemiptera, and spider mites. Paecilomyces fumosoroseus is effective against white flies, thrips and aphids; Purpureocillium lilacinus is used against root-knot nematodes, and 89 Trichoderma species against certain plant pathogens. Trichoderma viride has been used against Dutch elm disease, and has shown some effect in suppressing silver leaf, a disease of stone fruits caused by the pathogenic fungus Chondrostereum purpureum.

The fungi Cordyceps and Metacordyceps are deployed against a wide spectrum of arthropods. Entomophaga is effective against pests such as the green peach aphid.

Several members of Chytridiomycota and Blastocladiomycota have been explored as agents of biological control. From Chytridiomycota, Synchytrium solstitiale is being considered as a control agent of the yellow star thistle (Centaurea solstitialis) in the United States.

Viruses

Baculoviruses are specific to individual insect host species and have been shown to be useful in biological pest control. For example, the Lymantria dispar multicapsid nuclear polyhedrosis virus has been used to spray large areas of forest in North America where larvae of the gypsy moth are causing serious defoliation. The moth larvae are killed by the virus they have eaten and die, the disintegrating cadavers leaving virus particles on the foliage to infect other larvae.

A mammalian virus, the rabbit haemorrhagic disease virus was introduced to Australia to attempt to control the European rabbit populations there. It escaped from quarantine and spread across the country, killing large numbers of rabbits. Very young animals survived, passing immunity to their offspring in due course and eventually producing a virus-resistant population. Introduction into New Zealand in the 1990s was similarly successful at first, but a decade later, immunity had developed and populations had returned to pre-RHD levels.

Oomycota

Lagenidium giganteum is a water-borne mold that parasitizes the larval stage of mosquitoes. When applied to water, the motile spores avoid unsuitable host species and search out suitable mosquito larval hosts. This mold has the advantages of a dormant phase, resistant to desiccation, with slow-release characteristics over several years. Unfortunately, it is susceptible to many chemicals used in mosquito abatement programmes.

Competitors

The legume vine Mucuna pruriens is used in the countries of Benin and Vietnam as a biological control for problematic Imperata cylindrica grass: the vine is extremely vigorous and suppresses neighbouring plants by out-competing them for space and light. Mucuna pruriens is said not to be invasive outside its cultivated area. Desmodium uncinatum can be used in push-pull farming to stop the parasitic plant, witchweed (Striga).

The Australian bush fly, Musca vetustissima, is a major nuisance pest in Australia, but native decomposers found in Australia are not adapted to feeding on cow dung, which is where bush flies breed. Therefore, the Australian Dung Beetle Project (1965–1985), led by George Bornemissza of the Commonwealth Scientific and Industrial Research Organisation, released forty-nine species of dung beetle, to reduce the amount of dung and therefore also the potential breeding sites of the fly.

Combined use of parasitoids and pathogens

In cases of massive and severe infection of invasive pests, techniques of pest control are often used in combination. An example is the emerald ash borer, Agrilus planipennis, an invasive beetle from China, which has destroyed tens of millions of ash trees in its introduced range in North America. As part of the campaign against it, from 2003 American scientists and the Chinese Academy of Forestry searched for its natural enemies in the wild, leading to the discovery of several parasitoid wasps, namely Tetrastichus planipennisi, a gregarious larval endoparasitoid, Oobius agrili, a solitary, parthenogenic egg parasitoid, and Spathius agrili, a gregarious larval ectoparasitoid. These have been introduced and released into the United States of America as a possible biological control of the emerald ash borer. Initial results for Tetrastichus planipennisi have shown promise, and it is now being released along with Beauveria bassiana, a fungal pathogen with known insecticidal properties.

Difficulties

Many of the most important pests are exotic, invasive species that severely impact agriculture, horticulture, forestry and urban environments. They tend to arrive without their co-evolved parasites, pathogens and predators, and by escaping from these, populations may soar. Importing the natural enemies of these pests may seem a logical move but this may have unintended consequences; regulations may be ineffective and there may be unanticipated effects on biodiversity, and the adoption of the techniques may prove challenging because of a lack of knowledge among farmers and growers.

Side effects

Biological control can affect biodiversity through predation, parasitism, pathogenicity, competition, or other attacks on non-target species. An introduced control does not always target only the intended pest species; it can also target native species. In Hawaii during the 1940s parasitic wasps were introduced to control a lepidopteran pest and the wasps are still found there today. This may have a negative impact on the native ecosystem; however, host range and impacts need to be studied before declaring their impact on the environment.

