Search This Blog

Saturday, March 6, 2021

Evolution of birds

From Wikipedia, the free encyclopedia
 

The evolution of birds began in the Jurassic Period, with the earliest birds derived from a clade of theropod dinosaurs named Paraves. Birds are categorized as a biological class, Aves. For more than a century, the small theropod dinosaur Archaeopteryx lithographica from the Late Jurassic period was considered to have been the earliest bird. Modern phylogenies place birds in the dinosaur clade Theropoda. According to the current consensus, Aves and a sister group, the order Crocodilia, together are the sole living members of an unranked "reptile" clade, the Archosauria. Four distinct lineages of bird survived the Cretaceous–Paleogene extinction event 66 million years ago, giving rise to ostriches and relatives (Paleognathae), ducks and relatives (Anseriformes), ground-living fowl (Galliformes), and "modern birds" (Neoaves).

Phylogenetically, Aves is usually defined as all descendants of the most recent common ancestor of a specific modern bird species (such as the house sparrow, Passer domesticus), and either Archaeopteryx, or some prehistoric species closer to Neornithes (to avoid the problems caused by the unclear relationships of Archaeopteryx to other theropods). If the latter classification is used then the larger group is termed Avialae. Currently, the relationship between dinosaurs, Archaeopteryx, and modern birds is still under debate.

Origins

There is significant evidence that birds emerged within theropod dinosaurs, specifically, that birds are members of Maniraptora, a group of theropods which includes dromaeosaurs and oviraptorids, among others. As more non-avian theropods that are closely related to birds are discovered, the formerly clear distinction between non-birds and birds becomes less so. This was noted already in the 19th century, with Thomas Huxley writing:

We have had to stretch the definition of the class of birds so as to include birds with teeth and birds with paw-like fore limbs and long tails. There is no evidence that Compsognathus possessed feathers; but, if it did, it would be hard indeed to say whether it should be called a reptilian bird or an avian reptile.

The mounted skeleton of a Velociraptor, showing the very bird-like quality of the smaller theropod dinosaurs

Discoveries in northeast China (Liaoning Province) demonstrate that many small theropod dinosaurs did indeed have feathers, among them the compsognathid Sinosauropteryx and the microraptorian dromaeosaurid Sinornithosaurus. This has contributed to this ambiguity of where to draw the line between birds and reptiles. Cryptovolans, a dromaeosaurid found in 2002 (which may be a junior synonym of Microraptor) was capable of powered flight, possessed a sternal keel and had ribs with uncinate processes. Cryptovolans seems to make a better "bird" than Archaeopteryx which lacks some of these modern bird features. Because of this, some paleontologists have suggested that dromaeosaurs are actually basal birds whose larger members are secondarily flightless, i.e. that dromaeosaurs evolved from birds and not the other way around. Evidence for this theory is currently inconclusive, but digs continue to unearth fossils (especially in China) of feathered dromaeosaurs. At any rate, it is fairly certain that flight utilizing feathered wings existed in the mid-Jurassic theropods. The Cretaceous unenlagiine Rahonavis also possesses features suggesting it was at least partially capable of powered flight.

Although ornithischian (bird-hipped) dinosaurs share the same hip structure as birds, birds actually originated from the saurischian (lizard-hipped) dinosaurs if the dinosaurian origin theory is correct. They thus arrived at their hip structure condition independently. In fact, a bird-like hip structure also developed a third time among a peculiar group of theropods, the Therizinosauridae.

An alternate theory to the dinosaurian origin of birds, espoused by a few scientists, notably Larry Martin and Alan Feduccia, states that birds (including maniraptoran "dinosaurs") evolved from early archosaurs like Longisquama. This theory is contested by most other paleontologists and experts in feather development and evolution.

Mesozoic birds

The basal bird Archaeopteryx, from the Jurassic, is well known as one of the first "missing links" to be found in support of evolution in the late 19th century. Though it is not considered a direct ancestor of modern birds, it gives a fair representation of how flight evolved and how the very first bird might have looked. It may be predated by Protoavis texensis, though the fragmentary nature of this fossil leaves it open to considerable doubt whether this was a bird ancestor. The skeleton of all early bird candidates is basically that of a small theropod dinosaur with long, clawed hands, though the exquisite preservation of the Solnhofen Plattenkalk shows Archaeopteryx was covered in feathers and had wings. While Archaeopteryx and its relatives may not have been very good fliers, they would at least have been competent gliders, setting the stage for the evolution of life on the wing.

Reconstruction of Iberomesornis romerali, a toothed enantiornithe

The evolutionary trend among birds has been the reduction of anatomical elements to save weight. The first element to disappear was the bony tail, being reduced to a pygostyle and the tail function taken over by feathers. Confuciusornis is an example of their trend. While keeping the clawed fingers, perhaps for climbing, it had a pygostyle tail, though longer than in modern birds. A large group of birds, the Enantiornithes, evolved into ecological niches similar to those of modern birds and flourished throughout the Mesozoic. Though their wings resembled those of many modern bird groups, they retained the clawed wings and a snout with teeth rather than a beak in most forms. The loss of a long tail was followed by a rapid evolution of their legs which evolved to become highly versatile and adaptable tools that opened up new ecological niches.

