Search This Blog

Sunday, July 12, 2020

Automaton

From Wikipedia, the free encyclopedia

A postulated interior of the Duck of Vaucanson (1738-1739)
 
Pinocchio automaton.

An automaton (/ɔːˈtɒmətən/; plural: automata or automatons) is a relatively self-operating machine, or a machine or control mechanism designed to automatically follow a predetermined sequence of operations, or respond to predetermined instructions. Some automata, such as bellstrikers in mechanical clocks, are designed to give the illusion to the casual observer that they are operating under their own power. Since long ago the term is commonly associated with automated puppets that resemble moving humans or animals, built to impress and/or to entertain people.

Animatronics are a modern type of automata with electronics, often used for the portrayal of characters in films and in theme park attractions.

Etymology

The word "automaton" is the latinization of the Greek αὐτόματον, automaton, (neuter) "acting of one's own will". This word was first used by Homer to describe automatic door opening, or automatic movement of wheeled tripods. It is more often used to describe non-electronic moving machines, especially those that have been made to resemble human or animal actions, such as the jacks on old public striking clocks, or the cuckoo and any other animated figures on a cuckoo clock.

History

Ancient

The book About automata by Hero of Alexandria (1589 edition)

There are many examples of automata in Greek mythology: Hephaestus created automata for his workshop; Talos was an artificial man of bronze; Daedalus used quicksilver to install voice in his moving statues; King Alkinous of the Phaiakians employed gold and silver watchdogs.

The automata in the Hellenistic world were intended as tools, toys, religious idols, or prototypes for demonstrating basic scientific principles. Numerous water powered automata were built by Ktesibios, a Greek inventor and the first head of the Great Library of Alexandria, for example he "used water to sound a whistle and make a model owl move. He had invented the world's first "cuckoo" clock".[a] This tradition continued in Alexandria with inventors such as the Greek mathematician Hero of Alexandria (sometimes known as Heron), whose writings on hydraulics, pneumatics, and mechanics described siphons, a fire engine, a water organ, the aeolipile, and a programmable cart.

The Antikythera mechanism from 150–100 BC was designed to calculate the positions of astronomical objects.

Complex mechanical devices are known to have existed in Hellenistic Greece, though the only surviving example is the Antikythera mechanism, the earliest known analog computer. The clockwork is thought to have come originally from Rhodes, where there was apparently a tradition of mechanical engineering; the island was renowned for its automata; to quote Pindar's seventh Olympic Ode:
The animated figures stand
Adorning every public street
And seem to breathe in stone, or
move their marble feet.
However, the information gleaned from recent scans of the fragments indicate that it may have come from the colonies of Corinth in Sicily and implies a connection with Archimedes.

According to Jewish legend, Solomon used his wisdom to design a throne with mechanical animals which hailed him as king when he ascended it; upon sitting down an eagle would place a crown upon his head, and a dove would bring him a Torah scroll. It is also said that when King Solomon stepped upon the throne, a mechanism was set in motion. As soon as he stepped upon the first step, a golden ox and a golden lion each stretched out one foot to support him and help him rise to the next step. On each side, the animals helped the King up until he was comfortably seated upon the throne.

In ancient China, a curious account of automata is found in the Lie Zi text, believed to have originated around 400 BCE and compiled around the fourth century CE. Within it there is a description of a much earlier encounter between King Mu of Zhou (1023-957 BCE) and a mechanical engineer known as Yan Shi, an 'artificer'. The latter proudly presented the king with a very realistic and detailed life-size, human-shaped figure of his mechanical handiwork:
The king stared at the figure in astonishment. It walked with rapid strides, moving its head up and down, so that anyone would have taken it for a live human being. The artificer touched its chin, and it began singing, perfectly in tune. He touched its hand, and it began posturing, keeping perfect time...As the performance was drawing to an end, the robot winked its eye and made advances to the ladies in attendance, whereupon the king became incensed and would have had Yen Shih [Yan Shi] executed on the spot had not the latter, in mortal fear, instantly taken the robot to pieces to let him see what it really was. And, indeed, it turned out to be only a construction of leather, wood, glue and lacquer, variously coloured white, black, red and blue. Examining it closely, the king found all the internal organs complete—liver, gall, heart, lungs, spleen, kidneys, stomach and intestines; and over these again, muscles, bones and limbs with their joints, skin, teeth and hair, all of them artificial...The king tried the effect of taking away the heart, and found that the mouth could no longer speak; he took away the liver and the eyes could no longer see; he took away the kidneys and the legs lost their power of locomotion. The king was delighted.
The 5th-century BC Mohist philosopher Mozi and his contemporary Lu Ban are attributed with the invention of artificial wooden birds (ma yuan) that could successfully fly, according to the Han Fei Zi.