Cane toad (introduced into Australia 1935) spread from 1940 to 1980: it was ineffective as a control agent. Its distribution has continued to widen since 1980.

Vertebrate animals tend to be generalist feeders, and seldom make good biological control agents; many of the classic cases of "biocontrol gone awry" involve vertebrates. For example, the cane toad (Rhinella marina) was intentionally introduced to Australia to control the greyback cane beetle (Dermolepida albohirtum), and other pests of sugar cane. 102 toads were obtained from Hawaii and bred in captivity to increase their numbers until they were released into the sugar cane fields of the tropic north in 1935. It was later discovered that the toads could not jump very high and so were unable to eat the cane beetles which stayed on the upper stalks of the cane plants. However, the toad thrived by feeding on other insects and soon spread very rapidly; it took over native amphibian habitat and brought foreign disease to native toads and frogs, dramatically reducing their populations. Also, when it is threatened or handled, the cane toad releases poison from parotoid glands on its shoulders; native Australian species such as goannas, tiger snakes, dingos and northern quolls that attempted to eat the toad were harmed or killed. However, there has been some recent evidence that native predators are adapting, both physiologically and through changing their behaviour, so in the long run, their populations may recover.

Rhinocyllus conicus, a seed-feeding weevil, was introduced to North America to control exotic musk thistle (Carduus nutans) and Canadian thistle (Cirsium arvense). However, the weevil also attacks native thistles, harming such species as the endemic Platte thistle (Cirsium neomexicanum) by selecting larger plants (which reduced the gene pool), reducing seed production and ultimately threatening the species' survival. Similarly, the weevil Larinus planus was also used to try to control the Canadian thistle, but it damaged other thistles as well. This included one species classified as threatened.

The small Asian mongoose (Herpestus javanicus) was introduced to Hawaii in order to control the rat population. However, the mongoose was diurnal, and the rats emerged at night; the mongoose therefore preyed on the endemic birds of Hawaii, especially their eggs, more often than it ate the rats, and now both rats and mongooses threaten the birds. This introduction was undertaken without understanding the consequences of such an action. No regulations existed at the time, and more careful evaluation should prevent such releases now.

The sturdy and prolific eastern mosquitofish (Gambusia holbrooki) is a native of the southeastern United States and was introduced around the world in the 1930s and '40s to feed on mosquito larvae and thus combat malaria. However, it has thrived at the expense of local species, causing a decline of endemic fish and frogs through competition for food resources, as well as through eating their eggs and larvae. In Australia, control of the mosquitofish is the subject of discussion; in 1989 researchers A. H. Arthington and L. L. Lloyd stated that "biological population control is well beyond present capabilities".

Grower education

A potential obstacle to the adoption of biological pest control measures is that growers may prefer to stay with the familiar use of pesticides. However, pesticides have undesired effects, including the development of resistance among pests, and the destruction of natural enemies; these may in turn enable outbreaks of pests of other species than the ones originally targeted, and on crops at a distance from those treated with pesticides. One method of increasing grower adoption of biocontrol methods involves letting them learn by doing, for example showing them simple field experiments, enabling them to observe the live predation of pests, or demonstrations of parasitised pests. In the Philippines, early season sprays against leaf folder caterpillars were common practice, but growers were asked to follow a 'rule of thumb' of not spraying against leaf folders for the first 30 days after transplanting; participation in this resulted in a reduction of insecticide use by 1/3 and a change in grower perception of insecticide use.

Sterile insect technique

From Wikipedia, the free encyclopedia

The screw-worm fly was the first pest successfully eliminated from an area through the sterile insect technique, by the use of an integrated area-wide approach.

The sterile insect technique (SIT) is a method of biological insect control, whereby overwhelming numbers of sterile insects are released into the wild. The released insects are preferably male, as this is more cost-effective and the females may in some situations cause damage by laying eggs in the crop, or, in the case of mosquitoes, taking blood from humans. The sterile males compete with wild males to mate with the females. Females that mate with a sterile male produce no offspring, thus reducing the next generation's population. Sterile insects are not self-replicating and, therefore, cannot become established in the environment. Repeated release of sterile males over low population densities can further reduce and in cases of isolation eliminate pest populations, although cost-effective control with dense target populations is subjected to population suppression prior to the release of the sterile males.