The Cretaceous saw the rise of more modern birds with a more rigid ribcage with a carina and shoulders able to allow for a powerful upstroke, essential to sustained powered flight. Another improvement was the appearance of an alula, used to achieve better control of landing or flight at low speeds. They also had a more derived pygostyle, with a ploughshare-shaped end. An early example is Yanornis. Many were coastal birds, strikingly resembling modern shorebirds, like Ichthyornis, or ducks, like Gansus. Some evolved as swimming hunters, like the Hesperornithiformes – a group of flightless divers resembling grebes and loons. While modern in most respects, most of these birds retained typical reptilian-like teeth and sharp claws on the manus.

The modern toothless birds evolved from the toothed ancestors in the Cretaceous. Meanwhile, the earlier primitive birds, particularly the Enantiornithes, continued to thrive and diversify alongside the pterosaurs through this geologic period until they became extinct due to the K–T extinction event. All but a few groups of the toothless Neornithes were also cut short. The surviving lineages of birds were the comparatively primitive Paleognathae (ostrich and its allies), the aquatic duck lineage, the terrestrial fowl, and the highly volant Neoaves.

Adaptive radiation of modern birds

Modern birds are classified in Neornithes, which are now known to have evolved into some basic lineages by the end of the Cretaceous. The Neornithes are split into the paleognaths and neognaths.

The paleognaths include the tinamous (found only in Central and South America) and the ratites, which nowadays are found almost exclusively on the Southern Hemisphere. The ratites are large flightless birds, and include ostriches, rheas, cassowaries, kiwis and emus. A few scientists propose that the ratites represent an artificial grouping of birds which have independently lost the ability to fly in a number of unrelated lineages. In any case, the available data regarding their evolution is still very confusing, partly because there are no uncontroversial fossils from the Mesozoic. Phylogenetic analysis supports the assertion that the ratites are polyphyletic and do not represent a valid grouping of birds.

Haast's eagle and moa in New Zealand; the eagle is a neognath, the moa are paleognaths.

The basal divergence from the remaining Neognathes was that of the Galloanserae, the superorder containing the Anseriformes (ducks, geese and swans), and the Galliformes (chickens, turkeys, pheasants, and their allies). The presence of basal anseriform fossils in the Mesozoic and likely some galliform fossils implies the presence of paleognaths at the same time, in spite of the absence of fossil evidence.

The dates for the splits are a matter of considerable debate amongst scientists. It is agreed that the Neornithes evolved in the Cretaceous and that the split between the Galloanserae and the other neognaths – the Neoaves – occurred before the Cretaceous–Paleogene extinction event, but there are different opinions about whether the radiation of the remaining neognaths occurred before or after the extinction of the other dinosaurs. This disagreement is in part caused by a divergence in the evidence, with molecular dating suggesting a Cretaceous radiation, a small and equivocal neoavian fossil record from Cretaceous, and most living families turning up during the Paleogene. Attempts made to reconcile the molecular and fossil evidence have proved controversial.

On the other hand, two factors must be considered: First, molecular clocks cannot be considered reliable in the absence of robust fossil calibration, whereas the fossil record is naturally incomplete. Second, in reconstructed phylogenetic trees, the time and pattern of lineage separation corresponds to the evolution of the characters (such as DNA sequences, morphological traits etc.) studied, not to the actual evolutionary pattern of the lineages; these ideally should not differ by much, but may well do so in practice.

Considering this, it is easy to see that fossil data, compared to molecular data, tends to be more accurate in general, but also to underestimate divergence times: morphological traits, being the product of entire developmental genetics networks, usually only start to diverge some time after a lineage split would become apparent in DNA sequence comparison – especially if the sequences used contain many silent mutations.

The authors of a May 2018 report in Current Biology think that the birds that survived the end-of-Cetaceous disaster were Neornithes, Neognathae (Galloanserae + Neoaves), not tree-living, and could not fly far, because of the worldwide destruction of forests and that it took a long time for the world's forests to return properly. Virtually the same conclusions were already reached before, in a 2016 book on avian evolution.

In August 2020 scientists reported that bird skull evolution decelerated compared with the evolution of their dinosaur predecessors after the Cretaceous–Paleogene extinction event, rather than accelerating as often believed to have caused the cranial shape diversity of modern birds.

Classification of modern species

The diversity of modern birds

The phylogenetic classification of birds is a contentious issue. Sibley & Ahlquist's Phylogeny and Classification of Birds (1990) is a landmark work on the classification of birds (although frequently debated and constantly revised). A preponderance of evidence suggests that most modern bird orders constitute good clades. However, scientists are not in agreement as to the precise relationships between the main clades. Evidence from modern bird anatomy, fossils and DNA have all been brought to bear on the problem but no strong consensus has emerged.

Current evolutionary trends in birds

Evolution generally occurs at a scale far too slow to be witnessed by humans. However, bird species are currently going extinct at a far greater rate than any possible speciation or other generation of new species. The disappearance of a population, subspecies, or species represents the permanent loss of a range of genes.

Another concern with evolutionary implications is a suspected increase in hybridization. This may arise from human alteration of habitats enabling related allopatric species to overlap. Forest fragmentation can create extensive open areas, connecting previously isolated patches of open habitat. Populations that were isolated for sufficient time to diverge significantly, but not sufficient to be incapable of producing fertile offspring may now be interbreeding so broadly that the integrity of the original species may be compromised. For example, the many hybrid hummingbirds found in northwest South America may represent a threat to the conservation of the distinct species involved.

Several species of birds have been bred in captivity to create variations on wild species. In some birds this is limited to color variations, while others are bred for larger egg or meat production, for flightlessness or other characteristics.

