Search This Blog

Monday, March 22, 2021

Methanotroph

From Wikipedia, the free encyclopedia
https://en.wikipedia.org/wiki/Methanotroph

Methanotrophs (sometimes called methanophiles) are prokaryotes that metabolize methane as their source of carbon and energy. They can be either bacteria or archaea and can grow aerobically or anaerobically, and require single-carbon compounds to survive.

Methanotrophs are especially common in or near environments where methane is produced, although some methanotrophs can oxidize atmospheric methane. Their habitats include wetlands, soils, marshes, rice paddies, landfills, aquatic systems (lakes, oceans, streams) and more. They are of special interest to researchers studying global warming, as they play a significant role in the global methane budget, by reducing the amount of methane emitted to the atmosphere.

Methanotrophy is a special case of methylotrophy, using single-carbon compounds that are more reduced than carbon dioxide. Some methylotrophs, however, can also make use of multi-carbon compounds which differentiates them from methanotrophs that are usually fastidious methane and methanol oxidizers. The only facultative methanotrophs isolated to date are members of the genus Methylocella silvestris, Methylocapsa aurea and several Methylocystis strains.

In functional terms, methanotrophs are referred to as methane-oxidizing bacteria, however, methane-oxidizing bacteria encompass other organisms that are not regarded as sole methanotrophs. For this reason methane-oxidizing bacteria have been separated into subgroups: methane-assimilating bacteria (MAB) groups, the methanotrophs, and autotrophic ammonia-oxidizing bacteria (AAOB) which cooxidize methane.

Classification

Methantrophs can be either bacteria or archaea. Which methanotroph species is present, is mainly determined by the availability of electron acceptors. Many types of methane oxidizing bacteria (MOB) are known. Differences in the method of formaldehyde fixation and membrane structure divide these bacterial methanotrophs into several groups. Among the methanotrophic archaea, several subgroups are determined.

Aerobic

Under aerobic conditions, methanotrophs combine oxygen and methane to form formaldehyde, which is then incorporated into organic compounds via the serine pathway or the ribulose monophosphate (RuMP) pathway, and [Carbon dioxide], which is released. Type I and type X methanotrophs are part of the Gammaproteobacteria and they use the RuMP pathway to assimilate carbon. Type II methanotrophs are part of the Alphaproteobacteria and utilize the serine pathway of carbon assimilation. They also characteristically have a system of internal membranes within which methane oxidation occurs. Methanotrophs in Gammaproteobacteria are known from family Methylococcaceae. Methanotrophs from Alphaproteobacteria are found in families Methylocystaceae and Beijerinckiaceae.

Aerobic methanotrophs are also known from the Methylacidiphilaceae (phylum Verrucomicrobia). In contrast to Gammaproteobacteria and Alphaproteobacteria, methanotrophs in the phylum Verrucomicrobia are mixotrophs. In 2021 bacterial bin from the phylum Gemmatimonadetes called Candidatus Methylotropicum kingii showing aerobic methanotrophy was discovered thus suggesting methanotrophy to be present in the four bacterial phyla.

No aerobic methanotrophic archaea are known.

Anaerobic

Under anoxic conditions, methanotrophs use different electron acceptors for methane oxidation. This can happen in anoxic habitats such as marine or lake sediments, oxygen minimum zones, anoxic water columns, rice paddies and soils. Some specific methanotrophs can reduce nitrate, nitrite, iron, sulphate, or manganese ion and couple that to methane oxidation without syntrophic partner. Investigations in marine environments revealed that methane can be oxidized anaerobically by consortia of methane oxidizing archaea and sulfate-reducing bacteria. This type of anaerobic oxidation of methane (AOM) mainly occurs in anoxic marine sediments. The exact mechanism behind this is still a topic of debate but the most widely accepted theory is that the archaea use the reversed methanogenesis pathway to produce carbon dioxide and another, unknown substance. This unknown intermediate is then used by the sulfate-reducing bacteria to gain energy from the reduction of sulfate to hydrogen sulfide.

