Search This Blog

Friday, June 25, 2021

Space colonization

From Wikipedia, the free encyclopedia

Artist's rendering of an envisioned lunar mining facility
 
Depiction of NASA's plans to grow food on Mars
 
Artist's rendering of a crewed floating outpost on Venus of NASA's High Altitude Venus Operational Concept (HAVOC).

Space colonization (also called space settlement or extraterrestrial colonization) is the hypothetical permanent habitation and exploitation of natural resources from outside planet Earth. As such it is a form of human presence in space, beyond human spaceflight or operating space outposts.

Many arguments have been made for and against space colonization. The two most common in favor of colonization are survival of human civilization and the biosphere in the event of a planetary-scale disaster (natural or human-made), and the availability of additional resources in space that could enable expansion of human society. The most common objections to colonization include concerns that the commodification of the cosmos may be likely to enhance the interests of the already powerful, including major economic and military institutions, and to exacerbate pre-existing detrimental processes such as wars, economic inequality, and environmental degradation.

No space colonies have been built so far. Currently, the building of a space colony would present a set of huge technological and economic challenges. Space settlements would have to provide for nearly all (or all) the material needs of hundreds or thousands of humans, in an environment out in space that is very hostile to human life. They would involve technologies, such as controlled ecological life-support systems, that have yet to be developed in any meaningful way. They would also have to deal with the as-yet unknown issue of how humans would behave and thrive in such places long-term. Because of the present cost of sending anything from the surface of the Earth into orbit (around $1400 per kg, or $640 per-pound, to low Earth orbit by Falcon Heavy), a space colony would currently be a massively expensive project.

There are yet no plans for building space colonies by any large-scale organization, either government or private. However, many proposals, speculations, and designs for space settlements have been made through the years, and a considerable number of space colonization advocates and groups are active. Several famous scientists, such as Freeman Dyson, have come out in favor of space settlement.

On the technological front, there is ongoing progress in making access to space cheaper (reusable launch systems could reach $20 per kg to orbit), and in creating automated manufacturing and construction techniques.

Definition

The term is sometimes applied to any permanent human presence, even robotic, but particularly, along with the term "settlement", it is applied to any permanent human space habitat, from research stations to self-sustaining communities.

The word colony and colonization are terms rooted in colonial history on Earth, making it a human geographic as well as particularly a political term. This broad use for any permanent human activity and development in space has been criticized, particularly as colonialist and undifferentiated.

Reasons

Survival of human civilization

The primary argument calling for space colonization is the long-term survival of human civilization and terrestrial life. By developing alternative locations off Earth, the planet's species, including humans, could live on in the event of natural or human-made disasters on our own planet.

On two occasions, theoretical physicist and cosmologist Stephen Hawking argued for space colonization as a means of saving humanity. In 2001, Hawking predicted that the human race would become extinct within the next thousand years, unless colonies could be established in space. In 2010, he stated that humanity faces two options: either we colonize space within the next two hundred years, or we will face the long-term prospect of extinction.

In 2005, then NASA Administrator Michael Griffin identified space colonization as the ultimate goal of current spaceflight programs, saying:

... the goal isn't just scientific exploration ... it's also about extending the range of human habitat out from Earth into the solar system as we go forward in time ... In the long run a single-planet species will not survive ... If we humans want to survive for hundreds of thousands of millions of years, we must ultimately populate other planets. Now, today the technology is such that this is barely conceivable. We're in the infancy of it. ... I'm talking about that one day, I don't know when that day is, but there will be more human beings who live off the Earth than on it. We may well have people living on the Moon. We may have people living on the moons of Jupiter and other planets. We may have people making habitats on asteroids ... I know that humans will colonize the solar system and one day go beyond.

Louis J. Halle, formerly of the United States Department of State, wrote in Foreign Affairs (Summer 1980) that the colonization of space will protect humanity in the event of global nuclear warfare. The physicist Paul Davies also supports the view that if a planetary catastrophe threatens the survival of the human species on Earth, a self-sufficient colony could "reverse-colonize" Earth and restore human civilization. The author and journalist William E. Burrows and the biochemist Robert Shapiro proposed a private project, the Alliance to Rescue Civilization, with the goal of establishing an off-Earth "backup" of human civilization.

Based on his Copernican principle, J. Richard Gott has estimated that the human race could survive for another 7.8 million years, but it is not likely to ever colonize other planets. However, he expressed a hope to be proven wrong, because "colonizing other worlds is our best chance to hedge our bets and improve the survival prospects of our species".

In a theoretical study from 2019, a group of researchers have pondered the long-term trajectory of human civilization. It is argued that due to Earth's finitude as well as the limited duration of the Solar System, mankind's survival into the far future will very likely require extensive space colonization. This 'astronomical trajectory' of mankind, as it is termed, could come about in four steps: First step, plenty of space colonies could be established at various habitable locations — be it in outer space or on celestial bodies away from planet earth — and allowed to remain dependent on support from earth for a start. Second step, these colonies could gradually become self-sufficient, enabling them to survive if or when the mother civilization on earth fails or dies. Third step, the colonies could develop and expand their habitation by themselves on their space stations or celestial bodies, for example via terraforming. Fourth step, the colonies could self-replicate and establish new colonies further into space, a process that could then repeat itself and continue at an exponential rate throughout cosmos. However, this astronomical trajectory may not be a lasting one, as it will most likely be interrupted and eventually decline due to resource depletion or straining competition between various human factions, bringing about some 'star wars' scenario. In the very far future, mankind is expected to become extinct in any case, as no civilization — whether human or alien — will ever outlive the limited duration of cosmos itself.

Vast resources in space

Resources in space, both in materials and energy, are enormous. The Solar System alone has, according to different estimates, enough material and energy to support anywhere from several thousand to over a billion times that of the current Earth-based human population, mostly from the Sun itself. Outside the Solar System, several hundred billion other planets in the Milky Way alone provide opportunities for both colonization and resource collection, though travel to any of them is impossible on any practical time-scale without interstellar travel by use of generation ships or revolutionary new methods of travel, such as faster-than-light (FTL).

Asteroid mining will also be a key player in space colonization. Water and materials to make structures and shielding can be easily found in asteroids. Instead of resupplying on Earth, mining and fuel stations need to be established on asteroids to facilitate better space travel. Optical mining is the term NASA uses to describe extracting materials from asteroids. NASA believes by using propellant derived from asteroids for exploration to the moon, Mars, and beyond will save $100 billion. If funding and technology come sooner than estimated, asteroid mining might be possible within a decade.

All these planets and other bodies offer a virtually endless supply of resources providing limitless growth potential. Harnessing these resources can lead to much economic development.

Expansion with fewer negative consequences

Expansion of humans and technological progress has usually resulted in some form of environmental devastation, and destruction of ecosystems and their accompanying wildlife. In the past, expansion has often come at the expense of displacing many indigenous peoples, the resulting treatment of these peoples ranging anywhere from encroachment to genocide. Because space has no known life, this need not be a consequence, as some space settlement advocates have pointed out.

Counterarguments state that changing only the location but not the logic of exploitation will not create a more sustainable future.

Alleviating overpopulation and resource demand

Another argument for space colonization is to mitigate the negative effects of overpopulation. If the resources of space were opened to use and viable life-supporting habitats were built, Earth would no longer define the limitations of growth. Although many of Earth's resources are non-renewable, off-planet colonies could satisfy the majority of the planet's resource requirements. With the availability of extraterrestrial resources, demand on terrestrial ones would decline.

Many science fiction authors, including Carl Sagan, Arthur C. Clarke, and Isaac Asimov, have argued that shipping any excess population into space is not a viable solution to human overpopulation. According to Clarke, "the population battle must be fought or won here on Earth". The problem for these authors is not the lack of resources in space (as shown in books such as Mining the Sky), but the physical impracticality of shipping vast numbers of people into space to "solve" overpopulation on Earth.