Other notable examples of automata include Archytas' dove, mentioned by Aulus Gellius. Similar Chinese accounts of flying automata are written of the 5th century BC Mohist philosopher Mozi and his contemporary Lu Ban, who made artificial wooden birds (ma yuan) that could successfully fly according to the Han Fei Zi and other texts.

Medieval

The manufacturing tradition of automata continued in the Greek world well into the Middle Ages. On his visit to Constantinople in 949 ambassador Liutprand of Cremona described automata in the emperor Theophilos' palace, including
"lions, made either of bronze or wood covered with gold, which struck the ground with their tails and roared with open mouth and quivering tongue," "a tree of gilded bronze, its branches filled with birds, likewise made of bronze gilded over, and these emitted cries appropriate to their species" and "the emperor's throne" itself, which "was made in such a cunning manner that at one moment it was down on the ground, while at another it rose higher and was to be seen up in the air."
Similar automata in the throne room (singing birds, roaring and moving lions) were described by Luitprand's contemporary, the Byzantine emperor Constantine Porphyrogenitus, in his book Περὶ τῆς Βασιλείου Τάξεως.

In the mid-8th century, the first wind powered automata were built: "statues that turned with the wind over the domes of the four gates and the palace complex of the Round City of Baghdad". The "public spectacle of wind-powered statues had its private counterpart in the 'Abbasid palaces where automata of various types were predominantly displayed." Also in the 8th century, the Muslim alchemist, Jābir ibn Hayyān (Geber), included recipes for constructing artificial snakes, scorpions, and humans that would be subject to their creator's control in his coded Book of Stones. In 827, Abbasid caliph al-Ma'mun had a silver and golden tree in his palace in Baghdad, which had the features of an automatic machine. There were metal birds that sang automatically on the swinging branches of this tree built by Muslim inventors and engineers. The Abbasid caliph al-Muqtadir also had a silver and golden tree in his palace in Baghdad in 917, with birds on it flapping their wings and singing. In the 9th century, the Banū Mūsā brothers invented a programmable automatic flute player and which they described in their Book of Ingenious Devices.

Automaton in the Swiss Museum CIMA.
 
An automaton writing a letter in Swiss Museum CIMA.

Al-Jazari described complex programmable humanoid automata amongst other machines he designed and constructed in the Book of Knowledge of Ingenious Mechanical Devices in 1206. His automaton was a boat with four automatic musicians that floated on a lake to entertain guests at royal drinking parties. His mechanism had a programmable drum machine with pegs (cams) that bump into little levers that operate the percussion. The drummer could be made to play different rhythms and drum patterns if the pegs were moved around. According to Charles B. Fowler, the automata were a "robot band" which performed "more than fifty facial and body actions during each musical selection."

Al-Jazari constructed a hand washing automaton first employing the flush mechanism now used in modern toilets. It features a female automaton standing by a basin filled with water. When the user pulls the lever, the water drains and the automaton refills the basin. His "peacock fountain" was another more sophisticated hand washing device featuring humanoid automata as servants who offer soap and towels. Mark E. Rosheim describes it as follows: "Pulling a plug on the peacock's tail releases water out of the beak; as the dirty water from the basin fills the hollow base a float rises and actuates a linkage which makes a servant figure appear from behind a door under the peacock and offer soap. When more water is used, a second float at a higher level trips and causes the appearance of a second servant figure — with a towel!" Al-Jazari thus appears to have been the first inventor to display an interest in creating human-like machines for practical purposes such as manipulating the environment for human comfort.

In 1066, the Chinese inventor Su Song built a water clock in the form of a tower which featured mechanical figurines which chimed the hours.

Samarangana Sutradhara, a Sanskrit treatise by Bhoja (11th century), includes a chapter about the construction of mechanical contrivances (automata), including mechanical bees and birds, fountains shaped like humans and animals, and male and female dolls that refilled oil lamps, danced, played instruments, and re-enacted scenes from Hindu mythology.

Villard de Honnecourt, in his 1230s sketchbook, depicted an early escapement mechanism in a drawing titled How to make an angel keep pointing his finger toward the Sun with an angel that would perpetually turn to face the sun. He also drew an automaton of a bird with jointed wings, which led to their design implementation in clocks.

At the end of the thirteenth century, Robert II, Count of Artois built a pleasure garden at his castle at Hesdin that incorporated several automata as entertainment in the walled park. The work was conducted by local workmen and overseen by the Italian knight Renaud Coignet. It included monkey marionettes, a sundial supported by lions and "wild men", mechanized birds, mechanized fountains and a bellows-operated organ. The park was famed for its automata well into the fifteenth century before it was destroyed by English soldiers in the sixteenth.

The Chinese author Xiao Xun wrote that when the Ming Dynasty founder Hongwu (r. 1368–1398) was destroying the palaces of Khanbaliq belonging to the previous Yuan Dynasty, there were —among many other mechanical devices— automata found that were in the shape of tigers.