In December 2019 the results of a joint study by Chicago's Field Museum and the University of Michigan into changes in the morphology of birds was published in Ecology Letters. The study uses bodies of birds which died as a result of colliding with buildings in Chicago, Illinois, since 1978. The sample is made up of over 70,000 specimens from 52 species and span the period from 1978 to 2016. The study shows that the length of birds' lower leg bones (an indicator of body sizes) shortened by an average of 2.4% and their wings lengthened by 1.3%. The findings of the study suggest the morphological changes are the result of climate change, demonstrating an example of evolutionary change following Bergmann's rule.

Origin of avian flight

From Wikipedia, the free encyclopedia
 
The Berlin Archaeopteryx, one of the earliest known birds.

Around 350 BCE, Aristotle and other philosophers of the time attempted to explain the aerodynamics of avian flight. Even after the discovery of the ancestral bird Archaeopteryx over 150 years ago, debates still persist regarding the evolution of flight. There are three leading hypotheses pertaining to avian flight: Pouncing Proavis model, Cursorial model, and Arboreal model.

In March 2018, scientists reported that Archaeopteryx was likely capable of flight, but in a manner substantially different from that of modern birds.

Flight characteristics

For flight to occur in Aves, four physical forces (thrust and drag, lift and weight) must be favorably combined. In order for birds to balance these forces, certain physical characteristics are required. Asymmetrical wings, found on all flying birds with the exception of hummingbirds, help in the production of thrust and lift. Anything that moves through the air produces drag due to friction. The aerodynamic body of a bird can reduce drag, but when stopping or slowing down a bird will use its tail and feet to increase drag. Weight is the largest obstacle birds must overcome in order to fly. An animal can more easily attain flight by reducing its absolute weight. Birds evolved from other theropod dinosaurs that had already gone through a phase of size reduction during the Middle Jurassic, combined with rapid evolutionary changes. Flying birds during their evolution further reduced relative weight through several characteristics such as the loss of teeth, shrinkage of the gonads out of mating season, and fusion of bones. Teeth were replaced by a lightweight bill made of keratin, the food being processed by the bird's gizzard. Other advanced physical characteristics evolved for flight are a keel for the attachment of flight muscles and an enlarged cerebellum for fine motor coordination. These were gradual changes, though, and not strict conditions for flight: the first birds had teeth, at best a small keel and relatively unfused bones. Pneumatic bone, that is hollow or filled with air sacs, has often been seen as an adaptation reducing weight, but it was already present in non-flying dinosaurs, and birds on average do not have a lighter skeleton than mammals of the same size. The same is true for the furcula, a bone which enhances skeletal bracing for the stresses of flight.

The mechanics of an avian's wings involve a complex interworking of forces, particularly at the shoulder where most of the wings' motions take place. These functions depend on a precise balance of forces from the muscles, ligaments, and articular cartilages as well as inertial, gravitational, and aerodynamic loads on the wing.

Birds have two main muscles in their wing that are responsible for flight: the pectoralis and the supracoracoideus. The pectoralis is the largest muscle in the wing and is the primary depressor and pronator of the wing. The supracoracoideus is the second largest and is the primary elevator and supinator. In addition, there are distal wing muscles that assist the bird in flight.

Prior to their existence on birds, feathers were present on the bodies of many dinosaur species. Through natural selection, feathers became more common among the animals as their wings developed over the course of tens of millions of years. The smooth surface of feathers on a bird's body helps to reduce friction while in flight. The tail, also consisting of feathers, helps the bird to maneuver and glide.

Hypotheses

Pouncing Proavis model

A theory of a pouncing proavis was first proposed by Garner, Taylor, and Thomas in 1999:

We propose that birds evolved from predators that specialized in ambush from elevated sites, using their raptorial hindlimbs in a leaping attack. Drag–based, and later lift-based, mechanisms evolved under selection for improved control of body position and locomotion during the aerial part of the attack. Selection for enhanced lift-based control led to improved lift coefficients, incidentally turning a pounce into a swoop as lift production increased. Selection for greater swooping range would finally lead to the origin of true flight.

The authors believed that this theory had four main virtues:

  • It predicts the observed sequence of character acquisition in avian evolution.
  • It predicts an Archaeopteryx-like animal, with a skeleton more or less identical to terrestrial theropods, with few adaptations to flapping, but very advanced aerodynamic asymmetrical feathers.
  • It explains that primitive pouncers (perhaps like Microraptor) could coexist with more advanced fliers (like Confuciusornis or Sapeornis) since they did not compete for flying niches.
  • It explains that the evolution of elongated rachis-bearing feathers began with simple forms that produced a benefit by increasing drag. Later, more refined feather shapes could begin to also provide lift.

Cursorial model

A cursorial, or "running" model was originally proposed by Samuel Wendell Williston in 1879. This theory states that "flight evolved in running bipeds through a series of short jumps". As the length of the jumps extended, the wings were used not only for thrust but also for stability, and eventually eliminated the gliding intermediate. This theory was modified in the 1970s by John Ostrom to describe the use of wings as an insect-foraging mechanism which then evolved into a wing stroke. Research was conducted by comparing the amount of energy expended by each hunting method with the amount of food gathered. The potential hunting volume doubles by running and jumping. To gather the same volume of food, Archaeopteryx would expend less energy by running and jumping than by running alone. Therefore, the cost/benefit ratio would be more favorable for this model. Due to Archaeopteryx's long and erect leg, supporters of this model say the species was a terrestrial bird. This characteristic allows for more strength and stability in the hindlimbs. Thrust produced by the wings coupled with propulsion in the legs generates the minimum velocity required to achieve flight. This wing motion is thought to have evolved from asymmetrical propulsion flapping motion. Thus, through these mechanisms, Archaeopteryx was able to achieve flight from the ground up.