The anaerobic methanotrophs are not related to the known aerobic methanotrophs; the closest cultured relatives to the anaerobic methanotrophs are the methanogens in the order Methanosarcinales.

In some cases, aerobic methane oxidation can take place in anoxic environments. Candidatus Methylomirabilis oxyfera belongs to the phylum NC10 bacteria, and can catalyze nitrite reduction through an "intra-aerobic" pathway, in which internally produced oxygen is used to oxidise methane. In clear water lakes, methanotrophs can live in the anoxic water column, but receive oxygen from photosynthetic organisms, that they then directly consume to oxidise methane aerobically.

Special species

Methylococcus capsulatus is utilised to produce animal feed from natural gas.

In 2010 a new bacterium Candidatus Methylomirabilis oxyfera from the phylum NC10 was identified that can couple the anaerobic oxidation of methane to nitrite reduction without the need for a syntrophic partner. Based on the studies of Ettwig et al., it is believed that M. oxyfera oxidizes methane anaerobically by utilizing the oxygen produced internally from the dismutation of nitric oxide into nitrogen and oxygen gas.

Taxonomy

Many methanotrophic cultures have been isolated and formally characterized over the past 4 decades, starting with the classical study of Whittenbury (Whittenbury et al., 1970).  Currently,18 genera of cultivated aerobic methanotrophic Gammaproteobacteria and 5 genera of Alphaproteobacteria are known, represented by approx. 60 different species.

Methane oxidation

RuMP pathway in type I methanotrophs
 
Serine pathway in type II methanotrophs

Methanotrophs oxidize methane by first initiating reduction of an oxygen atom to H2O2 and transformation of methane to CH3OH using methane monooxygenases (MMOs). Furthermore, two types of MMO have been isolated from methanotrophs: soluble methane monooxygenase (sMMO) and particulate methane monooxygenase (pMMO).

Cells containing pMMO have demonstrated higher growth capabilities and higher affinity for methane than sMMO containing cells. It is suspected that copper ions may play a key role in both pMMO regulation and the enzyme catalysis, thus limiting pMMO cells to more copper-rich environments than sMMO producing cells.

Sunday, March 21, 2021

Methane

From Wikipedia, the free encyclopedia

Methane
Stereo, skeletal formula of methane with some measurements added
Ball and stick model of methane
Spacefill model of methane
Names
Preferred IUPAC name
Methane
Systematic IUPAC name
Carbane (never recommended)
Other names
  • Marsh gas
  • Natural gas
  • Carbon tetrahydride
  • Hydrogen carbide
Identifiers
3D model (JSmol)
3DMet
1718732
ChEBI
ChEMBL
ChemSpider
ECHA InfoCard 100.000.739 Edit this at Wikidata
EC Number
  • 200-812-7
59
KEGG
MeSH Methane
RTECS number
  • PA1490000
UNII
UN number 1971


Properties
CH4
Molar mass 16.043 g·mol−1
Appearance Colorless gas
Odor Odorless
Density
  • 0.657 kg·m−3 (gas, 25 °C, 1 atm)
  • 0.717 kg·m−3 (gas, 0 °C, 1 atm)
  • 422.8 g·L−1 (liquid, −162 °C)
Melting point −182.456 °C (−296.421 °F; 90.694 K)
Boiling point −161.5 °C (−258.7 °F; 111.6 K)
Critical point (T, P) 190.56 K, 4.5992 MPa
22.7 mg·L−1
Solubility Soluble in ethanol, diethyl ether, benzene, toluene, methanol, acetone and insoluble in water
log P 1.09
14 nmol·Pa−1·kg−1
Conjugate acid Methanium
Conjugate base Methyl anion
−17.4×10−6 cm3·mol−1
Structure
Td
Tetrahedron
0 D
Thermochemistry
35.7 J·(K·mol)−1
186.3 J·(K·mol)−1
−74.6 kJ·mol−1
−50.5 kJ·mol−1
−891 kJ·mol−1
Hazards
Safety data sheet See: data page
GHS pictograms GHS02: Flammable
GHS Signal word Danger
H220
P210
NFPA 704 (fire diamond)
Flash point −188 °C (−306.4 °F; 85.1 K)
537 °C (999 °F; 810 K)
Explosive limits 4.4–17%
Related compounds
Related alkanes
Supplementary data page
Refractive index (n),
Dielectric constantr), etc.
Thermodynamic
data
Phase behaviour
solid–liquid–gas
UV, IR, NMR, MS
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☒ verify (what is check☒ ?)
Infobox references