Renaissance and early modern

A cuckoo clock with a built in automaton of a cuckoo that flaps its wings and opens its beak in time to the sounds of the cuckoo call to mark the number of hours on the analogue dial.

The Renaissance witnessed a considerable revival of interest in automata. Hero's treatises were edited and translated into Latin and Italian. Hydraulic and pneumatic automata, similar to those described by Hero, were created for garden grottoes

Giovanni Fontana, a Paduan engineer in 1420, developed Bellicorum instrumentorum liber which includes a puppet of a camelid driven by a clothed primate twice the height of a human being and an automaton of Mary Magdalene. He also created mechanical devils and rocket-propelled animal automata.

Bell-ringing Death on Prague astronomical clock

While functional, early clocks were also often designed as novelties and spectacles which integrated features of automata. Many big and complex clocks with automated figures were built as public spectacles in European town centres. One of the earliest of these large clocks was the Strasbourg Clock, built in the fourteenth century which takes up the entire side of a cathedral wall. It contained an astronomical calendar, automata depicting animals, saints and the life of Christ. The clock still functions to this day but has undergone several restorations since its initial construction. The Prague astronomical clock was built in 1410, animated figures were added from the 17th century onwards. Numerous clockwork automata were manufactured in the 16th century, principally by the goldsmiths of the Free Imperial Cities of central Europe. These wondrous devices found a home in the cabinet of curiosities or Wunderkammern of the princely courts of Europe.

In 1454, Duke Philip created an entertainment show named The extravagant Feast of the Pheasant, which was intended to influence the Duke's peers to participate in a crusade against the Ottomans but ended up being a grand display of automata, giants, and dwarves.

A banquet in Camilla of Aragon's honor in Italy, 1475, featured a lifelike automated camel. The spectacle was a part of a larger parade which continued over days.

Leonardo da Vinci sketched a complex mechanical knight, which he may have built and exhibited at a celebration hosted by Ludovico Sforza at the court of Milan around 1495. The design of Leonardo's robot was not rediscovered until the 1950s. A functional replica was later built that could move its arms, twist its head, and sit up.

Da Vinci is frequently credited with constructing a mechanical lion, which he presented to King Francois I in Lyon in 1515. Although no record of the device's original designs remain, a recreation of this piece is housed at the Château du Clos Lucé.

The Smithsonian Institution has in its collection a clockwork monk, about 15 in (380 mm) high, possibly dating as early as 1560. The monk is driven by a key-wound spring and walks the path of a square, striking his chest with his right arm, while raising and lowering a small wooden cross and rosary in his left hand, turning and nodding his head, rolling his eyes, and mouthing silent obsequies. From time to time, he brings the cross to his lips and kisses it. It is believed that the monk was manufactured by Juanelo Turriano, mechanician to the Holy Roman Emperor Charles V.

The first description of a modern cuckoo clock was by the Augsburg nobleman Philipp Hainhofer in 1629. The clock belonged to Prince Elector August von Sachsen. By 1650, the workings of mechanical cuckoos were understood and were widely disseminated in Athanasius Kircher's handbook on music, Musurgia Universalis. In what is the first documented description of how a mechanical cuckoo works, a mechanical organ with several automated figures is described. In 18th-century Germany, clockmakers began making cuckoo clocks for sale. Clock shops selling cuckoo clocks became commonplace in the Black Forest region by the middle of the 18th century.

A Japanese automata theater in Osaka, drawn in 18th century. The Takeda family opened their automata theater in 1662.

Japan adopted clockwork automata in the early 17th century as "karakuri" puppets. In 1662, Takeda Omi completed his first butai karakuri and then built several of these large puppets for theatrical exhibitions. Karakuri puppets went through a golden age during the Edo period (1603–1867).

Elephant automaton at Waddesdon Manor

A new attitude towards automata is to be found in René Descartes when he suggested that the bodies of animals are nothing more than complex machines - the bones, muscles and organs could be replaced with cogs, pistons and cams. Thus mechanism became the standard to which Nature and the organism was compared. France in the 17th century was the birthplace of those ingenious mechanical toys that were to become prototypes for the engines of the Industrial Revolution. Thus, in 1649, when Louis XIV was still a child, an artisan named Camus designed for him a miniature coach, and horses complete with footmen, page and a lady within the coach; all these figures exhibited a perfect movement. According to P. Labat, General de Gennes constructed, in 1688, in addition to machines for gunnery and navigation, a peacock that walked and ate. Athanasius Kircher produced many automata to create Jesuit shows, including a statue which spoke and listened via a speaking tube.