The technique has successfully been used to eradicate the screw-worm fly (Cochliomyia hominivorax) from North and Central America. Many successes have been achieved for control of fruit fly pests, most particularly the Mediterranean fruit fly (Ceratitis capitata) and the Mexican fruit fly (Anastrepha ludens). Active research is being conducted to determine this technique's effectiveness in combatting the Queensland Fruit Fly (Bactrocera tyroni).

Sterilization is induced through the effects of irradiation on the reproductive cells of the insects. SIT does not involve the release of insects modified through transgenic (genetic engineering) processes. Moreover, SIT does not introduce non-native species into an ecosystem.

History

The idea of using sterile males was first written about by the Russian geneticist A.S. Serebrovsky in 1940[4] but the English speaking world came up with the idea independently and applied it practically around the 1950s. Raymond Bushland and Edward Knipling developed the SIT to eliminate screw-worms preying on warm-blooded animals, especially cattle. They exploited the fact that female screw-worms mate only once to attack screw-worm reproduction. The larvae of these flies invade open wounds and eat into animal flesh, killing infected cattle within 10 days. In the 1950s, screw-worms caused annual losses to American meat and dairy supplies that were projected at above $200 million. Screw-worm maggots can also parasitize human flesh.

Entomologist Edward F. Knipling

Bushland and Knipling began searching for an alternative to chemical pesticides in the late 1930s when they were working at the United States Department of Agriculture Laboratory in Menard, Texas. At that time, the screw-worm was devastating livestock herds across the American South. Red meat and dairy supplies were affected across Mexico, Central America, and South America.

Knipling developed the theory of autocidal control – breaking the pest's reproductive cycle. Bushland's enthusiasm for Knipling's theory sparked the pair to search for a way to rear flies in a "factory" setting, and to find an effective way to sterilize flies.

Their work was interrupted by World War II, but they resumed their efforts in the early 1950s with successful tests on the screw-worm population of Sanibel Island, Florida. The sterile insect technique worked; near eradication was achieved using X-ray-sterilized flies.

Successes

The map shows the current (orange) and former (yellow) distribution area and the approximate seasonal spread of the screw-worm fly.

In 1954, the technique was used to eradicate screw-worms from the 176-square-mile (460 km2) island of Curaçao, off the coast of Venezuela. Screw-worms were eliminated in seven weeks, saving the domestic goat herds that were a source of meat and milk.

During the late 1950s to the 1970s, SIT was used to control the screw-worm population in the US. In the 1980s, Mexico and Belize eliminated their screw-worm problems with SIT. Eradication programs progressed across Central America in the 1990s, followed by the establishment of a biological barrier in Panama to prevent reinfestation from the south. The map shows the current and former distribution area and the approximate seasonal spread of the screw-worm fly.

In 1991, Knipling and Bushland's technique halted a serious outbreak of New World screw-worm in northern Africa. Programs against the Mediterranean fruit fly in Mexico, Florida and California use the SIT to maintain their fly-free status. The technique was used to eradicate the melon fly from Okinawa and in the fight against the tsetse fly in Africa. 

The technique has suppressed insects threatening livestock, fruit, vegetable, and fiber crops. The technique was lauded for its environmental attributes: it leaves no residues and has no (direct) negative effect on nontarget species.

The technique has been a boon in protecting the agricultural products to feed the world's human population. Both Bushland and Knipling received worldwide recognition for their leadership and scientific achievements, including the 1992 World Food Prize. The technique were hailed by former U.S. Secretary of Agriculture Orville Freeman as "the greatest entomological achievement of the 20th century."

African trypanosomiasis

Sleeping sickness or African trypanosomiasis is a parasitic disease in humans. Caused by protozoa of genus Trypanosoma and transmitted by the tsetse fly, the disease is endemic in regions of sub-Saharan Africa, covering about 36 countries and 60 million people. An estimated 50,000 – 70,000 people are infected and about 40,000 die every year. The three most recent epidemics occurred in 1896 -1906, 1920, and 1970. 

Studies of the tsetse fly show that females generally mate only once (occasionally twice). Studies found this process to be effective in preventing the scourge.