Methane (US: /ˈmɛθn/ or UK: /ˈmθn/) is a chemical compound with the chemical formula CH4 (one atom of carbon and four atoms of hydrogen). It is a group-14 hydride and the simplest alkane, and is the main constituent of natural gas. The relative abundance of methane on Earth makes it an economically attractive fuel, although capturing and storing it poses technical challenges due to its gaseous state under normal conditions for temperature and pressure.

Naturally occurring methane is found both below ground and under the seafloor, and is formed by both geological and biological processes. The largest reservoir of methane is under the seafloor in the form of methane clathrates. When methane reaches the surface and the atmosphere, it is known as atmospheric methane. The Earth's atmospheric methane concentration has increased by about 150% since 1750, and it accounts for 20% of the total radiative forcing from all of the long-lived and globally mixed greenhouse gases. Methane has also been detected on other planets, including Mars, which has implications for astrobiology research.

Properties and bonding

Methane is a tetrahedral molecule with four equivalent C–H bonds. Its electronic structure is described by four bonding molecular orbitals (MOs) resulting from the overlap of the valence orbitals on C and H. The lowest-energy MO is the result of the overlap of the 2s orbital on carbon with the in-phase combination of the 1s orbitals on the four hydrogen atoms. Above this energy level is a triply degenerate set of MOs that involve overlap of the 2p orbitals on carbon with various linear combinations of the 1s orbitals on hydrogen. The resulting "three-over-one" bonding scheme is consistent with photoelectron spectroscopic measurements.

At room temperature and standard pressure, methane is a colorless, odorless gas. The familiar smell of natural gas as used in homes is achieved by the addition of an odorant, usually blends containing tert-butylthiol, as a safety measure. Methane has a boiling point of −161.5 °C at a pressure of one atmosphere. As a gas, it is flammable over a range of concentrations (5.4–17%) in air at standard pressure.

Solid methane exists in several modifications. Presently nine are known. Cooling methane at normal pressure results in the formation of methane I. This substance crystallizes in the cubic system (space group Fm3m). The positions of the hydrogen atoms are not fixed in methane I, i.e. methane molecules may rotate freely. Therefore, it is a plastic crystal.

Chemical reactions

The primary chemical reactions of methane are combustion, steam reforming to syngas, and halogenation. In general, methane reactions are difficult to control.

Selective oxidation

Partial oxidation of methane to methanol is challenging because the reaction typically progresses all the way to carbon dioxide and water even with an insufficient supply of oxygen. The enzyme methane monooxygenase produces methanol from methane, but cannot be used for industrial-scale reactions. Some homogeneously catalyzed systems and heterogeneous systems have been developed, but all have significant drawbacks. These generally operate by generating protected products which are shielded from overoxidation. Examples include the Catalytica system, copper zeolites, and iron zeolites stabilizing the alpha-oxygen active site.

One group of bacteria drive methane oxidation with nitrite as the oxidant in the absence of oxygen, giving rise to the so-called anaerobic oxidation of methane.

Acid–base reactions

Like other hydrocarbons, methane is a very weak acid. Its pKa in DMSO is estimated to be 56. It cannot be deprotonated in solution, but the conjugate base is known in forms such as methyllithium.

A variety of positive ions derived from methane have been observed, mostly as unstable species in low-pressure gas mixtures. These include methenium or methyl cation CH+
3
, methane cation CH+
4
, and methanium or protonated methane CH+
5
. Some of these have been detected in outer space. Methanium can also be produced as diluted solutions from methane with superacids. Cations with higher charge, such as CH2+
6
and CH3+
7
, have been studied theoretically and conjectured to be stable.