Other arguments

Advocates for space colonization cite a presumed innate human drive to explore and discover, and call it a quality at the core of progress and thriving civilizations.

Nick Bostrom has argued that from a utilitarian perspective, space colonization should be a chief goal as it would enable a very large population to live for a very long period of time (possibly billions of years), which would produce an enormous amount of utility (or happiness). He claims that it is more important to reduce existential risks to increase the probability of eventual colonization than to accelerate technological development so that space colonization could happen sooner. In his paper, he assumes that the created lives will have positive ethical value despite the problem of suffering.

In a 2001 interview with Freeman Dyson, J. Richard Gott and Sid Goldstein, they were asked for reasons why some humans should live in space. Their answers were:

Biotic ethics is a branch of ethics that values life itself. For biotic ethics, and their extension to space as panbiotic ethics, it is a human purpose to secure and propagate life and to use space to maximize life.

Pursuance

Although some items of the infrastructure requirements above can already be easily produced on Earth and would therefore not be very valuable as trade items (oxygen, water, base metal ores, silicates, etc.), other high value items are more abundant, more easily produced, of higher quality, or can only be produced in space. These would provide (over the long-term) a very high return on the initial investment in space infrastructure.

Some of these high-value trade goods include precious metals, gemstones, power, solar cells, ball bearings, semi-conductors, and pharmaceuticals.

The mining and extraction of metals from a small asteroid the size of 3554 Amun or (6178) 1986 DA, both small near-Earth asteroids, would be 30 times as much metal as humans have mined throughout history. A metal asteroid this size would be worth approximately US$20 trillion at 2001 market prices

Space colonization is seen as a long-term goal of some national space programs. Since the advent of the 21st-century commercialization of space, which saw greater cooperation between NASA and the private sector, several private companies have announced plans toward the colonization of Mars. Among entrepreneurs leading the call for space colonization are Elon Musk, Dennis Tito and Bas Lansdorp.

The main impediments to commercial exploitation of these resources are the very high cost of initial investment, the very long period required for the expected return on those investments (The Eros Project plans a 50-year development), and the fact that the venture has never been carried out before—the high-risk nature of the investment.

Major governments and well-funded corporations have announced plans for new categories of activities: space tourism and hotels, prototype space-based solar-power satellites, heavy-lift boosters and asteroid mining—that create needs and capabilities for humans to be present in space.

Method

Building colonies in space would require access to water, food, space, people, construction materials, energy, transportation, communications, life support, simulated gravity, radiation protection and capital investment. It is likely the colonies would be located near the necessary physical resources. The practice of space architecture seeks to transform spaceflight from a heroic test of human endurance to a normality within the bounds of comfortable experience. As is true of other frontier-opening endeavors, the capital investment necessary for space colonization would probably come from governments, an argument made by John Hickman and Neil deGrasse Tyson.

Materials

Colonies on the Moon, Mars, asteroids, or the metal rich planet Mercury, could extract local materials. The Moon is deficient in volatiles such as argon, helium and compounds of carbon, hydrogen and nitrogen. The LCROSS impacter was targeted at the Cabeus crater which was chosen as having a high concentration of water for the Moon. A plume of material erupted in which some water was detected. Mission chief scientist Anthony Colaprete estimated that the Cabeus crater contains material with 1% water or possibly more. Water ice should also be in other permanently shadowed craters near the lunar poles. Although helium is present only in low concentrations on the Moon, where it is deposited into regolith by the solar wind, an estimated million tons of He-3 exists over all. It also has industrially significant oxygen, silicon, and metals such as iron, aluminum, and titanium.

Launching materials from Earth is expensive, so bulk materials for colonies could come from the Moon, a near-Earth object (NEO), Phobos, or Deimos. The benefits of using such sources include: a lower gravitational force, no atmospheric drag on cargo vessels, and no biosphere to damage. Many NEOs contain substantial amounts of metals. Underneath a drier outer crust (much like oil shale), some other NEOs are inactive comets which include billions of tons of water ice and kerogen hydrocarbons, as well as some nitrogen compounds.

Farther out, Jupiter's Trojan asteroids are thought to be rich in water ice and other volatiles.

Recycling of some raw materials would almost certainly be necessary.

Energy

Solar energy in orbit is abundant, reliable, and is commonly used to power satellites today. There is no night in free space, and no clouds or atmosphere to block sunlight. Light intensity obeys an inverse-square law. So the solar energy available at distance d from the Sun is E = 1367/d2 W/m2, where d is measured in astronomical units (AU) and 1367 watts/m2 is the energy available at the distance of Earth's orbit from the Sun, 1 AU.

In the weightlessness and vacuum of space, high temperatures for industrial processes can easily be achieved in solar ovens with huge parabolic reflectors made of metallic foil with very lightweight support structures. Flat mirrors to reflect sunlight around radiation shields into living areas (to avoid line-of-sight access for cosmic rays, or to make the Sun's image appear to move across their "sky") or onto crops are even lighter and easier to build.

Large solar power photovoltaic cell arrays or thermal power plants would be needed to meet the electrical power needs of the settlers' use. In developed parts of Earth, electrical consumption can average 1 kilowatt/person (or roughly 10 megawatt-hours per person per year.) These power plants could be at a short distance from the main structures if wires are used to transmit the power, or much farther away with wireless power transmission.

A major export of the initial space settlement designs was anticipated to be large solar power satellites (SPS) that would use wireless power transmission (phase-locked microwave beams or lasers emitting wavelengths that special solar cells convert with high efficiency) to send power to locations on Earth, or to colonies on the Moon or other locations in space. For locations on Earth, this method of getting power is extremely benign, with zero emissions and far less ground area required per watt than for conventional solar panels. Once these satellites are primarily built from lunar or asteroid-derived materials, the price of SPS electricity could be lower than energy from fossil fuel or nuclear energy; replacing these would have significant benefits such as the elimination of greenhouse gases and nuclear waste from electricity generation.

Transmitting solar energy wirelessly from the Earth to the Moon and back is also an idea proposed for the benefit of space colonization and energy resources. Physicist Dr. David Criswell, who worked for NASA during the Apollo missions, came up with the idea of using power beams to transfer energy from space. These beams, microwaves with a wavelength of about 12 cm, will be almost untouched as they travel through the atmosphere. They can also be aimed at more industrial areas to keep away from humans or animal activities. This will allow for safer and more reliable methods of transferring solar energy.

In 2008, scientists were able to send a 20 watt microwave signal from a mountain in Maui to the island of Hawaii. Since then JAXA and Mitsubishi has teamed up on a $21 billion project in order to place satellites in orbit which could generate up to 1 gigawatt of energy. These are the next advancements being done today in order to make energy be transmitted wirelessly for space-based solar energy.

However, the value of SPS power delivered wirelessly to other locations in space will typically be far higher than to Earth. Otherwise, the means of generating the power would need to be included with these projects and pay the heavy penalty of Earth launch costs. Therefore, other than proposed demonstration projects for power delivered to Earth, the first priority for SPS electricity is likely to be locations in space, such as communications satellites, fuel depots or "orbital tugboat" boosters transferring cargo and passengers between low Earth orbit (LEO) and other orbits such as geosynchronous orbit (GEO), lunar orbit or highly-eccentric Earth orbit (HEEO). The system will also rely on satellites and receiving stations on Earth to convert the energy into electricity. Because of this energy can be transmitted easily from dayside to nightside meaning power is reliable 24/7.