Successful programs

Targets

History of transboundary shipment of sterile insects

Transboundary shipment of sterile insects has taken place on a continuous basis for 55 years (since 1963). The total number of sterile insects shipped has been estimated at more than one trillion in thousands of shipments across borders to 23 recipient countries from 50 sterile insect factories in 25 countries. During this long period and many precedents, no problems associated with possible hazards have been identified, and thus the shipment of sterile insects have never been subjected to any regulatory action. The table shows the history of transboundary shipments which started in 1963 with the shipments of sterile Mexican fruit fly (Anastrepha ludens, Loew), from Monterrey, Mexico, to Texas, US.

Drawbacks

  • Naturally low population periods or repeated pesticide treatment are sometimes required to suppress populations before the use of sterile insects.
  • Sex separation can be difficult, though this can be easily performed on a large scale where genetic sexing systems have been developed as for the Mediterranean fruit fly.
  • Radiation, transport and release treatments can reduce male mating fitness.
  • The technique is species-specific. For instance, the technique must be implemented separately for each of the 6 economically important tsetse fly species.
  • Mass rearing and irradiation require precision processes. Failures have occurred when unexpectedly fertile breeding males were released.
  • Area-wide approach is more effective, as migration of wild insects from outside the control area could recreate the problem.
  • The cost of producing sufficient sterile insects can be prohibitive in some locations but decreases with economies of scale.

Conclusion and perspectives

Biotechnological approaches based on genetically modified organism (transgenic organisms) are still under development. However, since no legal framework exists to authorize the release of such organisms in nature, sterilization by irradiation remains the most used technique. A meeting was held at FAO headquarters in Rome, 8 to 12 April 2002 on "Status and Risk Assessment of the Use of Transgenic Arthropods in Plant Protection". The resulting proceedings of the meeting have been used by the North American Plant Protection Organization (NAPPO) to develop NAPPO Regional Standard No. 27 on "Guidelines for Importation and Confined Field release of Transgenic Arthropods", which might provide the basis for the rational development of the use of transgenic arthropods.

Economic benefits

Economic benefits have been demonstrated. The direct benefits of screwworm eradication to the North and Central American livestock industries are estimated to be over $1.5 billion/year, compared with an investment over half a century around $1 billion. Mexico protects a fruit and vegetable export market of over $3 billion/year through an annual investment around $25 million. Medfly-free status has been estimated to have opened markets for Chile's fruit exports up to $500 million. Eradication of tsetse has resulted in major socio-economic benefits for Zanzibar. When implemented on an area-wide basis and a scaled rearing process, SIT is cost-competitive with conventional control, in addition to its environmental benefits.

Tuesday, June 9, 2020

Genetically modified animal

From Wikipedia, the free encyclopedia
 
Genetically modified animals are animals that have been genetically modified for a variety of purposes including producing drugs, enhancing yields, increase resistance to disease, etc. The vast majority of genetically modified animals are at the research stage with the number close to entering the market remains small.

Production

The process of genetically engineering mammals is a slow, tedious, and expensive process. As with other genetically modified organisms (GMOs), first genetic engineers must isolate the gene they wish to insert into the host organism. This can be taken from a cell containing the gene or artificially synthesised. If the chosen gene or the donor organism's genome has been well studied it may already be accessible from a genetic library. The gene is then combined with other genetic elements, including a promoter and terminator region and usually a selectable marker.

A number of techniques are available for inserting the isolated gene into the host genome. With animals DNA is generally inserted into using microinjection, where it can be injected through the cell's nuclear envelope directly into the nucleus, or through the use of viral vectors. The first transgenic animals were produced by injecting viral DNA into embryos and then implanting the embryos in females. It is necessary to ensure that the inserted DNA is present in the embryonic stem cells. The embryo would develop and it would be hoped that some of the genetic material would be incorporated into the reproductive cells. Then researchers would have to wait until the animal reached breeding age and then offspring would be screened for presence of the gene in every cell, using PCR, Southern hybridization, and DNA sequencing.

New technologies are making genetic modifications easier and more precise. Gene targeting techniques, which creates double-stranded breaks and takes advantage on the cells natural homologous recombination repair systems, have been developed to target insertion to exact locations. Genome editing uses artificially engineered nucleases that create breaks at specific points. There are four families of engineered nucleases: meganucleases, zinc finger nucleases, transcription activator-like effector nucleases (TALENs), and the Cas9-guideRNA system (adapted from CRISPR). TALEN and CRISPR are the two most commonly used and each has its own advantages. TALENs have greater target specificity, while CRISPR is easier to design and more efficient. The development of the CRISPR-Cas9 gene editing system has effectively halved the amount of time needed to develop genetically modified animals.