Despite the strength of its C–H bonds, there is intense interest in catalysts that facilitate C–H bond activation in methane (and other lower numbered alkanes).

Combustion

A young woman holding a flame in her hands
Methane bubbles can be burned on a wet hand without injury.

Methane's heat of combustion is 55.5 MJ/kg. Combustion of methane is a multiple step reaction summarized as follows:

CH4 + 2 O2 → CO2 + 2 H2O (ΔH = −891 kJ/mol, at standard conditions)

Peters four-step chemistry is a systematically reduced four-step chemistry that explains the burning of methane.

Methane radical reactions

Given appropriate conditions, methane reacts with halogen radicals as follows:

X• + CH4 → HX + CH3
CH3• + X2 → CH3X + X•

where X is a halogen: fluorine (F), chlorine (Cl), bromine (Br), or iodine (I). This mechanism for this process is called free radical halogenation. It is initiated when UV light or some other radical initiator (like peroxides) produces a halogen atom. A two-step chain reaction ensues in which the halogen atom abstracts a hydrogen atom from a methane molecule, resulting in the formation of a hydrogen halide molecule and a methyl radical (CH3•). The methyl radical then reacts with a molecule of the halogen to form a molecule of the halomethane, with a new halogen atom as byproduct. Similar reactions can occur on the halogenated product, leading to replacement of additional hydrogen atoms by halogen atoms with dihalomethane, trihalomethane, and ultimately, tetrahalomethane structures, depending upon reaction conditions and the halogen-to-methane ratio.

Uses

Methane is used in industrial chemical processes and may be transported as a refrigerated liquid (liquefied natural gas, or LNG). While leaks from a refrigerated liquid container are initially heavier than air due to the increased density of the cold gas, the gas at ambient temperature is lighter than air. Gas pipelines distribute large amounts of natural gas, of which methane is the principal component.

Fuel

Methane is used as a fuel for ovens, homes, water heaters, kilns, automobiles, turbines, and other things. Activated carbon is used to store methane. Refined liquid methane is used as a rocket fuel, when combined with liquid oxygen, as in the BE-4 and Raptor engines.

As the major constituent of natural gas, methane is important for electricity generation by burning it as a fuel in a gas turbine or steam generator. Compared to other hydrocarbon fuels, methane produces less carbon dioxide for each unit of heat released. At about 891 kJ/mol, methane's heat of combustion is lower than that of any other hydrocarbon. However, it produces more heat per mass (55.7 kJ/g) than any other organic molecule due to its relatively large content of hydrogen, which accounts for 55% of the heat of combustion but contributes only 25% of the molecular mass of methane. In many cities, methane is piped into homes for domestic heating and cooking. In this context it is usually known as natural gas, which is considered to have an energy content of 39 megajoules per cubic meter, or 1,000 BTU per standard cubic foot. Liquefied natural gas (LNG) is predominantly methane (CH4) converted into liquid form for ease of storage or transport.

As a rocket fuel, methane offers the advantage over kerosene of producing small exhaust molecules. This deposits less soot on the internal parts of rocket motors, reducing the difficulty of booster re-use. The lower molecular weight of the exhaust also increases the fraction of the heat energy which is in the form of kinetic energy available for propulsion, increasing the specific impulse of the rocket. Liquid methane also has a temperature range (91–112 K) nearly compatible with liquid oxygen (54–90 K).

Chemical feedstock

Natural gas, which is mostly composed of methane, is used to produce hydrogen gas on an industrial scale. Steam methane reforming (SMR), or simply known as steam reforming, is the most common method of producing commercial bulk hydrogen gas. More than 50 million metric tons are produced annually worldwide (2013), principally from the SMR of natural gas. Much of this hydrogen is used in petroleum refineries, in the production of chemicals and in food processing. Very large quantities of hydrogen are used in the industrial synthesis of ammonia.