Nuclear power is sometimes proposed for colonies located on the Moon or on Mars, as the supply of solar energy is too discontinuous in these locations; the Moon has nights of two Earth weeks in duration. Mars has nights, relatively high gravity, and an atmosphere featuring large dust storms to cover and degrade solar panels. Also, Mars' greater distance from the Sun (1.52 astronomical units, AU) means that only 1/1.522 or about 43% of the solar energy is available at Mars compared with Earth orbit. Another method would be transmitting energy wirelessly to the lunar or Martian colonies from solar power satellites (SPSs) as described above; the difficulties of generating power in these locations make the relative advantages of SPSs much greater there than for power beamed to locations on Earth. In order to also be able to fulfill the requirements of a Moon base and energy to supply life support, maintenance, communications, and research, a combination of both nuclear and solar energy will be used in the first colonies.

For both solar thermal and nuclear power generation in airless environments, such as the Moon and space, and to a lesser extent the very thin Martian atmosphere, one of the main difficulties is dispersing the inevitable heat generated. This requires fairly large radiator areas.

Life support

In space settlements, a life support system must recycle or import all the nutrients without "crashing." The closest terrestrial analogue to space life support is possibly that of a nuclear submarine. Nuclear submarines use mechanical life support systems to support humans for months without surfacing, and this same basic technology could presumably be employed for space use. However, nuclear submarines run "open loop"—extracting oxygen from seawater, and typically dumping carbon dioxide overboard, although they recycle existing oxygen. Another commonly proposed life-support system is a closed ecological system such as Biosphere 2.

Radiation protection

Cosmic rays and solar flares create a lethal radiation environment in space. In Earth orbit, the Van Allen belts make living above the Earth's atmosphere difficult. To protect life, settlements must be surrounded by sufficient mass to absorb most incoming radiation, unless magnetic or plasma radiation shields were developed.

Passive mass shielding of four metric tons per square meter of surface area will reduce radiation dosage to several mSv or less annually, well below the rate of some populated high natural background areas on Earth. This can be leftover material (slag) from processing lunar soil and asteroids into oxygen, metals, and other useful materials. However, it represents a significant obstacle to manoeuvring vessels with such massive bulk (mobile spacecraft being particularly likely to use less massive active shielding). Inertia would necessitate powerful thrusters to start or stop rotation, or electric motors to spin two massive portions of a vessel in opposite senses. Shielding material can be stationary around a rotating interior.

Self-replication

Space manufacturing could enable self-replication. Some think it's the ultimate goal because it allows an exponential increase in colonies, while eliminating costs to and dependence on Earth. It could be argued that the establishment of such a colony would be Earth's first act of self-replication. Intermediate goals include colonies that expect only information from Earth (science, engineering, entertainment) and colonies that just require periodic supply of light weight objects, such as integrated circuits, medicines, genetic material and tools.

Psychological adjustment

The monotony and loneliness that comes from a prolonged space mission can leave astronauts susceptible to cabin fever or having a psychotic break. Moreover, lack of sleep, fatigue, and work overload can affect an astronaut's ability to perform well in an environment such as space where every action is critical.

Population size

In 2002, the anthropologist John H. Moore estimated that a population of 150–180 would permit a stable society to exist for 60 to 80 generations—equivalent to 2,000 years.

Assuming a journey of 6,300 years, the astrophysicist Frédéric Marin and the particle physicist Camille Beluffi calculated that the minimum viable population for a generation ship to reach Proxima Centauri would be 98 settlers at the beginning of the mission (then the crew will breed until reaching a stable population of several hundred settlers within the ship) .

In 2020, Jean-Marc Salotti proposed a method to determine the minimum number of settlers to survive on an extraterrestrial world. It is based on the comparison between the required time to perform all activities and the working time of all human resources. For Mars, 110 individuals would be required.

Money and currency

Experts have debated on the possible usage of money and currencies in societies that will be established in space. The Quasi Universal Intergalactic Denomination, or QUID, is a physical currency made from a space-qualified polymer PTFE for inter-planetary travelers. QUID was designed for the foreign exchange company Travelex by scientists from Britain's National Space Centre and the University of Leicester.

Other possibilities include the incorporation of cryptocurrency as the primary form of currency, as suggested by Elon Musk.

Locations

Artist Les Bossinas' 1989 concept of Mars mission

Location is a frequent point of contention between space colonization advocates. The location of colonization can be on a physical body planet, dwarf planet, natural satellite, or asteroid or orbiting one. For colonies not on a body see also space habitat.

Near-Earth space

Artist's conception of a lunar base

The Moon

The Moon is discussed as a target for colonization, due to its proximity to Earth and lower escape velocity. Abundant ice in certain areas could provide support for the water needs of a lunar colony, However, the Moon's lack of atmosphere provides no protection from space radiation or meteoroids, so lunar lava tubes have been proposed sites to gain protection. The Moon's low surface gravity is also a concern, as it is unknown whether 1/6g is enough to maintain human health for long periods. Interest in establishing a moonbase has increased in the 21st century as an intermediate to Mars colonization, with such proposals as the Moon Village for research, mining, and trade facilities with permanent habitation.

Lagrange points

A contour plot of the gravitational potential of the Moon and Earth, showing the five Earth–Moon Lagrange points

Another near-Earth possibility are the stable Earth–Moon Lagrange points L4 and L5, at which point a space colony can float indefinitely. The L5 Society was founded to promote settlement by building space stations at these points. Gerard K. O'Neill suggested in 1974 that the L5 point, in particular, could fit several thousands of floating colonies, and would allow easy travel to and from the colonies due to the shallow effective potential at this point.

The inner planets

Mercury

Artist's conception of a terraformed Mercury.

Once thought to be a volatile-depleted body like our Moon, Mercury is now known to be volatile-rich, surprisingly richer in volatiles, in fact, than any other terrestrial body in the inner solar system. The planet also receives six and a half times the solar flux as the Earth/Moon system.

Geologist Stephen Gillett suggested in 1996 that this could make Mercury an ideal place to build and launch solar sail spacecraft, which could launch as folded-up "chunks" by mass driver from Mercury's surface. Once in space, the solar sails would deploy. Since Mercury's solar constant is 6.5 times higher than Earth's, energy for the mass driver should be easy to come by, and solar sails near Mercury would have 6.5 times the thrust they do near Earth. This could make Mercury an ideal place to acquire materials useful in building hardware to send to (and terraform) Venus. Vast solar collectors could also be built on or near Mercury to produce power for large-scale engineering activities such as laser-pushed lightsails to nearby star systems.

Venus

An artist's conception of a research station in the clouds of Venus.

Mars

An artist's conception of a human mission to Mars.

Asteroid belt

Colonization of asteroids would require space habitats. The asteroid belt has significant overall material available, the largest object being Ceres, although it is thinly distributed as it covers a vast region of space. Uncrewed supply craft should be practical with little technological advance, even crossing 500 million kilometers of space. The colonists would have a strong interest in assuring their asteroid did not hit Earth or any other body of significant mass, but would have extreme difficulty in moving an asteroid of any size. The orbits of the Earth and most asteroids are very distant from each other in terms of delta-v and the asteroidal bodies have enormous momentum. Rockets or mass drivers can perhaps be installed on asteroids to direct their path into a safe course.

Moons of outer planets

Artist's impression of a hypothetical ocean cryobot in Europa.

Jovian moons – Europa, Callisto and Ganymede

The Artemis Project designed a plan to colonize Europa, one of Jupiter's moons. Scientists were to inhabit igloos and drill down into the Europan ice crust, exploring any sub-surface ocean. This plan discusses possible use of "air pockets" for human habitation. Europa is considered one of the more habitable bodies in the Solar System and so merits investigation as a possible abode for life.

NASA performed a study called HOPE (Revolutionary Concepts for Human Outer Planet Exploration) regarding the future exploration of the Solar System. The target chosen was Callisto due to its distance from Jupiter, and thus the planet's harmful radiation. It could be possible to build a surface base that would produce fuel for further exploration of the Solar System.

Three of the Galilean moons (Europa, Ganymede, Callisto) have an abundance of volatiles that may support colonization efforts.

Ligeia Mare, a sea on Titan (left) compared at scale to Lake Superior on Earth (right).