History

In 1974 Rudolf Jaenisch created the first GM animal.

Humans have domesticated animals since around 12,000 BCE, using selective breeding or artificial selection (as contrasted with natural selection). The process of selective breeding, in which organisms with desired traits (and thus with the desired genes) are used to breed the next generation and organisms lacking the trait are not bred, is a precursor to the modern concept of genetic modification Various advancements in genetics allowed humans to directly alter the DNA and therefore genes of organisms. In 1972 Paul Berg created the first recombinant DNA molecule when he combined DNA from a monkey virus with that of the lambda virus.

In 1974 Rudolf Jaenisch created a transgenic mouse by introducing foreign DNA into its embryo, making it the world's first transgenic animal. However it took another eight years before transgenic mice were developed that passed the transgene to their offspring. Genetically modified mice were created in 1984 that carried cloned oncogenes, predisposing them to developing cancer. Mice with genes knocked out (knockout mouse) were created in 1989. The first transgenic livestock were produced in 1985 and the first animal to synthesise transgenic proteins in their milk were mice, engineered to produce human tissue plasminogen activator in 1987.

The first genetically modified animal to be commercialised was the GloFish, a Zebra fish with a fluorescent gene added that allows it to glow in the dark under ultraviolet light. It was released to the US market in 2003. The first genetically modified animal to be approved for food use was AquAdvantage salmon in 2015. The salmon were transformed with a growth hormone-regulating gene from a Pacific Chinook salmon and a promoter from an ocean pout enabling it to grow year-round instead of only during spring and summer.

Mammals

Some chimeras, like the blotched mouse shown, are created through genetic modification techniques like gene targeting.
 
GM mammals are created for research purposes, production of industrial or therapeutic products, agricultural uses or improving their health. There is also a market for creating genetically modified pets.

Medicine

Mammals are the best models for human disease, making genetic engineered ones vital to the discovery and development of cures and treatments for many serious diseases. Knocking out genes responsible for human genetic disorders allows researchers to study the mechanism of the disease and to test possible cures. Genetically modified mice have been the most common mammals used in biomedical research, as they are cheap and easy to manipulate. Pigs are also a good target as they have a similar body size and anatomical features, physiology, pathophysiological response and diet. Nonhuman primates are the most similar model organisms to humans, but there is less public acceptance towards using them as research animals. In 2009, scientists announced that they had successfully transferred a gene into a primate species (marmosets) and produced a stable line of breeding transgenic primates for the first time. Their first research target for these marmosets was Parkinson's disease, but they were also considering amyotrophic lateral sclerosis and Huntington's disease.

Transgenic pig for cheese production
 
Human proteins expressed in mammals are more likely to be similar to their natural counterparts than those expressed in plants or microorganisms. Stable expression has been accomplished in sheep, pigs, rats and other animals. In 2009, the first human biological drug produced from such an animal, a goat., was approved. The drug, ATryn, is an anticoagulant which reduces the probability of blood clots during surgery or childbirth was extracted from the goat's milk. Human alpha-1-antitrypsin is another protein that is used in treating humans with this deficiency. Another area is in creating pigs with greater capacity for human organ transplants (xenotransplantation). Pigs have been genetically modified so that their organs can no longer carry retroviruses or have modifications to reduce the chance of rejection. Pig lungs from genetically modified pigs are being considered for transplantation into humans. There is even potential to create chimeric pigs that can carry human organs.

Livestock

Livestock are modified with the intention of improving economically important traits such as growth-rate, quality of meat, milk composition, disease resistance and survival. Animals have been engineered to grow faster, be healthier and resist diseases. Modifications have also improved the wool production of sheep and udder health of cows.

Goats have been genetically engineered to produce milk with strong spiderweb-like silk proteins in their milk. The goat gene sequence has been modified, using fresh umbilical cords taken from kids, in order to code for the human enzyme lysozyme. Researchers wanted to alter the milk produced by the goats, to contain lysozyme in order to fight off bacteria causing diarrhea in humans.