At high temperatures (700–1100 °C) and in the presence of a metal-based catalyst (nickel), steam reacts with methane to yield a mixture of CO and H2, known as "water gas" or "syngas":

CH4 + H2OCO + 3 H2

This reaction is strongly endothermic (consumes heat, ΔHr = 206 kJ/mol). Additional hydrogen is obtained by the reaction of CO with water via the water-gas shift reaction:

CO + H2O ⇌ CO2 + H2

This reaction is mildly exothermic (produces heat, ΔHr = −41 kJ/mol).

Methane is also subjected to free-radical chlorination in the production of chloromethanes, although methanol is a more typical precursor.

Generation

Geological routes

The two main routes for geological methane generation are (i) organic (thermally generated, or thermogenic) and (ii) inorganic (abiotic). Thermogenic methane occurs due to the breakup of organic matter at elevated temperatures and pressures in deep sedimentary strata. Most methane in sedimentary basins is thermogenic; therefore, thermogenic methane is the most important source of natural gas. Thermogenic methane components are typically considered to be relic (from an earlier time). Generally, formation of thermogenic methane (at depth) can occur through organic matter breakup, or organic synthesis. Both ways can involve microorganisms (methanogenesis), but may also occur inorganically. The processes involved can also consume methane, with and without microorganisms.

The more important source of methane at depth (crystalline bedrock) is abiotic. Abiotic means that methane is created from inorganic compounds, without biological activity, either through magmatic processes or via water-rock reactions that occur at low temperatures and pressures, like serpentinization.

Biological routes

Most of Earth's methane is biogenic and is produced by methanogenesis, a form of anaerobic respiration only known to be conducted by some members of the domain Archaea. Methanogens occupy landfills and other soils, ruminants (for example cows or cattle), the guts of termites, and the anoxic sediments below the seafloor and the bottom of lakes. Rice fields also generate large amounts of methane during plant growth. This multistep process is used by these microorganisms for energy. The net reaction of methanogenesis is:

CO2 + 4 H2→ CH4 + 2 H2O

The final step in the process is catalyzed by the enzyme methyl coenzyme M reductase (MCR).

Testing Australian sheep for exhaled methane production (2001), CSIRO
 
This image represents a ruminant, more specifically a sheep producing methane within the four stages of hydrolysis, acidogenesis, acetogenesis, and methanogenesis.

Ruminants

Ruminants, such as cattle, belch methane, accounting for ~22% of the U.S. annual methane emissions to the atmosphere. One study reported that the livestock sector in general (primarily cattle, chickens, and pigs) produces 37% of all human-induced methane. A 2013 study estimated that livestock accounted for 44% of human-induced methane and ~15% of human-induced greenhouse gas emissions. Many efforts are underway to reduce livestock methane production, such as medical treatments and dietary adjustments, and to trap the gas to use as energy.

Seafloor sediments

Most of the subseafloor is anoxic because oxygen is removed by aerobic microorganisms within the first few centimeters of the sediment. Below the oxygen replete seafloor, methanogens produce methane that is either used by other organisms or becomes trapped in gas hydrates. These other organisms which utilize methane for energy are known as methanotrophs (methane-eating), and are the main reason why little methane generated at depth reaches the sea surface. Consortia of Archaea and Bacteria have been found to oxidize methane via Anaerobic Oxidation of Methane (AOM); the organisms responsible for this are Anaerobic Methanotrophic Archaea (ANME) and Sulfate-Reducing Bacteria (SRB).

Industrial routes

Diagram of sustainable methane fuel production.PNG

There is little incentive to produce methane industrially. Methane is produced by hydrogenating carbon dioxide through the Sabatier process. Methane is also a side product of the hydrogenation of carbon monoxide in the Fischer–Tropsch process, which is practiced on a large scale to produce longer-chain molecules than methane.

Example of large-scale coal-to-methane gasification is the Great Plains Synfuels plant, started in 1984 in Beulah, North Dakota as a way to develop abundant local resources of low-grade lignite, a resource that is otherwise difficult to transport for its weight, ash content, low calorific value and propensity to spontaneous combustion during storage and transport.