All three of Vaucanson's Automata: The Flute Player, The Tambourine Player, and Digesting Duck

The world's first successfully-built biomechanical automaton is considered to be The Flute Player, which could play twelve songs, created by the French engineer Jacques de Vaucanson in 1737. He also constructed The Tambourine Player and the Digesting Duck, a mechanical duck that - apart from quacking and flapping its wings - gave the false illusion of eating and defecating, seeming to endorse Cartesian ideas that animals are no more than machines of flesh.

In 1769, a chess-playing machine called the Turk, created by Wolfgang von Kempelen, made the rounds of the courts of Europe purporting to be an automaton. The Turk was operated from inside by a hidden human director, and was not a true automaton. 

Maillardet's automaton is drawing a picture

Other 18th century automaton makers include the prolific Swiss Pierre Jaquet-Droz (see Jaquet-Droz automata) and his son Henri-Louis Jaquet-Droz, and his contemporary Henri Maillardet. Maillardet, a Swiss mechanic, created an automaton capable of drawing four pictures and writing three poems. Maillardet's Automaton is now part of the collections at the Franklin Institute Science Museum in Philadelphia. Belgian-born John Joseph Merlin created the mechanism of the Silver Swan automaton, now at Bowes Museum. A musical elephant made by the French clockmaker Hubert Martinet in 1774 is one of the highlights of Waddesdon Manor. Tipu's Tiger is another late-18th century example of automata, made for Tipu Sultan, featuring a European soldier being mauled by a tiger.

According to philosopher Michel Foucault, Frederick the Great, king of Prussia from 1740 to 1786, was "obsessed" with automata. According to Manuel de Landa, "he put together his armies as a well-oiled clockwork mechanism whose components were robot-like warriors".

In 1801, Joseph Jacquard built his loom automaton that was controlled autonomously with punched cards.

Automata, particularly watches and clocks, were popular in China during the 18th and 19th centuries, and items were produced for the Chinese market. Strong interest by Chinese collectors in the 21st century brought many interesting items to market where they have had dramatic realizations.

Modern

A singing bird box made about 1890 by Bontems. Bird dressed with iridescent hummingbird feathers and case made of tortoiseshell.
 
The famous magician Jean-Eugène Robert-Houdin (1805–1871) was known for creating automata for his stage shows. 

The flute-player by Innocenzo Manzetti (1840)

In 1840, Italian inventor Innocenzo Manzetti constructed a flute-playing automaton, in the shape of a man, life-size, seated on a chair. Hidden inside the chair were levers, connecting rods and compressed air tubes, which made the automaton's lips and fingers move on the flute according to a program recorded on a cylinder similar to those used in player pianos. The automaton was powered by clockwork and could perform 12 different arias. As part of the performance it would rise from the chair, bow its head, and roll its eyes.

Tea-serving Japanese automaton, "karakuri ningyō", with mechanism (right), 19th century.

The period 1860 to 1910 is known as "The Golden Age of Automata". During this period many small family based companies of Automata makers thrived in Paris. From their workshops they exported thousands of clockwork automata and mechanical singing birds around the world. Although now rare and expensive, these French automata attract collectors worldwide. The main French makers were Bontems, Lambert, Phalibois, Renou, Roullet & Decamps, Theroude and Vichy.

Contemporary automata continue this tradition with an emphasis on art, rather than technological sophistication. Contemporary automata are represented by the works of Cabaret Mechanical Theatre in the United Kingdom, Dug North and Chomick+Meder, Thomas Kuntz, Arthur Ganson, Joe Jones, and Nico Cox in the United States, Le Défenseur du Temps by French artist Jacques Monestier, and François Junod in Switzerland.

One of the most advanced automata proposed to date is NASA's Automaton Rover for Extreme Environments (AREE), a wind-powered automaton to be used for exploring Venus. Unlike other modern automata, AREE is an automaton instead of a robot for practical reasons — Venus's harsh conditions, particularly its surface temperature of 462 °C (864 °F), make operating electronics there for any significant time impossible.

Since 1990, Dutch artist Theo Jansen has been building an artificial breed of large automated PVC structures called Strandbeest (Beach beast) that can walk on wind power or compressed air. Jansen claims that he intends them to automatically evolve and develop artificial intelligence, with herds roaming freely over the beach.

In education

The potential educational value of mechanical toys in teaching transversal skills has been recognised by the European Union education project Clockwork objects, enhanced learning: Automata Toys Construction (CLOHE).

Saturday, July 11, 2020

History of artificial life

From Wikipedia, the free encyclopedia
 
The idea of human artifacts being given life has fascinated humankind for as long as people have been recording their myths and stories. Whether Pygmalion or Frankenstein, humanity has been fascinated with the idea of artificial life.

Pre-computer

Automatons were quite a novelty. In the days before computers and electronics, some were very sophisticated, using pneumatics, mechanics, and hydraulics. The first automata were conceived during the third and second centuries BC and these were demonstrated by the theorems of Hero of Alexandria, which included sophisticated mechanical and hydraulic solutions. Many of his notable works were included in the book Pneumatics, which was also used for constructing machines until early modern times. In 1490, Leonardo da Vinci also constructed an armored knight, which is considered the first humanoid robot in Western civilization.