Enviropig was a genetically enhanced line of Yorkshire pigs in Canada created with the capability of digesting plant phosphorus more efficiently than conventional Yorkshire pigs. The A transgene construct consisting of a promoter expressed in the murine parotid gland and the Escherichia coli phytase gene was introduced into the pig embryo by pronuclear microinjection. This caused the pigs to produce the enzyme phytase, which breaks down the indigestible phosphorus, in their saliva. As a result, they excrete 30 to 70% less phosphorus in manure depending upon the age and diet. The lower concentrations of phosphorus in surface runoff reduces algal growth, because phosphorus is the limiting nutrient for algae. Because algae consume large amounts of oxygen, excessive growth can result in dead zones for fish. Funding for the Enviropig program ended in April 2012, and as no new partners were found the pigs were killed. However, the genetic material will be stored at the Canadian Agricultural Genetics Repository Program. In 2006, a pig was engineered to produce omega-3 fatty acids through the expression of a roundworm gene.

Herman the Bull on display in Naturalis Biodiversity Center

In 1990, the world's first transgenic bovine, Herman the Bull, was developed. Herman was genetically engineered by micro-injected embyonic cells with the human gene coding for lactoferrin. The Dutch Parliament changed the law in 1992 to allow Herman to reproduce. Eight calves were born in 1994 and all calves inherited the lactoferrin gene. With subsequent sirings, Herman fathered a total of 83 calves. Dutch law required Herman to be slaughtered at the conclusion of the experiment. However the Dutch Agriculture Minister at the time, Jozias van Aartsen, granted him a reprieve provided he did not have more offspring after public and scientists rallied to his defence. Together with cloned cows named Holly and Belle, he lived out his retirement at Naturalis, the National Museum of Natural History in Leiden. On 2 April 2004, Herman was euthanised by veterinarians from the University of Utrecht because he suffered from osteoarthritis. At the time of his death Herman was one of the oldest bulls in the Netherlands. Herman's hide has been preserved and mounted by taxidermists and is permanently on display in Naturalis. They say that he represents the start of a new era in the way man deals with nature, an icon of scientific progress, and the subsequent public discussion of these issues.

Researchers have developed GM dairy cattle to grow without horns (sometimes referred to as "polled") which can cause injuries to farmers and other animals. DNA was taken from the genome of Red Angus cattle, which is known to suppress horn growth, and inserted into cells taken from an elite Holstein bull called "Randy". Each of the progeny will be a clone of Randy, but without his horns, and their offspring should also be hornless. In 2011, Chinese scientists generated dairy cows genetically engineered with genes from human beings to produce milk that would be the same as human breast milk. This could potentially benefit mothers who cannot produce breast milk but want their children to have breast milk rather than formula. The researchers claim these transgenic cows to be identical to regular cows. Two months later, scientists from Argentina presented Rosita, a transgenic cow incorporating two human genes, to produce milk with similar properties as human breast milk. In 2012, researchers from New Zealand also developed a genetically engineered cow that produced allergy-free milk.

Research

Scientists have genetically engineered several organisms, including some mammals, to include green fluorescent protein (GFP), for research purposes. GFP and other similar reporting genes allow easy visualisation and localisation of the products of the genetic modification. Fluorescent pigs have been bred to study human organ transplants, regenerating ocular photoreceptor cells, and other topics. In 2011 green-fluorescent cats were created to find therapies for HIV/AIDS and other diseases as feline immunodeficiency virus (FIV) is related to HIV.

Conservation

Genetic modification of the myxoma virus has been proposed to conserve European wild rabbits in the Iberian peninsula and to help regulate them in Australia. To protect the Iberian species from viral diseases, the myxoma virus was genetically modified to immunize the rabbits, while in Australia the same myxoma virus was genetically modified to lower fertility in the Australian rabbit population. There have also been suggestions that genetic engineering could be used to bring animals back from extinction. It involves changing the genome of a close living relative to resemble the extinct one and is currently being attempted with the passenger pigeon. Genes associated with the woolly mammoth have been added to the genome of an African Elephant, although the lead researcher says he has no intention of using live elephants.