Power to methane is a technology that uses electrical power to produce hydrogen from water by electrolysis and uses the Sabatier reaction to combine hydrogen with carbon dioxide to produce methane. As of 2016, this is mostly under development and not in large-scale use. Theoretically, the process could be used as a buffer for excess and off-peak power generated by highly fluctuating wind generators and solar arrays. However, as currently very large amounts of natural gas are used in power plants (e.g. CCGT) to produce electric energy, the losses in efficiency are not acceptable.

Laboratory synthesis

Methane can be produced by protonation of methyl lithium or a methyl Grignard reagent such as methylmagnesium chloride. It can also be made from anhydrous sodium acetate and dry sodium hydroxide, mixed and heated above 300 °C (with sodium carbonate as byproduct).[citation needed] In practice, a requirement for pure methane can easily be fulfilled by steel gas bottle from standard gas suppliers.

Occurrence

Methane was discovered and isolated by Alessandro Volta between 1776 and 1778 when studying marsh gas from Lake Maggiore. It is the major component of natural gas, about 87% by volume. The major source of methane is extraction from geological deposits known as natural gas fields, with coal seam gas extraction becoming a major source (see Coal bed methane extraction, a method for extracting methane from a coal deposit, while enhanced coal bed methane recovery is a method of recovering methane from non-mineable coal seams). It is associated with other hydrocarbon fuels, and sometimes accompanied by helium and nitrogen. Methane is produced at shallow levels (low pressure) by anaerobic decay of organic matter and reworked methane from deep under the Earth's surface. In general, the sediments that generate natural gas are buried deeper and at higher temperatures than those that contain oil.

Methane is generally transported in bulk by pipeline in its natural gas form, or LNG carriers in its liquefied form; few countries transport it by truck.

Atmospheric methane

Methane concentration evolution from 1987 to September 2020 at Mauna Loa (Hawaii).

In 2010, methane levels in the Arctic were measured at 1850 nmol/mol. This level is over twice as high as at any time in the last 400,000 years. Historic methane concentrations in the world's atmosphere have ranged between 300 and 400 nmol/mol during glacial periods commonly known as ice ages, and between 600 and 700 nmol/mol during the warm interglacial periods. The Earth's oceans are a potential important source of Arctic methane.

Methane is an important greenhouse gas with a global warming potential of 34 compared to CO2 (potential of 1) over a 100-year period, and 72 over a 20-year period.

The Earth's atmospheric methane concentration has increased by about 150% since 1750, and it accounts for 20% of the total radiative forcing from all of the long-lived and globally mixed greenhouse gases (these gases don't include water vapor which is by far the largest component of the greenhouse effect).

From 2015 to 2019 sharp rises in levels of atmospheric methane have been recorded. In February 2020, it was reported methane emissions from the fossil fuel industry may have been significantly underestimated.

Climate change can increase atmospheric methane levels by increasing methane production in natural ecosystems, forming a Climate change feedback.

Clathrates

Methane clathrates (also known as methane hydrates) are solid cages of water molecules that trap single molecules of methane. Significant reservoirs of methane clathrates have been found in arctic permafrost and along continental margins beneath the ocean floor within the gas clathrate stability zone, located at high pressures (1 to 100 MPa; lower end requires lower temperature) and low temperatures (< 15 °C; upper end requires higher pressure). Methane clathrates can form from biogenic methane, thermogenic methane, or a mix of the two. These deposits are both a potential source of methane fuel as well as a potential contributor to global warming. The global mass of carbon stored in gas clathrates is still uncertain and has been estimated as high as 12,500 Gt carbon and as low as 500 Gt carbon. The estimate has declined over time with a most recent estimate of ~1800 Gt carbon. A large part of this uncertainty is due to our knowledge gap in sources and sinks of methane and the distribution of methane clathrates at the global scale. For example, a relatively newly discovered source of methane was discovered in an ultraslow spreading ridge in the Arctic. Some climate models suggest that today's methane emission regime from the ocean floor is potentially similar to that during the period of the Paleocene–Eocene Thermal Maximum (PETM) around 55.5 million years ago, although there are no data indicating that methane from clathrate dissociation currently reaches the atmosphere. Arctic methane release from permafrost and seafloor methane clathrates is a potential consequence and further cause of global warming; this is known as the clathrate gun hypothesis. Data from 2016 indicate that Arctic permafrost thaws faster than predicted.