Although the evidence in favor of this model is scientifically plausible, the evidence against it is substantial. For instance, a cursorial flight model would be energetically less favorable when compared to the alternative hypotheses. In order to achieve liftoff, Archaeopteryx would have to run faster than modern birds by a factor of three, due to its weight. Furthermore, the mass of Archaeopteryx versus the distance needed for minimum velocity to obtain liftoff speed is proportional, therefore, as mass increases, the energy required for takeoff increases. Other research has shown that the physics involved in cursorial flight would not make this a likely answer to the origin of avian flight. Once flight speed is obtained and Archaeopteryx is in the air, drag would cause the velocity to instantaneously decrease; balance could not be maintained due to this immediate reduction in velocity. Hence, Archaeopteryx would have a very short and ineffective flight. In contrast to Ostrom's theory regarding flight as a hunting mechanism, physics again does not support this model. In order to effectively trap insects with the wings, Archaeopteryx would require a mechanism such as holes in the wings to reduce air resistance. Without this mechanism, the cost/benefit ratio would not be feasible.

The decrease in efficiency when looking at the cursorial model is caused by the flapping stroke needed to achieve flight. This stroke motion needs both wings to move in a symmetrical motion, or together. This is opposed to an asymmetrical motion like that in humans' arms while running. The symmetrical motion would be costly in the cursorial model because it would be difficult while running on the ground, compared to the arboreal model where it is natural for an animal to move both arms together when falling. There is also a large fitness reduction between the two extremes of asymmetrical and symmetrical flapping motion so the theropods would have evolved to one of the extremes. However, new research on the mechanics of bipedal running has suggested that oscillations produced by the running motion could induce symmetrical flapping of the wings at the natural frequency of the oscillation.

Wing-assisted incline running

The WAIR hypothesis, a version of the "cursorial model" of the evolution of avian flight, in which birds' wings originated from forelimb modifications that provided downforce, enabling the proto-birds to run up extremely steep slopes such as the trunks of trees, was prompted by observation of young chukar chicks, and proposes that wings developed their aerodynamic functions as a result of the need to run quickly up very steep slopes such as tree trunks, for example to escape from predators. Note that in this scenario birds need downforce to give their feet increased grip. It has been argued that early birds, including Archaeopteryx, lacked the shoulder mechanism by which modern birds' wings produce swift, powerful upstrokes; since the downforce on which WAIR depends is generated by upstrokes, it seems that early birds were incapable of WAIR. However, a study that found lift generated from wings to be the primary factor for successfully accelerating a body toward a substrate during WAIR indicated the onset of flight ability was constrained by neuromuscular control or power output rather than by external wing morphology itself and that partially developed wings not yet capable of flight could indeed provide useful lift during WAIR. Additionally, examination of the work and power requirements for extant bird pectoralis contractile behavior during WAIR at different angles of substrate incline demonstrated incremental increases in these requirements, both as WAIR angles increased and in the transition from WAIR to flapping flight. This provides a model for an evolutionary transition from terrestrial to aerial locomotion as transitional forms incrementally adapted to meet the work and power requirements to scale steeper and steeper inclines using WAIR and the incremental increases from WAIR to flight.

Birds use wing-assisted inclined running from the day they hatch to increase locomotion. This can also be said for birds or feathered theropods whose wing muscles cannot generate enough force to fly, and shows how this behavior could have evolved to help these theropods then eventually led to flight. The progression from wing-assisted incline running to flight can be seen in the growth of birds, from when they are hatchlings to fully grown. They begin with wing-assisted incline running and slowly alter their wing strokes for flight as they grow and are able to make enough force. These transitional stages that lead to flight are both physical and behavioral. The transitions over a hatchling's life can be correlated with the evolution of flight on a macro scale. If protobirds are compared to hatchlings their physical traits such as wing size and behavior may have been similar. Flapping flight is limited by the size and muscle force of a wing. Even while using the correct model of arboreal or cursorial, protobirds' wings were not able to sustain flight, but they did most likely gain the behaviors needed for the arboreal or cursorial model like today's birds do when hatched. There are similar steps between the two. Wing-assisted incline running can also produce a useful lift in babies but is very small compared to that of juveniles and adult birds. This lift was found responsible for body acceleration when going up an incline and leads to flight as the bird grows.

Arboreal model

This model was originally proposed in 1880 by Othniel C. Marsh. The theory states Archaeopteryx was a reptilian bird that soared from tree to tree. After the leap, Archaeopteryx would then use its wings as a balancing mechanism. According to this model, Archaeopteryx developed a gliding method to conserve energy. Even though an arboreal Archaeopteryx exerts energy climbing the tree, it is able to achieve higher velocities and cover greater distances during the gliding phase, which conserves more energy in the long run than a cursorial bipedal runner. Conserving energy during the gliding phase makes this a more energy-efficient model. Therefore, the benefits gained by gliding outweigh the energy used in climbing the tree. A modern behavior model to compare against would be that of the flying squirrel. In addition to energy conservation, arboreality is generally associated positively with survival, at least in mammals.