Humans

Gene therapy uses genetically modified viruses to deliver genes which can cure disease in humans. Although gene therapy is still relatively new, it has had some successes. It has been used to treat genetic disorders such as severe combined immunodeficiency, and Leber's congenital amaurosis. Treatments are also being developed for a range of other currently incurable diseases, such as cystic fibrosis, sickle cell anemia, Parkinson's disease, cancer, diabetes, heart disease and muscular dystrophy. These treatments only affect somatic cells, meaning any changes would not be inheritable. Germline gene therapy results in any change being inheritable, which has raised concerns within the scientific community. In 2015, CRISPR was used to edit the DNA of non-viable human embryos. In November 2018, He Jiankui announced that he had edited the genomes of two human embryos, to attempt to disable the CCR5 gene, which codes for a receptor that HIV uses to enter cells. He said that twin girls, Lulu and Nana, had been born a few weeks earlier and that they carried functional copies of CCR5 along with disabled CCR5 (mosaicism) and were still vulnerable to HIV. The work was widely condemned as unethical, dangerous, and premature.

Fish

Genetically modified fish are used for scientific research, as pets and as a food source. Aquaculture is a growing industry, currently providing over half the consumed fish worldwide. Through genetic engineering It is possible to increase growth rates, reduce food intake, remove allergenic properties, increase cold tolerance and provide disease resistance.

Detecting pollution

Fish can also be used to detect aquatic pollution or function as bioreactors. Several groups have been developing zebrafish to detect pollution by attaching fluorescent proteins to genes activated by the presence of pollutants. The fish will then glow and can be used as environmental sensors.

Pets

The GloFish is a brand of genetically modified fluorescent zebrafish with bright red, green, and orange fluorescent color. It was originally developed by one of the groups to detect pollution, but is now part of the ornamental fish trade, becoming the first genetically modified animal to become publicly available as a pet when it was introduced for sale in 2003.

Research

GM fish are widely used in basic research in genetics and development. Two species of fish, zebrafish and medaka, are most commonly modified because they have optically clear chorions (membranes in the egg), rapidly develop, and the 1-cell embryo is easy to see and microinject with transgenic DNA. Zebrafish are model organisms for developmental processes, regeneration, genetics, behaviour, disease mechanisms and toxicity testing. Their transparency allows researchers to observe developmental stages, intestinal functions and tumour growth. The generation of transgenic protocols (whole organism, cell or tissue specific, tagged with reporter genes) has increased the level of information gained by studying these fish.

Growth

GM fish have been developed with promoters driving an over-production of "all fish" growth hormone for use in the aquaculture industry to increase the speed of development and potentially reduce fishing pressure on wild stocks. This has resulted in dramatic growth enhancement in several species, including salmon, trout and tilapia.

AquaBounty Technologies have produced a salmon that can mature in half the time as wild salmon. The fish is an Atlantic salmon with a Chinook salmon (Oncorhynchus tshawytscha) gene inserted. This allows the fish to produce growth hormones all year round compared to the wild-type fish that produces the hormone for only part of the year. The fish also has a second gene inserted from the eel-like ocean pout that acts like an "on" switch for the hormone. Pout also have antifreeze proteins in their blood, which allow the GM salmon to survive near-freezing waters and continue their development. The wild-type salmon takes 24 to 30 months to reach market size (4–6 kg) whereas the producers of the GM salmon say it requires only 18 months for the GM fish to achieve this. In November 2015, the FDA of the USA approved the AquAdvantage salmon for commercial production, sale and consumption, the first non-plant GMO food to be commerialised.

AquaBounty say that to prevent the genetically modified fish inadvertently breeding with wild salmon, all the fish will be female and reproductively sterile, although a small percentage of the females may remain fertile. Some opponents of the GM salmon have dubbed it the "Frankenfish".

Insects

Research

In biological research, transgenic fruit flies (Drosophila melanogaster) are model organisms used to study the effects of genetic changes on development. Fruit flies are often preferred over other animals due to their short life cycle and low maintenance requirements. It also has a relatively simple genome compared to many vertebrates, with typically only one copy of each gene, making phenotypic analysis easy. Drosophila have been used to study genetics and inheritance, embryonic development, learning, behavior, and aging. Transposons (particularly P elements) are well developed in Drosophila and provided an early method to add transgenes to their genome, although this has been taken over by more modern gene-editing techniques.

Population control

Due to their significance to human health, scientists are looking at ways to control mosquitoes through genetic engineering. Malaria-resistant mosquitoes have been developed in the laboratory by inserting a gene that reduces the development of the malaria parasite and then use homing endonucleases to rapidly spread that gene throughout the male population (known as a gene drive). This has been taken further by swapping it for a lethal gene. In trials the populations of Aedes aegypti mosquitoes, the single most important carrier of dengue fever and Zika virus, were reduced by between 80% and by 90%. Another approach is to use the sterile insect technique, whereby males genetically engineered to be sterile out compete viable males, to reduce population numbers.