Other early famous examples include al-Jazari's humanoid robots. This Arabic inventor once constructed a band of automata, which can be commanded to play different pieces of music. There is also the case of Jacques de Vaucanson's artificial duck exhibited in 1735, which had thousands of moving parts and one of the first to mimic a biological system. The duck could reportedly eat and digest, drink, quack, and splash in a pool. It was exhibited all over Europe until it fell into disrepair.

However, it wasn't until the invention of cheap computing power that artificial life as a legitimate science began in earnest, steeped more in the theoretical and computational than the mechanical and mythological.

1950s–1970s

One of the earliest thinkers of the modern age to postulate the potentials of artificial life, separate from artificial intelligence, was math and computer prodigy John von Neumann. At the Hixon Symposium, hosted by Linus Pauling in Pasadena, California in the late 1940s, von Neumann delivered a lecture titled "The General and Logical Theory of Automata." He defined an "automaton" as any machine whose behavior proceeded logically from step to step by combining information from the environment and its own programming, and said that natural organisms would in the end be found to follow similar simple rules. He also spoke about the idea of self-replicating machines. He postulated a machine – a kinematic automaton – made up of a control computer, a construction arm, and a long series of instructions, floating in a lake of parts. By following the instructions that were part of its own body, it could create an identical machine. He followed this idea by creating (with Stanislaw Ulam) a purely logic-based automaton, not requiring a physical body but based on the changing states of the cells in an infinite grid – the first cellular automaton. It was extraordinarily complicated compared to later CAs, having hundreds of thousands of cells which could each exist in one of twenty-nine states, but von Neumann felt he needed the complexity in order for it to function not just as a self-replicating "machine", but also as a universal computer as defined by Alan Turing. This "universal constructor" read from a tape of instructions and wrote out a series of cells that could then be made active to leave a fully functional copy of the original machine and its tape. Von Neumann worked on his automata theory intensively right up to his death, and considered it his most important work.

Homer Jacobson illustrated basic self-replication in the 1950s with a model train set – a seed "organism" consisting of a "head" and "tail" boxcar could use the simple rules of the system to consistently create new "organisms" identical to itself, so long as there was a random pool of new boxcars to draw from. Edward F. Moore proposed "Artificial Living Plants", which would be floating factories which could create copies of themselves. They could be programmed to perform some function (extracting fresh water, harvesting minerals from seawater) for an investment that would be relatively small compared to the huge returns from the exponentially growing numbers of factories. Freeman Dyson also studied the idea, envisioning self-replicating machines sent to explore and exploit other planets and moons, and a NASA group called the Self-Replicating Systems Concept Team performed a 1980 study on the feasibility of a self-building lunar factory.

University of Cambridge professor John Horton Conway invented the most famous cellular automaton in the 1960s. He called it the Game of Life, and publicized it through Martin Gardner's column in Scientific American magazine.

1970s–1980s

Philosophy scholar Arthur Burks, who had worked with von Neumann (and indeed, organized his papers after Neumann's death), headed the Logic of Computers Group at the University of Michigan. He brought the overlooked views of 19th century American thinker Charles Sanders Peirce into the modern age. Peirce was a strong believer that all of nature's workings were based on logic (though not always deductive logic). The Michigan group was one of the few groups still interested in alife and CAs in the early 1970s; one of its students, Tommaso Toffoli argued in his PhD thesis that the field was important because its results explain the simple rules that underlay complex effects in nature. Toffoli later provided a key proof that CAs were reversible, just as the true universe is considered to be.




Christopher Langton was an unconventional researcher, with an undistinguished academic career that led him to a job programming DEC mainframes for a hospital. He became enthralled by Conway's Game of Life, and began pursuing the idea that the computer could emulate living creatures. After years of study (and a near-fatal hang-gliding accident), he began attempting to actualize Von Neumann's CA and the work of Edgar F. Codd, who had simplified Von Neumann's original twenty-nine state monster to one with only eight states. He succeeded in creating the first self-replicating computer organism in October 1979, using only an Apple II desktop computer. He entered Burks' graduate program at the Logic of Computers Group in 1982, at the age of 33, and helped to found a new discipline.