Moons of Saturn – Titan, Enceladus, and others

Titan is suggested as a target for colonization, because it is the only moon in the Solar System to have a dense atmosphere and is rich in carbon-bearing compounds. Titan has water ice and large methane oceans. Robert Zubrin identified Titan as possessing an abundance of all the elements necessary to support life, making Titan perhaps the most advantageous locale in the outer Solar System for colonization, and saying "In certain ways, Titan is the most hospitable extraterrestrial world within our solar system for human colonization".

Enceladus is a small, icy moon orbiting close to Saturn, notable for its extremely bright surface and the geyser-like plumes of ice and water vapor that erupt from its southern polar region. If Enceladus has liquid water, it joins Mars and Jupiter's moon Europa as one of the prime places in the Solar System to look for extraterrestrial life and possible future settlements.

Other large satellites: Rhea, Iapetus, Dione, Tethys, and Mimas, all have large quantities of volatiles, which can be used to support settlements.

Trans-Neptunian region

The Kuiper belt is estimated to have 70,000 bodies of 100 km or larger.

Freeman Dyson has suggested that within a few centuries human civilization will have relocated to the Kuiper belt.

The Oort cloud is estimated to have up to a trillion comets.

Outside the Solar System

A star forming region in the Large Magellanic Cloud

Looking beyond the Solar System, there are up to several hundred billion potential stars with possible colonization targets. The main difficulty is the vast distances to other stars: roughly a hundred thousand times farther away than the planets in the Solar System. This means that some combination of very high speed (some more-than-fractional percentage of the speed of light), or travel times lasting centuries or millennia, would be required. These speeds are far beyond what current spacecraft propulsion systems can provide.

Space colonization technology could in principle allow human expansion at high, but sub-relativistic speeds, substantially less than the speed of light, c.  An interstellar colony ship would be similar to a space habitat, with the addition of major propulsion capabilities and independent energy generation.

Hypothetical starship concepts proposed both by scientists and in hard science fiction include:

  • A generation ship would travel much slower than light, with consequent interstellar trip times of many decades or centuries. The crew would go through generations before the journey is complete, so that none of the initial crew would be expected to survive to arrive at the destination, assuming current human lifespans.
  • A sleeper ship, in which most or all of the crew spend the journey in some form of hibernation or suspended animation, allowing some or all who undertake the journey to survive to the end.
  • An embryo-carrying interstellar starship (EIS), much smaller than a generation ship or sleeper ship, transporting human embryos or DNA in a frozen or dormant state to the destination. (Obvious biological and psychological problems in birthing, raising, and educating such voyagers, neglected here, may not be fundamental.)
  • A nuclear fusion or fission powered ship (e.g. ion drive) of some kind, achieving velocities of up to perhaps 10% c  permitting one-way trips to nearby stars with durations comparable to a human lifetime.
  • A Project Orion-ship, a nuclear-powered concept proposed by Freeman Dyson which would use nuclear explosions to propel a starship. A special case of the preceding nuclear rocket concepts, with similar potential velocity capability, but possibly easier technology.
  • Laser propulsion concepts, using some form of beaming of power from the Solar System might allow a light-sail or other ship to reach high speeds, comparable to those theoretically attainable by the fusion-powered electric rocket, above. These methods would need some means, such as supplementary nuclear propulsion, to stop at the destination, but a hybrid (light-sail for acceleration, fusion-electric for deceleration) system might be possible.
  • Uploaded human minds or artificial intelligence may be transmitted via radio or laser at light speed to interstellar destinations where self-replicating spacecraft have travelled subluminally and set up infrastructure and possibly also brought some minds. Extraterrestrial intelligence might be another viable destination.

The above concepts which appear limited to high, but still sub-relativistic speeds, due to fundamental energy and reaction mass considerations, and all would entail trip times which might be enabled by space colonization technology, permitting self-contained habitats with lifetimes of decades to centuries. Yet human interstellar expansion at average speeds of even 0.1% of c  would permit settlement of the entire Galaxy in less than one half of the Sun's galactic orbital period of ~240,000,000 years, which is comparable to the timescale of other galactic processes. Thus, even if interstellar travel at near relativistic speeds is never feasible (which cannot be clearly determined at this time), the development of space colonization could allow human expansion beyond the Solar System without requiring technological advances that cannot yet be reasonably foreseen. This could greatly improve the chances for the survival of intelligent life over cosmic timescales, given the many natural and human-related hazards that have been widely noted.

If humanity does gain access to a large amount of energy, on the order of the mass-energy of entire planets, it may eventually become feasible to construct Alcubierre drives. These are one of the few methods of superluminal travel which may be possible under current physics. However it is probable that such a device could never exist, due to the fundamental challenges posed. For more on this see Difficulties of making and using an Alcubierre Drive.

Intergalactic travel

Looking beyond the Milky Way, there are at least 2 trillion other galaxies in the observable universe. The distances between galaxies are on the order of a million times farther than those between the stars. Because of the speed of light limit on how fast any material objects can travel in space, intergalactic travel would either have to involve voyages lasting millions of years, or a possible faster than light propulsion method based on speculative physics, such as the Alcubierre drive. There are, however, no scientific reasons for stating that intergalactic travel is impossible in principle.

Uploaded human minds or AI may be transmitted to other galaxies in the hope some intelligence there would receive and activate them.

Law and governance

Space activity is legally based on the Outer Space Treaty, the main international treaty. Though there are other international agreements such as the significantly less ratified Moon Treaty, colonial missions would be regulated by the national law of the sending country.

The Outer Space Treaty established the basic ramifications for space activity in article one:"The exploration and use of outer space, including the Moon and other celestial bodies, shall be carried out for the benefit and in the interests of all countries, irrespective of their degree of economic or scientific development, and shall be the province of all mankind."

And continued in article two by stating:"Outer space, including the Moon and other celestial bodies, is not subject to national appropriation by claim of sovereignty, by means of use or occupation, or by any other means."

The development of international space law has revolved much around outer space being defined as common heritage of mankind. The Magna Carta of Space presented by William A. Hyman in 1966 framed outer space explicitly not as terra nullius but as res communis, which subsequently influenced the work of the United Nations Committee on the Peaceful Uses of Outer Space.

Economics

Space colonization can roughly be said to be possible when the necessary methods of space colonization become cheap enough (such as space access by cheaper launch systems) to meet the cumulative funds that have been gathered for the purpose, in addition to estimated profits from commercial use of space.

Although there are no immediate prospects for the large amounts of money required for space colonization to be available given traditional launch costs, there is some prospect of a radical reduction to launch costs in the 2010s, which would consequently lessen the cost of any efforts in that direction. With a published price of US$56.5 million per launch of up to 13,150 kg (28,990 lb) payload to low Earth orbit, SpaceX Falcon 9 rockets are already the "cheapest in the industry". Advancements currently being developed as part of the SpaceX reusable launch system development program to enable reusable Falcon 9s "could drop the price by an order of magnitude, sparking more space-based enterprise, which in turn would drop the cost of access to space still further through economies of scale." If SpaceX is successful in developing the reusable technology, it would be expected to "have a major impact on the cost of access to space", and change the increasingly competitive market in space launch services.

The President's Commission on Implementation of United States Space Exploration Policy suggested that an inducement prize should be established, perhaps by government, for the achievement of space colonization, for example by offering the prize to the first organization to place humans on the Moon and sustain them for a fixed period before they return to Earth.

Terrestrial analogues to space colonies

The most famous attempt to build an analogue to a self-sufficient colony is Biosphere 2, which attempted to duplicate Earth's biosphere. BIOS-3 is another closed ecosystem, completed in 1972 in Krasnoyarsk, Siberia.

Many space agencies build testbeds for advanced life support systems, but these are designed for long duration human spaceflight, not permanent colonization.