The evolutionary path between arboreality and flight has been proposed through a number of hypotheses. Dudley and Yanoviak proposed that animals that live in trees generally end up high enough that a fall, purposeful or otherwise, would generate enough speed for aerodynamic forces to have an effect on the body. Many animals, even those which do not fly, demonstrate the ability to right themselves and face the ground ventrally, then exhibiting behaviors that act against aerodynamic forces to slow their rate of descent in a process known as parachuting. Arboreal animals that were forced by predators or simply fell from trees that exhibited these kinds of behaviors would have been in a better position to eventually evolve capabilities that were more akin to flight as we know them today.

Researchers in support of this model have suggested that Archaeopteryx possessed skeletal features similar to those of modern birds. The first such feature to be noted was the supposed similarity between the foot of Archaeopteryx and that of modern perching birds. The hallux, or modified of the first digit of the foot, was long thought to have pointed posterior to the remaining digits, as in perching birds. Therefore, researchers once concluded that Archaeopteryx used the hallux as a balancing mechanism on tree limbs. However, study of the Thermopolis specimen of Archeopteryx, which has the most complete foot of any known, showed that the hallux was not in fact reversed, limiting the creature's ability to perch on branches and implying a terrestrial or trunk-climbing lifestyle. Another skeletal feature that is similar in Archaeopteryx and modern birds is the curvature of the claws. Archaeopteryx possessed the same claw curvature of the foot to that of perching birds. However, the claw curvature of the hand in Archaeopteryx was similar to that in basal birds. Based upon the comparisons of modern birds to Archaeopteryx, perching characteristics were present, signifying an arboreal habitat. The ability for takeoff and flight was originally thought to require a supracoracoideus pulley system (SC). This system consists of a tendon joining the humerus and coracoid bones, allowing rotation of the humerus during the upstroke. However, this system is lacking in Archaeopteryx. Based on experiments performed by M. Sy in 1936, it was proven that the SC pulley system was not required for flight from an elevated position but was necessary for cursorial takeoff.

Synthesis

Some researchers have suggested that treating arboreal and cursorial hypotheses as mutually exclusive explanations of the origin of bird flight is incorrect. Researchers in support of synthesizing cite studies that show incipient wings have adaptive advantages for a variety of functions, including arboreal parachuting, WAIR, and horizontal flap-leaping. Other research also shows that ancestral avialans were not necessarily exclusively arboreal or cursorial, but rather lived on a spectrum of habitats. The capability for powered flight evolved due to a multitude of selective advantages of incipient wings in navigating a more complex environment than previously thought.

Transitional fossil

From Wikipedia, the free encyclopedia

A transitional fossil is any fossilized remains of a life form that exhibits traits common to both an ancestral group and its derived descendant group. This is especially important where the descendant group is sharply differentiated by gross anatomy and mode of living from the ancestral group. These fossils serve as a reminder that taxonomic divisions are human constructs that have been imposed in hindsight on a continuum of variation. Because of the incompleteness of the fossil record, there is usually no way to know exactly how close a transitional fossil is to the point of divergence. Therefore, it cannot be assumed that transitional fossils are direct ancestors of more recent groups, though they are frequently used as models for such ancestors.

In 1859, when Charles Darwin's On the Origin of Species was first published, the fossil record was poorly known. Darwin described the perceived lack of transitional fossils as, "... the most obvious and gravest objection which can be urged against my theory," but explained it by relating it to the extreme imperfection of the geological record. He noted the limited collections available at that time, but described the available information as showing patterns that followed from his theory of descent with modification through natural selection. Indeed, Archaeopteryx was discovered just two years later, in 1861, and represents a classic transitional form between earlier, non-avian dinosaurs and birds. Many more transitional fossils have been discovered since then, and there is now abundant evidence of how all classes of vertebrates are related, including many transitional fossils. Specific examples of class-level transitions are: tetrapods and fish, birds and dinosaurs, and mammals and "mammal-like reptiles".

The term "missing link" has been used extensively in popular writings on human evolution to refer to a perceived gap in the hominid evolutionary record. It is most commonly used to refer to any new transitional fossil finds. Scientists, however, do not use the term, as it refers to a pre-evolutionary view of nature.

Evolutionary and phylogenetic taxonomy

Transitions in phylogenetic nomenclature

Traditional spindle diagram showing the vertebrates classes "budding" off from each other. Transitional fossils typically represent animals from near the branching points.

In evolutionary taxonomy, the prevailing form of taxonomy during much of the 20th century and still used in non-specialist textbooks, taxa based on morphological similarity are often drawn as "bubbles" or "spindles" branching off from each other, forming evolutionary trees. Transitional forms are seen as falling between the various groups in terms of anatomy, having a mixture of characteristics from inside and outside the newly branched clade.

With the establishment of cladistics in the 1990s, relationships commonly came to be expressed in cladograms that illustrate the branching of the evolutionary lineages in stick-like figures. The different so-called "natural" or "monophyletic" groups form nested units, and only these are given phylogenetic names. While in traditional classification tetrapods and fish are seen as two different groups, phylogenetically tetrapods are considered a branch of fish. Thus, with cladistics there is no longer a transition between established groups, and the term "transitional fossils" is a misnomer. Differentiation occurs within groups, represented as branches in the cladogram.

In a cladistic context, transitional organisms can be seen as representing early examples of a branch, where not all of the traits typical of the previously known descendants on that branch have yet evolved. Such early representatives of a group are usually termed "basal taxa" or "sister taxa," depending on whether the fossil organism belongs to the daughter clade or not.