Langton's official conference announcement of Artificial Life I was the earliest description of a field which had previously barely existed:
Artificial life is the study of artificial systems that exhibit behavior characteristic of natural living systems. It is the quest to explain life in any of its possible manifestations, without restriction to the particular examples that have evolved on earth. This includes biological and chemical experiments, computer simulations, and purely theoretical endeavors. Processes occurring on molecular, social, and evolutionary scales are subject to investigation. The ultimate goal is to extract the logical form of living systems.
Microelectronic technology and genetic engineering will soon give us the capability to create new life forms in silico as well as in vitro. This capacity will present humanity with the most far-reaching technical, theoretical and ethical challenges it has ever confronted. The time seems appropriate for a gathering of those involved in attempts to simulate or synthesize aspects of living systems.
Ed Fredkin founded the Information Mechanics Group at MIT, which united Toffoli, Norman Margolus, Gerard Vichniac, and Charles Bennett. This group created a computer especially designed to execute cellular automata, eventually reducing it to the size of a single circuit board. This "cellular automata machine" allowed an explosion of alife research among scientists who could not otherwise afford sophisticated computers. 

In 1982, computer scientist named Stephen Wolfram turned his attention to cellular automata. He explored and categorized the types of complexity displayed by one-dimensional CAs, and showed how they applied to natural phenomena such as the patterns of seashells and the nature of plant growth. Norman Packard, who worked with Wolfram at the Institute for Advanced Study, used CAs to simulate the growth of snowflakes, following very basic rules.

Computer animator Craig Reynolds similarly used three simple rules to create recognizable flocking behaviour in a computer program in 1987 to animate groups of boids. With no top-down programming at all, the boids produced lifelike solutions to evading obstacles placed in their path. Computer animation has continued to be a key commercial driver of alife research as the creators of movies attempt to find more realistic and inexpensive ways to animate natural forms such as plant life, animal movement, hair growth, and complicated organic textures.

J. Doyne Farmer was a key figure in tying artificial life research to the emerging field of complex adaptive systems, working at the Center for Nonlinear Studies (a basic research section of Los Alamos National Laboratory), just as its star chaos theorist Mitchell Feigenbaum was leaving. Farmer and Norman Packard chaired a conference in May 1985 called "Evolution, Games, and Learning", which was to presage many of the topics of later alife conferences.

2000s

On the ecological front, research regarding the evolution of animal cooperative behavior (started by W. D. Hamilton in the 1960s resulting in theories of kin selection, reciprocity, multilevel selection and cultural group selection) was re-introduced via artificial life by Peter Turchin and Mikhail Burtsev in 2006. Previously, game theory has been utilized in similar investigation, however, that approach was deemed to be rather limiting in its amount of possible strategies and debatable set of payoff rules. The alife model designed here, instead, is based upon Conway's Game of Life but with much added complexity (there are over 101000 strategies that can potentially emerge). Most significantly, the interacting agents are characterized by external phenotype markers which allows for recognition amongst in-group members. In effect, it is shown that given the capacity to perceive these markers, agents within the system are then able to evolve new group behaviors under minimalistic assumptions. On top of the already known strategies of the bourgeois-hawk-dove game, here two novel modes of cooperative attack and defense arise from the simulation.

For the setup, this two-dimensional artificial world is divided into cells, each empty or containing a resource bundle. An empty cell can acquire a resource bundle with a certain probability per unit of time and lose it when an agent consumes the resource. Each agent is plainly constructed with a set of receptors, effectors (the components that govern the agents' behavior), and neural net which connect the two. In response to the environment, an agent may rest, eat, reproduce by division, move, turn and attack. All actions expend energy taken from its internal energy storage; once that is depleted, the agent dies. Consumption of resource, as well as other agents after defeating them, yields an increase in the energy storage. Reproduction is modeled as being asexual while the offspring receive half the parental energy. Agents are also equipped with sensory inputs that allow them to detect resources or other members within a parameter in addition to its own level of vitality. As for the phenotype markers, they do not influence behavior but solely function as indicator of 'genetic' similarity. Heredity is achieved by having the relevant information be inherited by the offspring and subjected to a set rate of mutation.

The objective of the investigation is to study how the presence of phenotype markers affects the model's range of evolving cooperative strategies. In addition, as the resource available in this 2D environment is capped, the simulation also serves to determine the effect of environmental carrying capacity on their emergence.




One previously unseen strategy is termed the "raven". These agents leave cells with in-group members, thus avoiding intra-specific competition, and attack out-group members voluntarily. Another strategy, named the 'starling', involves the agent sharing cells with in-group members. Despite individuals having smaller energy storage due to resource partitioning, this strategy permits highly effective defense against large invaders via the advantage in numbers. Ecologically speaking, this resembles the mobbing behavior that characterizes many species of small birds when they collectively defend against the predator.


In conclusion, the research claims that the simulated results have important implications for the evolution of territoriality by showing that within the alife framework it is possible to "model not only how one strategy displaces another, but also the very process by which new strategies emerge from a large quantity of possibilities".

Work is also underway to create cellular models of artificial life. Initial work on building a complete biochemical model of cellular behavior is underway as part of a number of different research projects, namely Blue Gene which seeks to understand the mechanisms behind protein folding.