Other insect pests that make attractive targets are moths. Diamondback moths cause US$4 to $5 billion of damage a year worldwide. The approach is similar to the mosquitoes, where males transformed with a gene that prevents females from reaching maturity will be released. They underwent field trials in 2017. Genetically modified moths have previously been released in field trials. A strain of pink bollworm that were sterilised with radiation were genetically engineered to express a red fluorescent protein making it easier for researchers to monitor them.

Industry

Silkworm, the larvae stage of Bombyx mori, is an economically important insect in sericulture. Scientists are developing strategies to enhance silk quality and quantity. There is also potential to use the silk producing machinery to make other valuable proteins. Proteins expressed by silkworms include; human serum albumin, human collagen α-chain, mouse monoclonal antibody and N-glycanase. Silkworms have been created that produce spider silk, a stronger but extremely difficult to harvest silk, and even novel silks.

Birds

Attempts to produce genetically modified birds began before 1980. Chickens have been genetically modified for a variety of purposes. This includes studying embryo development, preventing the transmission of bird flu and providing evolutionary insights using reverse engineering to recreate dinosaur-like phenotypes. A GM chicken that produces the drug Kanuma, an enzyme that treats a rare condition, in its egg passed regulatory approval in 2015.

Disease control

One potential use of GM birds could be to reduce the spread of avian disease. Researchers at Roslin Institute have produced a strain of GM chickens (Gallus gallus domesticus) that does not transmit avian flu to other birds; however, these birds are still susceptible to contracting it. The genetic modification is an RNA molecule that prevents the virus reproduction by mimicking the region of the flu virus genome that controls replication. It is referred to as a "decoy" because it diverts the flu virus enzyme, the polymerase, from functions that are required for virus replication.

Evolutionary insights

A team of geneticists led by University of Montana paleontologist Jack Horner is seeking to modify a chicken to express several features present in ancestral maniraptorans but absent in modern birds, such as teeth and a long tail, creating what has been dubbed a 'chickenosaurus'. Parallel projects have produced chicken embryos expressing dinosaur-like skull, leg, and foot anatomy.

Amphibians

Genetically modified frogs, in particular Xenopus laevis and Xenopus tropicalis, are used in development biology. GM frogs can also be used as pollution sensors, especially for endocrine disrupting chemicals. There are proposals to use genetic engineering to control cane toads in Australia.

Nematodes

The nemotode Caenorhabditis elegans is one of the major model organisms for researching molecular biology. RNA interference (RNAi) was discovered in C elegans and could be induced by simply feeding them bacteria modified to express double stranded RNA. It is also relatively easy to produce stable transgenic nemotodes and this along with RNAi are the major tools used in studying their genes. The most common use of transgenic nematodes has been studying gene expression and localisation by attaching reporter genes. Transgenes can also be combined with RNAi to rescue phenotypes, altered to study gene function, imaged in real time as the cells develop or used to control expression for different tissues or developmental stages. Transgenic nematodes have been used to study viruses, toxicology, and diseases and to detect environmental pollutants.

Other

Systems have been developed to create transgenic organisms in a wide variety of other animals. The gene responsible for Albinism in sea cucumbers has been found and used to engineer white sea cucumbers, a rare delicacy. The technology also opens the way to investigate the genes responsible for some of the cucumbers more unusual traits, including hibernating in summer, eviscerating their intestines, and dissolving their bodies upon death. Flatworms have the ability to regenerate themselves from a single cell. Until 2017 there was no effective way to transform them, which hampered research. By using microinjection and radiation scientist have now created the first genetically modified flatworms. The bristle worm, a marine annelid, has been modified. It is of interest due to its reproductive cycle being synchronised with lunar phases, regeneration capacity and slow evolution rate. Cnidaria such as Hydra and the sea anemone Nematostella vectensis are attractive model organisms to study the evolution of immunity and certain developmental processes. Other organisms that have been genetically modified include snails, geckos, turtles, crayfish, oysters, shrimp, clams, abalone and sponges.

Emic and etic

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Emic_and_etic In anthropology , folk...