Transitional versus ancestral

A source of confusion is the notion that a transitional form between two different taxonomic groups must be a direct ancestor of one or both groups. The difficulty is exacerbated by the fact that one of the goals of evolutionary taxonomy is to identify taxa that were ancestors of other taxa. However, because evolution is a branching process that produces a complex bush pattern of related species rather than a linear process producing a ladder-like progression, and because of the incompleteness of the fossil record, it is unlikely that any particular form represented in the fossil record is a direct ancestor of any other. Cladistics deemphasizes the concept of one taxonomic group being an ancestor of another, and instead emphasizes the identification of sister taxa that share a more recent common ancestor with one another than they do with other groups. There are a few exceptional cases, such as some marine plankton microfossils, where the fossil record is complete enough to suggest with confidence that certain fossils represent a population that was actually ancestral to a later population of a different species. But, in general, transitional fossils are considered to have features that illustrate the transitional anatomical features of actual common ancestors of different taxa, rather than to be actual ancestors.

Prominent examples

Archaeopteryx

Archaeopteryx is one of the most famous transitional fossils and gives evidence for the evolution of birds from theropod dinosaurs.

Archaeopteryx is a genus of theropod dinosaur closely related to the birds. Since the late 19th century, it has been accepted by palaeontologists, and celebrated in lay reference works, as being the oldest known bird, though a study in 2011 has cast doubt on this assessment, suggesting instead that it is a non-avialan dinosaur closely related to the origin of birds.

It lived in what is now southern Germany in the Late Jurassic period around 150 million years ago, when Europe was an archipelago in a shallow warm tropical sea, much closer to the equator than it is now. Similar in shape to a European magpie, with the largest individuals possibly attaining the size of a raven, Archaeopteryx could grow to about 0.5 metres (1.6 ft) in length. Despite its small size, broad wings, and inferred ability to fly or glide, Archaeopteryx has more in common with other small Mesozoic dinosaurs than it does with modern birds. In particular, it shares the following features with the deinonychosaurs (dromaeosaurs and troodontids): jaws with sharp teeth, three fingers with claws, a long bony tail, hyperextensible second toes ("killing claw"), feathers (which suggest homeothermy), and various skeletal features. These features make Archaeopteryx a clear candidate for a transitional fossil between dinosaurs and birds, making it important in the study both of dinosaurs and of the origin of birds.

The first complete specimen was announced in 1861, and ten more Archaeopteryx fossils have been found since then. Most of the eleven known fossils include impressions of feathers—among the oldest direct evidence of such structures. Moreover, because these feathers take the advanced form of flight feathers, Archaeopteryx fossils are evidence that feathers began to evolve before the Late Jurassic.

Australopithecus afarensis

A. afarensis - walking posture.

The hominid Australopithecus afarensis represents an evolutionary transition between modern bipedal humans and their quadrupedal ape ancestors. A number of traits of the A. afarensis skeleton strongly reflect bipedalism, to the extent that some researchers have suggested that bipedality evolved long before A. afarensis. In overall anatomy, the pelvis is far more human-like than ape-like. The iliac blades are short and wide, the sacrum is wide and positioned directly behind the hip joint, and there is clear evidence of a strong attachment for the knee extensors, implying an upright posture.

While the pelvis is not entirely like that of a human (being markedly wide, or flared, with laterally orientated iliac blades), these features point to a structure radically remodelled to accommodate a significant degree of bipedalism. The femur angles in toward the knee from the hip. This trait allows the foot to fall closer to the midline of the body, and strongly indicates habitual bipedal locomotion. Present-day humans, orangutans and spider monkeys possess this same feature. The feet feature adducted big toes, making it difficult if not impossible to grasp branches with the hindlimbs. Besides locomotion, A. afarensis also had a slightly larger brain than a modern chimpanzee (the closest living relative of humans) and had teeth that were more human than ape-like.

Pakicetids, Ambulocetus

Reconstruction of Pakicetus
 
Skeleton of Ambulocetus natans

The cetaceans (whales, dolphins and porpoises) are marine mammal descendants of land mammals. The pakicetids are an extinct family of hoofed mammals that are the earliest whales, whose closest sister group is Indohyus from the family Raoellidae. They lived in the Early Eocene, around 53 million years ago. Their fossils were first discovered in North Pakistan in 1979, at a river not far from the shores of the former Tethys Sea. Pakicetids could hear under water, using enhanced bone conduction, rather than depending on tympanic membranes like most land mammals. This arrangement does not give directional hearing under water.

Ambulocetus natans, which lived about 49 million years ago, was discovered in Pakistan in 1994. It was probably amphibious, and looked like a crocodile. In the Eocene, ambulocetids inhabited the bays and estuaries of the Tethys Ocean in northern Pakistan. The fossils of ambulocetids are always found in near-shore shallow marine deposits associated with abundant marine plant fossils and littoral molluscs. Although they are found only in marine deposits, their oxygen isotope values indicate that they consumed water with a range of degrees of salinity, some specimens showing no evidence of sea water consumption and others none of fresh water consumption at the time when their teeth were fossilized. It is clear that ambulocetids tolerated a wide range of salt concentrations. Their diet probably included land animals that approached water for drinking, or freshwater aquatic organisms that lived in the river. Hence, ambulocetids represent the transition phase of cetacean ancestors between freshwater and marine habitat.

Tiktaalik

Tiktaalik roseae had spiracles (air holes) above the eyes.
 