Remote research stations in inhospitable climates, such as the Amundsen–Scott South Pole Station or Devon Island Mars Arctic Research Station, can also provide some practice for off-world outpost construction and operation. The Mars Desert Research Station has a habitat for similar reasons, but the surrounding climate is not strictly inhospitable.

History

Early suggestions for future colonizers like Francis Drake and Christoph Columbus to reach the Moon and people consequently living there were made by John Wilkins in A Discourse Concerning a New Planet in the first half of the 17th century.

The first known work on space colonization was The Brick Moon, a work of fiction published in 1869 by Edward Everett Hale, about an inhabited artificial satellite.

The Russian schoolmaster and physicist Konstantin Tsiolkovsky foresaw elements of the space community in his book Beyond Planet Earth written about 1900. Tsiolkovsky had his space travelers building greenhouses and raising crops in space. Tsiolkovsky believed that going into space would help perfect human beings, leading to immortality and peace.

Others have also written about space colonies as Lasswitz in 1897 and Bernal, Oberth, Von Pirquet and Noordung in the 1920s. Wernher von Braun contributed his ideas in a 1952 Colliers article. In the 1950s and 1960s, Dandridge M. Cole published his ideas.

Another seminal book on the subject was the book The High Frontier: Human Colonies in Space by Gerard K. O'Neill in 1977 which was followed the same year by Colonies in Space by T. A. Heppenheimer.

In 1977 the first sustained space habitat the Salyut 6 station was put into Earth's orbit eventually succeeded by the ISS, today's closest to a human outpost in space.

M. Dyson wrote Home on the Moon; Living on a Space Frontier in 2003; Peter Eckart wrote Lunar Base Handbook in 2006 and then Harrison Schmitt's Return to the Moon written in 2007.

As of 2013, Bigelow Aerospace was the only private commercial spaceflight company that had launched experimental space station modules, and they had launched two: Genesis I (2006) and Genesis II (2007), both into Earth-orbit. As of 2014, they had indicated that their first production model of the space habitat, a much larger habitat (330 m3 (12,000 cu ft)) called the BA 330, could be launched as early as 2017. In the event, the larger habitat was never built, and Bigelow laid off all employees in March 2020.

Planetary protection

Robotic spacecraft to Mars are required to be sterilized, to have at most 300,000 spores on the exterior of the craft—and more thoroughly sterilized if they contact "special regions" containing water, otherwise there is a risk of contaminating not only the life-detection experiments but possibly the planet itself.

It is impossible to sterilize human missions to this level, as humans are host to typically a hundred trillion microorganisms of thousands of species of the human microbiome, and these cannot be removed while preserving the life of the human. Containment seems the only option, but it is a major challenge in the event of a hard landing (i.e. crash). There have been several planetary workshops on this issue, but with no final guidelines for a way forward yet. Human explorers could also inadvertently contaminate Earth if they return to the planet while carrying extra-terrestrial microorganisms.

Objections

A corollary to the Fermi paradox—"nobody else is doing it"—is the argument that, because no evidence of alien colonization technology exists, it is statistically unlikely to even be possible to use that same level of technology ourselves.

Colonizing space would require massive amounts of financial, physical, and human capital devoted to research, development, production, and deployment. Earth's natural resources do not increase to a noteworthy extent (which is in keeping with the "only one Earth" position of environmentalists). Thus, considerable efforts in colonizing places outside Earth would appear as a hazardous waste of the Earth's limited resources for an aim without a clear end.

The fundamental problem of public things, needed for survival, such as space programs, is the free-rider problem. Convincing the public to fund such programs would require additional self-interest arguments: If the objective of space colonization is to provide a "backup" in case everyone on Earth is killed, then why should someone on Earth pay for something that is only useful after they are dead? This assumes that space colonization is not widely acknowledged as a sufficiently valuable social goal.

Seen as a relief to the problem of overpopulation even as early as 1758, and listed as one of Stephen Hawking's reasons for pursuing space exploration, it has become apparent that space colonization in response to overpopulation is unwarranted. Indeed, the birth rates of many developed countries, specifically spacefaring ones, are at or below replacement rates, thus negating the need to use colonization as a means of population control.

Other objections include concerns that the forthcoming colonization and commodification of the cosmos may be likely to enhance the interests of the already powerful, including major economic and military institutions e.g. the large financial institutions, the major aerospace companies and the military–industrial complex, to lead to new wars, and to exacerbate pre-existing exploitation of workers and resources, economic inequality, poverty, social division and marginalization, environmental degradation, and other detrimental processes or institutions.

Additional concerns include creating a culture in which humans are no longer seen as human, but rather as material assets. The issues of human dignity, morality, philosophy, culture, bioethics, and the threat of megalomaniac leaders in these new "societies" would all have to be addressed in order for space colonization to meet the psychological and social needs of people living in isolated colonies.

As an alternative or addendum for the future of the human race, many science fiction writers have focused on the realm of the 'inner-space', that is the computer-aided exploration of the human mind and human consciousness—possibly en route developmentally to a Matrioshka Brain.

Robotic spacecraft are proposed as an alternative to gain many of the same scientific advantages without the limited mission duration and high cost of life support and return transportation involved in human missions. However, there are vast scientific domains that cannot be addressed with robots, especially biology in specific atmospheric and gravitational environments and human sciences in space.

Another concern is the potential to cause interplanetary contamination on planets that may harbor hypothetical extraterrestrial life.

Colonialism

Space colonization has been discussed as continuation of imperialism and colonialism. Questioning colonial decision making and reasons for colonial labour and land exploitation with postcolonial critique. Seeing the need for inclusive and democratic participation and implementation of any space exploration, infrastructure or habitation.

The narrative of space exploration as a "New Frontier" has been criticized as unreflected continuation of settler colonialism and manifest destiny, continuing the narrative of colonial exploration as fundamental to the assumed human nature. Also narratives of survival and arguments for space as a solution to global problems like pollution have been identified as imperialist.

The predominant perspective of territorial colonization in space has been called surfacism, especially comparing advocacy for colonization of Mars opposed to Venus.

It has been argued that the present politico-legal regimes and their philosophic grounding advantage imperialist development of space.

The logo and name of the Lunar Gateway references the St. Louis Gateway Arch, associating Mars with the American frontier.
 
The STS-30 patch depicting a Spanish caravel similar to the ship on the official Magellan program logo commemorating the 16th century explorer's journey and his legacy of adventure and discovery.
 
Gemini 5 mission badge (1965).

Physical, mental and emotional health risks to colonizers

The health of the humans who may participate in a colonization venture would be subject to increased physical, mental and emotional risks. NASA learned that – without gravity – bones lose minerals, causing osteoporosis. Bone density may decrease by 1% per month, which may lead to a greater risk of osteoporosis-related fractures later in life. Fluid shifts towards to the head may cause vision problems. NASA found that isolation in closed environments aboard the International Space Station led to depression, sleep disorders, and diminished personal interactions, likely due to confined spaces and the monotony and boredom of long space flight. Circadian rhythm may also be susceptible to the effects of space life due to the effects on sleep of disrupted timing of sunset and sunrise. This can lead to exhaustion, as well as other sleep problems such as insomnia, which can reduce their productivity and lead to mental health disorders. High-energy radiation is a health risk that colonizers would face, as radiation in deep space is deadlier than what astronauts face now in low Earth orbit. Metal shielding on space vehicles protects against only 25-30% of space radiation, possibly leaving colonizers exposed to the other 70% of radiation and its short and long-term health complications.

Solutions to health risks

Although there are many physical, mental, and emotional health risks for future colonizers and pioneers, solutions have been proposed to correct these problems. Mars500, HI-SEAS, and SMART-OP represent efforts to help reduce the effects of loneliness and confinement for long periods of time. Keeping contact with family members, celebrating holidays, and maintaining cultural identities all had an impact on minimizing the deterioration of mental health. There are also health tools in development to help astronauts reduce anxiety, as well as helpful tips to reduce the spread of germs and bacteria in a closed environment. Radiation risk may be reduced for astronauts by frequent monitoring and focusing work away from the shielding on the shuttle. Future space agencies can also ensure that every colonizer would have a mandatory amount of daily exercise to prevent degradation of muscle.