Extraterrestrial methane

Interstellar medium

Methane is abundant in many parts of the Solar system and potentially could be harvested on the surface of another solar-system body (in particular, using methane production from local materials found on Mars or Titan), providing fuel for a return journey.

Mars

Methane has been detected on all planets of the solar system and most of the larger moons. With the possible exception of Mars, it is believed to have come from abiotic processes.

Methane (CH4) on Mars – potential sources and sinks

The Curiosity rover has documented seasonal fluctuations of atmospheric methane levels on Mars. These fluctuations peaked at the end of the Martian summer at 0.6 parts per billion.

Methane has been proposed as a possible rocket propellant on future Mars missions due in part to the possibility of synthesizing it on the planet by in situ resource utilization. An adaptation of the Sabatier methanation reaction may be used with a mixed catalyst bed and a reverse water-gas shift in a single reactor to produce methane from the raw materials available on Mars, utilizing water from the Martian subsoil and carbon dioxide in the Martian atmosphere.

Methane could be produced by a non-biological process called serpentinization involving water, carbon dioxide, and the mineral olivine, which is known to be common on Mars.

History

In November 1776, methane was first scientifically identified by Italian physicist Alessandro Volta in the marshes of Lake Maggiore straddling Italy and Switzerland. Volta was inspired to search for the substance after reading a paper written by Benjamin Franklin about "flammable air". Volta collected the gas rising from the marsh, and by 1778 had isolated the pure gas. He also demonstrated that the gas could be ignited with an electric spark.

The name "methane" was coined in 1866 by the German chemist August Wilhelm von Hofmann. The name was derived from methanol.

Etymology

Etymologically, the word "methane" is coined from the chemical suffix "-ane", which denotes substances belonging to the alkane family; and the word "methyl", which is derived from the German "methyl" (1840) or directly from the French "méthyle", which is a back-formation from the French "méthylène" (corresponding to English "methylene"), the root of which was coined by Jean-Baptiste Dumas and Eugène Péligot in 1834 from the Greek "methy" (related to English "mead") and "hyle" (meaning "wood"). The radical is named after this because it was first detected in methanol, an alcohol first isolated by distillation of wood. The chemical suffix "-ane" is from the coordinating chemical suffix "-ine" which is from Latin feminine suffix "-ina" which is applied to represent abstracts. The coordination of "-ane", "-ene", "-one", etc. was proposed in 1866 by German chemist August Wilhelm von Hofmann (1818–1892).

Abbreviations

The abbreviation CH4-C can mean the mass of carbon contained in a mass of methane, and the mass of methane is always 1.33 times the mass of CH4-C. CH4-C can also mean the methane-carbon ratio, which is 1.33 by mass. Methane at scales of the atmosphere is commonly measured in teragrams (Tg CH4) or millions of metric tons (MMT CH4), which mean the same thing. Other standard units are also used, such as nanomole (nmol, one billionth of a mole), mole (mol), kilogram, and gram.

Safety

Methane is nontoxic, yet it is extremely flammable and may form explosive mixtures with air. Methane is also an asphyxiant if the oxygen concentration is reduced to below about 16% by displacement, as most people can tolerate a reduction from 21% to 16% without ill effects. The concentration of methane at which asphyxiation risk becomes significant is much higher than the 5–15% concentration in a flammable or explosive mixture. Methane off-gas can penetrate the interiors of buildings near landfills and expose occupants to significant levels of methane. Some buildings have specially engineered recovery systems below their basements to actively capture this gas and vent it away from the building.

Methane gas explosions are responsible for many deadly mining disasters. A methane gas explosion was the cause of the Upper Big Branch coal mine disaster in West Virginia on April 5, 2010, killing 29.

Entropy (information theory)

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Entropy_(information_theory) In info...