Artificial life

From Wikipedia, the free encyclopedia

Artificial life (often abbreviated ALife or A-Life) is a field of study wherein researchers examine systems related to natural life, its processes, and its evolution, through the use of simulations with computer models, robotics, and biochemistry. The discipline was named by Christopher Langton, an American theoretical biologist, in 1986. In 1987 Langton organized the first conference on the field, in Los Alamos, New Mexico. There are three main kinds of alife, named for their approaches: soft, from software; hard, from hardware; and wet, from biochemistry. Artificial life researchers study traditional biology by trying to recreate aspects of biological phenomena.

A Braitenberg vehicle simulation, programmed in breve, an artificial life simulator

Overview

Artificial life studies the fundamental processes of living systems in artificial environments in order to gain a deeper understanding of the complex information processing that define such systems. These topics are broad, but often include evolutionary dynamics, emergent properties of collective systems, biomimicry, as well as related issues about the philosophy of the nature of life and the use of lifelike properties in artistic works.

Philosophy

The modeling philosophy of artificial life strongly differs from traditional modeling by studying not only "life-as-we-know-it" but also "life-as-it-might-be".

A traditional model of a biological system will focus on capturing its most important parameters. In contrast, an alife modeling approach will generally seek to decipher the most simple and general principles underlying life and implement them in a simulation. The simulation then offers the possibility to analyse new and different lifelike systems.

Vladimir Georgievich Red'ko proposed to generalize this distinction to the modeling of any process, leading to the more general distinction of "processes-as-we-know-them" and "processes-as-they-could-be".

At present, the commonly accepted definition of life does not consider any current alife simulations or software to be alive, and they do not constitute part of the evolutionary process of any ecosystem. However, different opinions about artificial life's potential have arisen:
  • The strong alife (cf. Strong AI) position states that "life is a process which can be abstracted away from any particular medium" (John von Neumann). Notably, Tom Ray declared that his program Tierra is not simulating life in a computer but synthesizing it.
  • The weak alife position denies the possibility of generating a "living process" outside of a chemical solution. Its researchers try instead to simulate life processes to understand the underlying mechanics of biological phenomena.

Software-based ("soft")

Techniques

  • Cellular automata were used in the early days of artificial life, and are still often used for ease of scalability and parallelization. Alife and cellular automata share a closely tied history.
  • Artificial neural networks are sometimes used to model the brain of an agent. Although traditionally more of an artificial intelligence technique, neural nets can be important for simulating population dynamics of organisms that can learn. The symbiosis between learning and evolution is central to theories about the development of instincts in organisms with higher neurological complexity, as in, for instance, the Baldwin effect.

Notable simulators

This is a list of artificial life/digital organism simulators, organized by the method of creature definition.

Name Driven By Started Ended
ApeSDK (formerly Noble Ape) language/social simulation 1996 ongoing
Avida executable DNA 1993 ongoing
Biogenesis executable DNA 2006 ongoing
Neurokernel Geppetto 2014 ongoing
Creatures neural net/simulated biochemistry 1996-2001 Fandom still active to this day, some abortive attempts at new products
Critterding neural net 2005 ongoing
Darwinbots executable DNA 2003 ongoing
DigiHive executable DNA 2006 ongoing
DOSE executable DNA 2012 ongoing
EcoSim Fuzzy Cognitive Map 2009 ongoing
Framsticks executable DNA 1996 ongoing
Geb neural net 1997 ongoing
OpenWorm Geppetto 2011 ongoing
Polyworld neural net 1990 ongoing
Primordial Life executable DNA 1994 2003
ScriptBots executable DNA 2010 ongoing
TechnoSphere modules 1995
Tierra executable DNA 1991 2004
3D Virtual Creature Evolution neural net 2008 NA

Program-based

Program-based simulations contain organisms with a complex DNA language, usually Turing complete. This language is more often in the form of a computer program than actual biological DNA. Assembly derivatives are the most common languages used. An organism "lives" when its code is executed, and there are usually various methods allowing self-replication. Mutations are generally implemented as random changes to the code. Use of cellular automata is common but not required. Another example could be an artificial intelligence and multi-agent system/program.

Module-based

Individual modules are added to a creature. These modules modify the creature's behaviors and characteristics either directly, by hard coding into the simulation (leg type A increases speed and metabolism), or indirectly, through the emergent interactions between a creature's modules (leg type A moves up and down with a frequency of X, which interacts with other legs to create motion). Generally these are simulators which emphasize user creation and accessibility over mutation and evolution.

Parameter-based

Organisms are generally constructed with pre-defined and fixed behaviors that are controlled by various parameters that mutate. That is, each organism contains a collection of numbers or other finite parameters. Each parameter controls one or several aspects of an organism in a well-defined way.