Life restoration of Tiktaalik roseae

Tiktaalik is a genus of extinct sarcopterygian (lobe-finned fish) from the Late Devonian period, with many features akin to those of tetrapods (four-legged animals). It is one of several lines of ancient sarcopterygians to develop adaptations to the oxygen-poor shallow water habitats of its time—adaptations that led to the evolution of tetrapods. Well-preserved fossils were found in 2004 on Ellesmere Island in Nunavut, Canada.

Tiktaalik lived approximately 375 million years ago. Paleontologists suggest that it is representative of the transition between non-tetrapod vertebrates such as Panderichthys, known from fossils 380 million years old, and early tetrapods such as Acanthostega and Ichthyostega, known from fossils about 365 million years old. Its mixture of primitive fish and derived tetrapod characteristics led one of its discoverers, Neil Shubin, to characterize Tiktaalik as a "fishapod." Unlike many previous, more fish-like transitional fossils, the "fins" of Tiktaalik have basic wrist bones and simple rays reminiscent of fingers. They may have been weight-bearing. Like all modern tetrapods, it had rib bones, a mobile neck with a separate pectoral girdle, and lungs, though it had the gills, scales, and fins of a fish. However in a 2008 paper by Boisvert at al. it is noted that Panderichthys, due to its more derived distal portion, might be closer to tetrapods than Tiktaalik, which might have independently developed similarities to tetrapods by convergent evolution.

Tetrapod footprints found in Poland and reported in Nature in January 2010 were "securely dated" at 10 million years older than the oldest known elpistostegids (of which Tiktaalik is an example), implying that animals like Tiktaalik, possessing features that evolved around 400 million years ago, were "late-surviving relics rather than direct transitional forms, and they highlight just how little we know of the earliest history of land vertebrates."

Amphistium

Modern flatfish are asymmetrical, with both eyes on the same side of the head.
 
Fossil of Amphistium with one eye at the top-center of the head.

Pleuronectiformes (flatfish) are an order of ray-finned fish. The most obvious characteristic of the modern flatfish is their asymmetry, with both eyes on the same side of the head in the adult fish. In some families the eyes are always on the right side of the body (dextral or right-eyed flatfish) and in others they are always on the left (sinistral or left-eyed flatfish). The primitive spiny turbots include equal numbers of right- and left-eyed individuals, and are generally less asymmetrical than the other families. Other distinguishing features of the order are the presence of protrusible eyes, another adaptation to living on the seabed (benthos), and the extension of the dorsal fin onto the head.

Amphistium is a 50-million-year-old fossil fish identified as an early relative of the flatfish, and as a transitional fossil In Amphistium, the transition from the typical symmetric head of a vertebrate is incomplete, with one eye placed near the top-center of the head. Paleontologists concluded that "the change happened gradually, in a way consistent with evolution via natural selection—not suddenly, as researchers once had little choice but to believe."

Amphistium is among the many fossil fish species known from the Monte Bolca Lagerstätte of Lutetian Italy. Heteronectes is a related, and very similar fossil from slightly earlier strata of France.

Runcaria

The Devonian fossil plant Runcaria resembles a seed but lacks a solid seed coat and means to guide pollen.

A Middle Devonian precursor to seed plants has been identified from Belgium, predating the earliest seed plants by about 20 million years. Runcaria, small and radially symmetrical, is an integumented megasporangium surrounded by a cupule. The megasporangium bears an unopened distal extension protruding above the multilobed integument. It is suspected that the extension was involved in anemophilous pollination. Runcaria sheds new light on the sequence of character acquisition leading to the seed, having all the qualities of seed plants except for a solid seed coat and a system to guide the pollen to the seed.

Fossil record

Not every transitional form appears in the fossil record, because the fossil record is not complete. Organisms are only rarely preserved as fossils in the best of circumstances, and only a fraction of such fossils have been discovered. Paleontologist Donald Prothero noted that this is illustrated by the fact that the number of species known through the fossil record was less than 5% of the number of known living species, suggesting that the number of species known through fossils must be far less than 1% of all the species that have ever lived.

Because of the specialized and rare circumstances required for a biological structure to fossilize, logic dictates that known fossils represent only a small percentage of all life-forms that ever existed—and that each discovery represents only a snapshot of evolution. The transition itself can only be illustrated and corroborated by transitional fossils, which never demonstrate an exact half-way point between clearly divergent forms.

The fossil record is very uneven and, with few exceptions, is heavily slanted toward organisms with hard parts, leaving most groups of soft-bodied organisms with little to no fossil record. The groups considered to have a good fossil record, including a number of transitional fossils between traditional groups, are the vertebrates, the echinoderms, the brachiopods and some groups of arthropods.

History

Post-Darwin

A historic 1904 reconstruction of Archæopteryx
 
Reconstruction of Rhynia

The idea that animal and plant species were not constant, but changed over time, was suggested as far back as the 18th century. Darwin's On the Origin of Species, published in 1859, gave it a firm scientific basis. A weakness of Darwin's work, however, was the lack of palaeontological evidence, as pointed out by Darwin himself. While it is easy to imagine natural selection producing the variation seen within genera and families, the transmutation between the higher categories was harder to imagine. The dramatic find of the London specimen of Archaeopteryx in 1861, only two years after the publication of Darwin's work, offered for the first time a link between the class of the highly derived birds, and that of the more primitive reptiles. In a letter to Darwin, the palaeontologist Hugh Falconer wrote:

Had the Solnhofen quarries been commissioned—by august command—to turn out a strange being à la Darwin—it could not have executed the behest more handsomely—than in the Archaeopteryx.