Theoretical ecology

From Wikipedia, the free encyclopedia
 
Mathematical models developed in theoretical ecology predict complex food webs are less stable than simple webs.

Life on Earth-Flow of Energy and Entropy

Theoretical ecology is the scientific discipline devoted to the study of ecological systems using theoretical methods such as simple conceptual models, mathematical models, computational simulations, and advanced data analysis. Effective models improve understanding of the natural world by revealing how the dynamics of species populations are often based on fundamental biological conditions and processes. Further, the field aims to unify a diverse range of empirical observations by assuming that common, mechanistic processes generate observable phenomena across species and ecological environments. Based on biologically realistic assumptions, theoretical ecologists are able to uncover novel, non-intuitive insights about natural processes. Theoretical results are often verified by empirical and observational studies, revealing the power of theoretical methods in both predicting and understanding the noisy, diverse biological world.

The field is broad and includes foundations in applied mathematics, computer science, biology, statistical physics, genetics, chemistry, evolution, and conservation biology. Theoretical ecology aims to explain a diverse range of phenomena in the life sciences, such as population growth and dynamics, fisheries, competition, evolutionary theory, epidemiology, animal behavior and group dynamics, food webs, ecosystems, spatial ecology, and the effects of climate change.

Theoretical ecology has further benefited from the advent of fast computing power, allowing the analysis and visualization of large-scale computational simulations of ecological phenomena. Importantly, these modern tools provide quantitative predictions about the effects of human induced environmental change on a diverse variety of ecological phenomena, such as: species invasions, climate change, the effect of fishing and hunting on food network stability, and the global carbon cycle.

Modelling approaches

As in most other sciences, mathematical models form the foundation of modern ecological theory.

  • Phenomenological models: distill the functional and distributional shapes from observed patterns in the data, or researchers decide on functions and distribution that are flexible enough to match the patterns they or others (field or experimental ecologists) have found in the field or through experimentation.
  • Mechanistic models: model the underlying processes directly, with functions and distributions that are based on theoretical reasoning about ecological processes of interest.

Ecological models can be deterministic or stochastic.

  • Deterministic models always evolve in the same way from a given starting point. They represent the average, expected behavior of a system, but lack random variation. Many system dynamics models are deterministic.
  • Stochastic models allow for the direct modeling of the random perturbations that underlie real world ecological systems. Markov chain models are stochastic.

Species can be modelled in continuous or discrete time.

  • Continuous time is modelled using differential equations.
  • Discrete time is modelled using difference equations. These model ecological processes that can be described as occurring over discrete time steps. Matrix algebra is often used to investigate the evolution of age-structured or stage-structured populations. The Leslie matrix, for example, mathematically represents the discrete time change of an age structured population.

Models are often used to describe real ecological reproduction processes of single or multiple species. These can be modelled using stochastic branching processes. Examples are the dynamics of interacting populations (predation competition and mutualism), which, depending on the species of interest, may best be modeled over either continuous or discrete time. Other examples of such models may be found in the field of mathematical epidemiology where the dynamic relationships that are to be modeled are host–pathogen interactions.

Bifurcation diagram of the logistic map

Bifurcation theory is used to illustrate how small changes in parameter values can give rise to dramatically different long run outcomes, a mathematical fact that may be used to explain drastic ecological differences that come about in qualitatively very similar systems. Logistic maps are polynomial mappings, and are often cited as providing archetypal examples of how chaotic behaviour can arise from very simple non-linear dynamical equations. The maps were popularized in a seminal 1976 paper by the theoretical ecologist Robert May. The difference equation is intended to capture the two effects of reproduction and starvation.

In 1930, R.A. Fisher published his classic The Genetical Theory of Natural Selection, which introduced the idea that frequency-dependent fitness brings a strategic aspect to evolution, where the payoffs to a particular organism, arising from the interplay of all of the relevant organisms, are the number of this organism' s viable offspring. In 1961, Richard Lewontin applied game theory to evolutionary biology in his Evolution and the Theory of Games, followed closely by John Maynard Smith, who in his seminal 1972 paper, “Game Theory and the Evolution of Fighting", defined the concept of the evolutionarily stable strategy.

Because ecological systems are typically nonlinear, they often cannot be solved analytically and in order to obtain sensible results, nonlinear, stochastic and computational techniques must be used. One class of computational models that is becoming increasingly popular are the agent-based models. These models can simulate the actions and interactions of multiple, heterogeneous, organisms where more traditional, analytical techniques are inadequate. Applied theoretical ecology yields results which are used in the real world. For example, optimal harvesting theory draws on optimization techniques developed in economics, computer science and operations research, and is widely used in fisheries.

Population ecology

Population ecology is a sub-field of ecology that deals with the dynamics of species populations and how these populations interact with the environment. It is the study of how the population sizes of species living together in groups change over time and space, and was one of the first aspects of ecology to be studied and modelled mathematically.

Exponential growth

The most basic way of modeling population dynamics is to assume that the rate of growth of a population depends only upon the population size at that time and the per capita growth rate of the organism. In other words, if the number of individuals in a population at a time t, is N(t), then the rate of population growth is given by:

where r is the per capita growth rate, or the intrinsic growth rate of the organism. It can also be described as r = b-d, where b and d are the per capita time-invariant birth and death rates, respectively. This first order linear differential equation can be solved to yield the solution

,

a trajectory known as Malthusian growth, after Thomas Malthus, who first described its dynamics in 1798. A population experiencing Malthusian growth follows an exponential curve, where N(0) is the initial population size. The population grows when r > 0, and declines when r < 0. The model is most applicable in cases where a few organisms have begun a colony and are rapidly growing without any limitations or restrictions impeding their growth (e.g. bacteria inoculated in rich media).

Logistic growth

The exponential growth model makes a number of assumptions, many of which often do not hold. For example, many factors affect the intrinsic growth rate and is often not time-invariant. A simple modification of the exponential growth is to assume that the intrinsic growth rate varies with population size. This is reasonable: the larger the population size, the fewer resources available, which can result in a lower birth rate and higher death rate. Hence, we can replace the time-invariant r with r’(t) = (b –a*N(t)) – (d + c*N(t)), where a and c are constants that modulate birth and death rates in a population dependent manner (e.g. intraspecific competition). Both a and c will depend on other environmental factors which, we can for now, assume to be constant in this approximated model. The differential equation is now:

This can be rewritten as:

where r = b-d and K = (b-d)/(a+c).

The biological significance of K becomes apparent when stabilities of the equilibria of the system are considered. The constant K is the carrying capacity of the population. The equilibria of the system are N = 0 and N = K. If the system is linearized, it can be seen that N = 0 is an unstable equilibrium while K is a stable equilibrium.

Structured population growth

Another assumption of the exponential growth model is that all individuals within a population are identical and have the same probabilities of surviving and of reproducing. This is not a valid assumption for species with complex life histories. The exponential growth model can be modified to account for this, by tracking the number of individuals in different age classes (e.g. one-, two-, and three-year-olds) or different stage classes (juveniles, sub-adults, and adults) separately, and allowing individuals in each group to have their own survival and reproduction rates. The general form of this model is

where Nt is a vector of the number of individuals in each class at time t and L is a matrix that contains the survival probability and fecundity for each class. The matrix L is referred to as the Leslie matrix for age-structured models, and as the Lefkovitch matrix for stage-structured models.

If parameter values in L are estimated from demographic data on a specific population, a structured model can then be used to predict whether this population is expected to grow or decline in the long-term, and what the expected age distribution within the population will be. This has been done for a number of species including loggerhead sea turtles and right whales.