Neural net–based

These simulations have creatures that learn and grow using neural nets or a close derivative. Emphasis is often, although not always, more on learning than on natural selection.

Complex systems modeling

Mathematical models of complex systems are of three types: black-box (phenomenological), white-box (mechanistic, based on the first principles) and grey-box (mixtures of phenomenological and mechanistic models). In black-box models, the individual-based (mechanistic) mechanisms of a complex dynamic system remain hidden.

Mathematical models for complex systems
 
Black-box models are completely nonmechanistic. They are phenomenological and ignore a composition and internal structure of a complex system. We cannot investigate interactions of subsystems of such a non-transparent model. A white-box model of complex dynamic system has ‘transparent walls’ and directly shows underlying mechanisms. All events at micro-, meso- and macro-levels of a dynamic system are directly visible at all stages of its white-box model evolution. In most cases mathematical modelers use the heavy black-box mathematical methods, which cannot produce mechanistic models of complex dynamic systems. Grey-box models are intermediate and combine black-box and white-box approaches.

Logical deterministic individual-based cellular automata model of single species population growth
 
Creation of a white-box model of complex system is associated with the problem of the necessity of an a priori basic knowledge of the modeling subject. The deterministic logical cellular automata are necessary but not sufficient condition of a white-box model. The second necessary prerequisite of a white-box model is the presence of the physical ontology of the object under study. The white-box modeling represents an automatic hyper-logical inference from the first principles because it is completely based on the deterministic logic and axiomatic theory of the subject. The purpose of the white-box modeling is to derive from the basic axioms a more detailed, more concrete mechanistic knowledge about the dynamics of the object under study. The necessity to formulate an intrinsic axiomatic system of the subject before creating its white-box model distinguishes the cellular automata models of white-box type from cellular automata models based on arbitrary logical rules. If cellular automata rules have not been formulated from the first principles of the subject, then such a model may have a weak relevance to the real problem.

Logical deterministic individual-based cellular automata model of interspecific competition for a single limited resource

Hardware-based ("hard")

Hardware-based artificial life mainly consist of robots, that is, automatically guided machines able to do tasks on their own.

Biochemical-based ("wet")

Biochemical-based life is studied in the field of synthetic biology. It involves e.g. the creation of synthetic DNA. The term "wet" is an extension of the term "wetware". Efforts toward "wet" artificial life focus on engineering live minimal cells from living bacteria Mycoplasma laboratorium and in building non-living biochemical cell-like systems from scratch.

In May 2019, researchers, in a milestone effort, reported the creation of a new synthetic (possibly artificial) form of viable life, a variant of the bacteria Escherichia coli, by reducing the natural number of 64 codons in the bacterial genome to 59 codons instead, in order to encode 20 amino acids.

Open problems

How does life arise from the nonliving?
  • Generate a molecular proto-organism in vitro.
  • Achieve the transition to life in an artificial chemistry in silico.
  • Determine whether fundamentally novel living organizations can exist.
  • Simulate a unicellular organism over its entire life cycle.
  • Explain how rules and symbols are generated from physical dynamics in living systems.
What are the potentials and limits of living systems?
  • Determine what is inevitable in the open-ended evolution of life.
  • Determine minimal conditions for evolutionary transitions from specific to generic response systems.
  • Create a formal framework for synthesizing dynamical hierarchies at all scales.
  • Determine the predictability of evolutionary consequences of manipulating organisms and ecosystems.
  • Develop a theory of information processing, information flow, and information generation for evolving systems.
How is life related to mind, machines, and culture?
  • Demonstrate the emergence of intelligence and mind in an artificial living system.
  • Evaluate the influence of machines on the next major evolutionary transition of life.
  • Provide a quantitative model of the interplay between cultural and biological evolution.
  • Establish ethical principles for artificial life.

Related subjects

  1. Artificial intelligence has traditionally used a top down approach, while alife generally works from the bottom up.
  2. Artificial chemistry started as a method within the alife community to abstract the processes of chemical reactions.
  3. Evolutionary algorithms are a practical application of the weak alife principle applied to optimization problems. Many optimization algorithms have been crafted which borrow from or closely mirror alife techniques. The primary difference lies in explicitly defining the fitness of an agent by its ability to solve a problem, instead of its ability to find food, reproduce, or avoid death. The following is a list of evolutionary algorithms closely related to and used in alife:
  4. Multi-agent system – A multi-agent system is a computerized system composed of multiple interacting intelligent agents within an environment.
  5. Evolutionary art uses techniques and methods from artificial life to create new forms of art.
  6. Evolutionary music uses similar techniques, but applied to music instead of visual art.
  7. Abiogenesis and the origin of life sometimes employ alife methodologies as well.

Criticism

Alife has had a controversial history. John Maynard Smith criticized certain artificial life work in 1994 as "fact-free science".

Inequality (mathematics)

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Inequality...