Thus, transitional fossils like Archaeopteryx came to be seen as not only corroborating Darwin's theory, but as icons of evolution in their own right. For example, the Swedish encyclopedic dictionary Nordisk familjebok of 1904 showed an inaccurate Archaeopteryx reconstruction (see illustration) of the fossil, "ett af de betydelsefullaste paleontologiska fynd, som någonsin gjorts" ("one of the most significant paleontological discoveries ever made").

The rise of plants

Transitional fossils are not only those of animals. With the increasing mapping of the divisions of plants at the beginning of the 20th century, the search began for the ancestor of the vascular plants. In 1917, Robert Kidston and William Henry Lang found the remains of an extremely primitive plant in the Rhynie chert in Aberdeenshire, Scotland, and named it Rhynia.

The Rhynia plant was small and stick-like, with simple dichotomously branching stems without leaves, each tipped by a sporangium. The simple form echoes that of the sporophyte of mosses, and it has been shown that Rhynia had an alternation of generations, with a corresponding gametophyte in the form of crowded tufts of diminutive stems only a few millimetres in height. Rhynia thus falls midway between mosses and early vascular plants like ferns and clubmosses. From a carpet of moss-like gametophytes, the larger Rhynia sporophytes grew much like simple clubmosses, spreading by means of horizontal growing stems growing rhizoids that anchored the plant to the substrate. The unusual mix of moss-like and vascular traits and the extreme structural simplicity of the plant had huge implications for botanical understanding.

Missing links

"Java Man" or Pithecanthropus erectus (now Homo erectus), the original "missing link" found in Java in 1891–92.
 
The human pedigree back to amoeba shown as a reinterpreted chain of being with living and fossil animals. From G. Avery's critique of Ernst Haeckel, 1873.

The idea of all living things being linked through some sort of transmutation process predates Darwin's theory of evolution. Jean-Baptiste Lamarck envisioned that life was generated constantly in the form of the simplest creatures, and strove towards complexity and perfection (i.e. humans) through a progressive series of lower forms. In his view, lower animals were simply newcomers on the evolutionary scene.

After On the Origin of Species, the idea of "lower animals" representing earlier stages in evolution lingered, as demonstrated in Ernst Haeckel's figure of the human pedigree. While the vertebrates were then seen as forming a sort of evolutionary sequence, the various classes were distinct, the undiscovered intermediate forms being called "missing links."

The term was first used in a scientific context by Charles Lyell in the third edition (1851) of his book Elements of Geology in relation to missing parts of the geological column, but it was popularized in its present meaning by its appearance on page xi of his book Geological Evidences of the Antiquity of Man of 1863. By that time, it was generally thought that the end of the last glacial period marked the first appearance of humanity; Lyell drew on new findings in his Antiquity of Man to put the origin of human beings much further back. Lyell wrote that it remained a profound mystery how the huge gulf between man and beast could be bridged. Lyell's vivid writing fired the public imagination, inspiring Jules Verne's Journey to the Center of the Earth (1864) and Louis Figuier's 1867 second edition of La Terre avant le déluge ("Earth before the Flood"), which included dramatic illustrations of savage men and women wearing animal skins and wielding stone axes, in place of the Garden of Eden shown in the 1863 edition.

The search for a fossil showing transitional traits between apes and humans, however, was fruitless until the young Dutch geologist Eugène Dubois found a skullcap, a molar and a femur on the banks of Solo River, Java in 1891. The find combined a low, ape-like skull roof with a brain estimated at around 1000 cc, midway between that of a chimpanzee and an adult human. The single molar was larger than any modern human tooth, but the femur was long and straight, with a knee angle showing that "Java Man" had walked upright. Given the name Pithecanthropus erectus ("erect ape-man"), it became the first in what is now a long list of human evolution fossils. At the time it was hailed by many as the "missing link," helping set the term as primarily used for human fossils, though it is sometimes used for other intermediates, like the dinosaur-bird intermediary Archaeopteryx.

Sudden jumps with apparent gaps in the fossil record have been used as evidence for punctuated equilibrium. Such jumps can be explained either by macromutation or simply by relatively rapid episodes of gradual evolution by natural selection, since a period of say 10,000 years barely registers in the fossil record.

While "missing link" is still a popular term, well-recognized by the public and often used in the popular media, the term is avoided in scientific publications. Some bloggers have called it "inappropriate"; both because the links are no longer "missing", and because human evolution is no longer believed to have occurred in terms of a single linear progression.

Punctuated equilibrium

The theory of punctuated equilibrium developed by Stephen Jay Gould and Niles Eldredge and first presented in 1972 is often mistakenly drawn into the discussion of transitional fossils. This theory, however, pertains only to well-documented transitions within taxa or between closely related taxa over a geologically short period of time. These transitions, usually traceable in the same geological outcrop, often show small jumps in morphology between extended periods of morphological stability. To explain these jumps, Gould and Eldredge envisaged comparatively long periods of genetic stability separated by periods of rapid evolution. Gould made the following observation concerning creationist misuse of his work to deny the existence of transitional fossils:

Since we proposed punctuated equilibria to explain trends, it is infuriating to be quoted again and again by creationists—whether through design or stupidity, I do not know—as admitting that the fossil record includes no transitional forms. The punctuations occur at the level of species; directional trends (on the staircase model) are rife at the higher level of transitions within major groups.

Ocean temperature

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Ocean_temperature Graph showing ocean tempe...