Community ecology

An ecological community is a group of trophically similar, sympatric species that actually or potentially compete in a local area for the same or similar resources. Interactions between these species form the first steps in analyzing more complex dynamics of ecosystems. These interactions shape the distribution and dynamics of species. Of these interactions, predation is one of the most widespread population activities. Taken in its most general sense, predation comprises predator–prey, host–pathogen, and host–parasitoid interactions.

Lotka–Volterra model of cheetah–baboon interactions. Starting with 80 baboons (green) and 40 cheetahs, this graph shows how the model predicts the two species numbers will progress over time.

Predator–prey interaction

Predator–prey interactions exhibit natural oscillations in the populations of both predator and the prey. In 1925, the American mathematician Alfred J. Lotka developed simple equations for predator–prey interactions in his book on biomathematics. The following year, the Italian mathematician Vito Volterra, made a statistical analysis of fish catches in the Adriatic and independently developed the same equations. It is one of the earliest and most recognised ecological models, known as the Lotka-Volterra model:

where N is the prey and P is the predator population sizes, r is the rate for prey growth, taken to be exponential in the absence of any predators, α is the prey mortality rate for per-capita predation (also called ‘attack rate’), c is the efficiency of conversion from prey to predator, and d is the exponential death rate for predators in the absence of any prey.

Volterra originally used the model to explain fluctuations in fish and shark populations after fishing was curtailed during the First World War. However, the equations have subsequently been applied more generally. Other examples of these models include the Lotka-Volterra model of the snowshoe hare and Canadian lynx in North America, any infectious disease modeling such as the recent outbreak of SARS  and biological control of California red scale by the introduction of its parasitoid, Aphytis melinus .

A credible, simple alternative to the Lotka-Volterra predator–prey model and their common prey dependent generalizations is the ratio dependent or Arditi-Ginzburg model. The two are the extremes of the spectrum of predator interference models. According to the authors of the alternative view, the data show that true interactions in nature are so far from the Lotka–Volterra extreme on the interference spectrum that the model can simply be discounted as wrong. They are much closer to the ratio-dependent extreme, so if a simple model is needed one can use the Arditi–Ginzburg model as the first approximation.

Host–pathogen interaction

The second interaction, that of host and pathogen, differs from predator–prey interactions in that pathogens are much smaller, have much faster generation times, and require a host to reproduce. Therefore, only the host population is tracked in host–pathogen models. Compartmental models that categorize host population into groups such as susceptible, infected, and recovered (SIR) are commonly used.

Host–parasitoid interaction

The third interaction, that of host and parasitoid, can be analyzed by the Nicholson–Bailey model, which differs from Lotka-Volterra and SIR models in that it is discrete in time. This model, like that of Lotka-Volterra, tracks both populations explicitly. Typically, in its general form, it states:

where f(Nt, Pt) describes the probability of infection (typically, Poisson distribution), λ is the per-capita growth rate of hosts in the absence of parasitoids, and c is the conversion efficiency, as in the Lotka-Volterra model.

Competition and mutualism

In studies of the populations of two species, the Lotka-Volterra system of equations has been extensively used to describe dynamics of behavior between two species, N1 and N2. Examples include relations between D. discoiderum and E. coli, as well as theoretical analysis of the behavior of the system.

The r coefficients give a “base” growth rate to each species, while K coefficients correspond to the carrying capacity. What can really change the dynamics of a system, however are the α terms. These describe the nature of the relationship between the two species. When α12 is negative, it means that N2 has a negative effect on N1, by competing with it, preying on it, or any number of other possibilities. When α12 is positive, however, it means that N2 has a positive effect on N1, through some kind of mutualistic interaction between the two. When both α12 and α21 are negative, the relationship is described as competitive. In this case, each species detracts from the other, potentially over competition for scarce resources. When both α12 and α21 are positive, the relationship becomes one of mutualism. In this case, each species provides a benefit to the other, such that the presence of one aids the population growth of the other.

Neutral theory

Unified neutral theory is a hypothesis proposed by Stephen Hubbell in 2001. The hypothesis aims to explain the diversity and relative abundance of species in ecological communities, although like other neutral theories in ecology, Hubbell's hypothesis assumes that the differences between members of an ecological community of trophically similar species are "neutral," or irrelevant to their success. Neutrality means that at a given trophic level in a food web, species are equivalent in birth rates, death rates, dispersal rates and speciation rates, when measured on a per-capita basis. This implies that biodiversity arises at random, as each species follows a random walk. This can be considered a null hypothesis to niche theory. The hypothesis has sparked controversy, and some authors consider it a more complex version of other null models that fit the data better.

Under unified neutral theory, complex ecological interactions are permitted among individuals of an ecological community (such as competition and cooperation), providing all individuals obey the same rules. Asymmetric phenomena such as parasitism and predation are ruled out by the terms of reference; but cooperative strategies such as swarming, and negative interaction such as competing for limited food or light are allowed, so long as all individuals behave the same way. The theory makes predictions that have implications for the management of biodiversity, especially the management of rare species. It predicts the existence of a fundamental biodiversity constant, conventionally written θ, that appears to govern species richness on a wide variety of spatial and temporal scales.

Hubbell built on earlier neutral concepts, including MacArthur & Wilson's theory of island biogeography and Gould's concepts of symmetry and null models.

Spatial ecology

Biogeography

Biogeography is the study of the distribution of species in space and time. It aims to reveal where organisms live, at what abundance, and why they are (or are not) found in a certain geographical area.

Biogeography is most keenly observed on islands, which has led to the development of the subdiscipline of island biogeography. These habitats are often a more manageable areas of study because they are more condensed than larger ecosystems on the mainland. In 1967, Robert MacArthur and E.O. Wilson published The Theory of Island Biogeography. This showed that the species richness in an area could be predicted in terms of factors such as habitat area, immigration rate and extinction rate. The theory is considered one of the fundamentals of ecological theory. The application of island biogeography theory to habitat fragments spurred the development of the fields of conservation biology and landscape ecology.

r/K-selection theory

A population ecology concept is r/K selection theory, one of the first predictive models in ecology used to explain life-history evolution. The premise behind the r/K selection model is that natural selection pressures change according to population density. For example, when an island is first colonized, density of individuals is low. The initial increase in population size is not limited by competition, leaving an abundance of available resources for rapid population growth. These early phases of population growth experience density-independent forces of natural selection, which is called r-selection. As the population becomes more crowded, it approaches the island's carrying capacity, thus forcing individuals to compete more heavily for fewer available resources. Under crowded conditions, the population experiences density-dependent forces of natural selection, called K-selection.

The diversity and containment of coral reef systems make them good sites for testing niche and neutral theories.

Metapopulations

Spatial analysis of ecological systems often reveals that assumptions that are valid for spatially homogenous populations – and indeed, intuitive – may no longer be valid when migratory subpopulations moving from one patch to another are considered. In a simple one-species formulation, a subpopulation may occupy a patch, move from one patch to another empty patch, or die out leaving an empty patch behind. In such a case, the proportion of occupied patches may be represented as

where m is the rate of colonization, and e is the rate of extinction. In this model, if e < m, the steady state value of p is 1 – (e/m) while in the other case, all the patches will eventually be left empty. This model may be made more complex by addition of another species in several different ways, including but not limited to game theoretic approaches, predator–prey interactions, etc. We will consider here an extension of the previous one-species system for simplicity. Let us denote the proportion of patches occupied by the first population as p1, and that by the second as p2. Then,

In this case, if e is too high, p1 and p2 will be zero at steady state. However, when the rate of extinction is moderate, p1 and p2 can stably coexist. The steady state value of p2 is given by

(p*1 may be inferred by symmetry). If e is zero, the dynamics of the system favor the species that is better at colonizing (i.e. has the higher m value). This leads to a very important result in theoretical ecology known as the Intermediate Disturbance Hypothesis, where the biodiversity (the number of species that coexist in the population) is maximized when the disturbance (of which e is a proxy here) is not too high or too low, but at intermediate levels.

The form of the differential equations used in this simplistic modelling approach can be modified. For example:

  1. Colonization may be dependent on p linearly (m*(1-p)) as opposed to the non-linear m*p*(1-p) regime described above. This mode of replication of a species is called the “rain of propagules”, where there is an abundance of new individuals entering the population at every generation. In such a scenario, the steady state where the population is zero is usually unstable.
  2. Extinction may depend non-linearly on p (e*p*(1-p)) as opposed to the linear (e*p) regime described above. This is referred to as the “rescue effect” and it is again harder to drive a population extinct under this regime.

The model can also be extended to combinations of the four possible linear or non-linear dependencies of colonization and extinction on p are described in more detail in.

Ecosystem ecology

Introducing new elements, whether biotic or abiotic, into ecosystems can be disruptive. In some cases, it leads to ecological collapse, trophic cascades and the death of many species within the ecosystem. The abstract notion of ecological health attempts to measure the robustness and recovery capacity for an ecosystem; i.e. how far the ecosystem is away from its steady state. Often, however, ecosystems rebound from a disruptive agent. The difference between collapse or rebound depends on the toxicity of the introduced element and the resiliency of the original ecosystem.

If ecosystems are governed primarily by stochastic processes, through which its subsequent state would be determined by both predictable and random actions, they may be more resilient to sudden change than each species individually. In the absence of a balance of nature, the species composition of ecosystems would undergo shifts that would depend on the nature of the change, but entire ecological collapse would probably be infrequent events. In 1997, Robert Ulanowicz used information theory tools to describe the structure of ecosystems, emphasizing mutual information (correlations) in studied systems. Drawing on this methodology and prior observations of complex ecosystems, Ulanowicz depicts approaches to determining the stress levels on ecosystems and predicting system reactions to defined types of alteration in their settings (such as increased or reduced energy flow, and eutrophication.

Ecopath is a free ecosystem modelling software suite, initially developed by NOAA, and widely used in fisheries management as a tool for modelling and visualising the complex relationships that exist in real world marine ecosystems.

Food webs

Food webs provide a framework within which a complex network of predator–prey interactions can be organised. A food web model is a network of food chains. Each food chain starts with a primary producer or autotroph, an organism, such as a plant, which is able to manufacture its own food. Next in the chain is an organism that feeds on the primary producer, and the chain continues in this way as a string of successive predators. The organisms in each chain are grouped into trophic levels, based on how many links they are removed from the primary producers. The length of the chain, or trophic level, is a measure of the number of species encountered as energy or nutrients move from plants to top predators. Food energy flows from one organism to the next and to the next and so on, with some energy being lost at each level. At a given trophic level there may be one species or a group of species with the same predators and prey.

In 1927, Charles Elton published an influential synthesis on the use of food webs, which resulted in them becoming a central concept in ecology. In 1966, interest in food webs increased after Robert Paine's experimental and descriptive study of intertidal shores, suggesting that food web complexity was key to maintaining species diversity and ecological stability. Many theoretical ecologists, including Sir Robert May and Stuart Pimm, were prompted by this discovery and others to examine the mathematical properties of food webs. According to their analyses, complex food webs should be less stable than simple food webs. The apparent paradox between the complexity of food webs observed in nature and the mathematical fragility of food web models is currently an area of intensive study and debate. The paradox may be due partially to conceptual differences between persistence of a food web and equilibrial stability of a food web.

Systems ecology

Systems ecology can be seen as an application of general systems theory to ecology. It takes a holistic and interdisciplinary approach to the study of ecological systems, and particularly ecosystems. Systems ecology is especially concerned with the way the functioning of ecosystems can be influenced by human interventions. Like other fields in theoretical ecology, it uses and extends concepts from thermodynamics and develops other macroscopic descriptions of complex systems. It also takes account of the energy flows through the different trophic levels in the ecological networks. Systems ecology also considers the external influence of ecological economics, which usually is not otherwise considered in ecosystem ecology. For the most part, systems ecology is a subfield of ecosystem ecology.

Ecophysiology

This is the study of how "the environment, both physical and biological, interacts with the physiology of an organism. It includes the effects of climate and nutrients on physiological processes in both plants and animals, and has a particular focus on how physiological processes scale with organism size".

Behavioral ecology

Swarm behaviour

Flocks of birds can abruptly change their direction in unison, and then, just as suddenly, make a unanimous group decision to land.

Swarm behaviour is a collective behaviour exhibited by animals of similar size which aggregate together, perhaps milling about the same spot or perhaps migrating in some direction. Swarm behaviour is commonly exhibited by insects, but it also occurs in the flocking of birds, the schooling of fish and the herd behaviour of quadrupeds. It is a complex emergent behaviour that occurs when individual agents follow simple behavioral rules.

Recently, a number of mathematical models have been discovered which explain many aspects of the emergent behaviour. Swarm algorithms follow a Lagrangian approach or an Eulerian approach. The Eulerian approach views the swarm as a field, working with the density of the swarm and deriving mean field properties. It is a hydrodynamic approach, and can be useful for modelling the overall dynamics of large swarms. However, most models work with the Lagrangian approach, which is an agent-based model following the individual agents (points or particles) that make up the swarm. Individual particle models can follow information on heading and spacing that is lost in the Eulerian approach. Examples include ant colony optimization, self-propelled particles and particle swarm optimization

Evolutionary ecology

The British biologist Alfred Russel Wallace is best known for independently proposing a theory of evolution due to natural selection that prompted Charles Darwin to publish his own theory. In his famous 1858 paper, Wallace proposed natural selection as a kind of feedback mechanism which keeps species and varieties adapted to their environment.

The action of this principle is exactly like that of the centrifugal governor of the steam engine, which checks and corrects any irregularities almost before they become evident; and in like manner no unbalanced deficiency in the animal kingdom can ever reach any conspicuous magnitude, because it would make itself felt at the very first step, by rendering existence difficult and extinction almost sure soon to follow.

The cybernetician and anthropologist Gregory Bateson observed in the 1970s that, though writing it only as an example, Wallace had "probably said the most powerful thing that’d been said in the 19th Century". Subsequently, the connection between natural selection and systems theory has become an area of active research.

Other theories

In contrast to previous ecological theories which considered floods to be catastrophic events, the river flood pulse concept argues that the annual flood pulse is the most important aspect and the most biologically productive feature of a river's ecosystem.

History

Theoretical ecology draws on pioneering work done by G. Evelyn Hutchinson and his students. Brothers H.T. Odum and E.P. Odum are generally recognised as the founders of modern theoretical ecology. Robert MacArthur brought theory to community ecology. Daniel Simberloff was the student of E.O. Wilson, with whom MacArthur collaborated on The Theory of Island Biogeography, a seminal work in the development of theoretical ecology.

Simberloff added statistical rigour to experimental ecology and was a key figure in the SLOSS debate, about whether it is preferable to protect a single large or several small reserves. This resulted in the supporters of Jared Diamond's community assembly rules defending their ideas through Neutral Model Analysis. Simberloff also played a key role in the (still ongoing) debate on the utility of corridors for connecting isolated reserves.

Stephen Hubbell and Michael Rosenzweig combined theoretical and practical elements into works that extended MacArthur and Wilson's Island Biogeography Theory - Hubbell with his Unified Neutral Theory of Biodiversity and Biogeography and Rosenzweig with his Species Diversity in Space and Time.

Theoretical and mathematical ecologists

A tentative distinction can be made between mathematical ecologists, ecologists who apply mathematics to ecological problems, and mathematicians who develop the mathematics itself that arises out of ecological problems.

Some notable theoretical ecologists can be found in these categories:

Journals

Inclusive fitness

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Inclusive_fitness      Inclusive fitness i...